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Abstract—The Raft algorithm maintains strong consistency across data replicas in Cloud. This algorithm places nodes, i.e.,
leader and follower, to serve read/write requests spanning geo-diverse sites. As the workload increases, Raft shall provide
proportional scale-out performance. However, traditional scale-out techniques are bottlenecked in Raft with an exponentially
increased performance penalty when provisioned sites exhaust local resources. To provide scalability in Raft, this paper presents a
cost-effective mechanism that enables elastic auto scaling in Raft, called BW-Raft. BW-Raft extends the original Raft with the
following abstractions: (1) secretary nodes that take over expensive log synchronization operations from the leader, relaxing the
performance constraint on locks. (2) observer nodes that handle reads only, improving throughput for typical data intensive
services. These abstractions are stateless, allowing elastic scale-out on unreliable yet cheap spot instances. In theory, we prove
that BW-Raft can preserve the strong consistency guarantee from Raft at scale-out, handling 50X more nodes, compared to the
original Raft. We have prototyped the BW-Raft on key-value services and evaluated it with many state-of-the-arts on Amazon EC2
and Alibaba Cloud. Our results show that within the same budget, BW-Raft incurs 5-7X less resource footprint increment than
Multi-Raft. Using spot instances, BW-Raft can reduces costs by 84.5%, compared to Multi-Raft. In the real world experiments,
BW-Raft improves goodput of the 95th-percentile SLO by 9X, thus, serves an alternative for distributed service scaling out with

strong consistency.

Index Terms—Strong Consistency, Scalability, Geo-diverse, Spot Instance

1 INTRODUCTION

The Raft algorithm is invented to support strong consistency
in networked services, serving as a simplified alternative for
Paxos [26]. Distributed systems use Raft to keep consensus be-
tween software/system components. For example, components
must agree on locking ownership and operations in synchro-
nized queues. Raft is used in practice by many large-scale
platforms, such as Google Kubernetes [11], Core OS [9], and
Oracle [10]. These platforms, i.e., the clients of Raft, suffer
inflated costs when Raft employs inefficient scaling techniques.

By design, Raft shall be easy to learn and implement. Soft-
ware threads in Raft are either leaders or followers. At all times,
Raft allows zero or one leader elected by followers. Followers
periodically heartbeat the leader, checking for failures. Upon
leader failure, followers call for a leader election to name a new
leader. By design, the leader has a more demanding workload: it
pushes writes to all available followers, tracks which followers
have confirmed the most recent writes, and dispatches reads
to these confirmed followers. The leader is the performance
bottleneck of Raft.

When workload demands overwhelm the leader, the Raft
infrastructure must acquire and use new resources to improve
its throughput. One approach is to run the leader on more
powerful computers (scale up). When these powerful computers
are unavailable, the leader’s load must be split (scale out).
There raises one key issue: Raft permits one leader only. One
leader is essential to make the Raft algorithm understandable,
correct, and easy to implement. Multi-Raft [21] scales out by

replicating leaders and followers, and splitting data between
replicas. Each replica implements a Raft, providing strong con-
sistency. Between replicas, a 2-phase commit provides strong
consistency. Multi-Raft can improve throughput as workload
demand increases, but it is undesirably expensive. Each scale
out operation doubles resource footprint. Besides, these algo-
rithms require complex procedures to handle partitions, fork
threads, and remove threads. Subtle programming mistakes can
invalidate strong consistency guarantee, leading to costly bugs.

With the global proliferation of networked devices, fol-
lower nodes in Raft are increasingly geo-distributed. Consider
a global, coordinated release of some streaming content, Raft
coordinates when such content is accessible. Placing followers
in geo-distributed data centers ensures low access latency for all
users. On the other hand, the cost and amount of cloud resources
requested by followers vary from site to site. By naively repli-
cating leaders and followers, the Multi-Raft approach inevitably
scales out at expensive sites. Our research seeks a solution that
selectively excludes expensive sites during scale out, without
compromising throughput or latency.

In all, there are three main issues in designing a prac-
tical Raft algorithm for large-scale platforms, namely strong
consistency, cost efficiency (i.e., avoid temporally expensive
sites), simplicity (i.e., one leader scheme). To address these
challenges, we propose Black-Water Raft, or BW-Raft, a Raft
extension that scales out well with geo-distributed resources.
For strong consistency at scale out, BW-Raft supports 5 types
of software threads: follower, candidate, leader, secretary, and
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Fig. 1. Execution of writes in Raft (top) and geo-distributed scale out in Multi-Raft (bottom).

observer. Inherited from the original Raft, BW-Raft permits zero
or one leader based on majority votes by followers (i.e., simplic-
ity). In BW-Raft, leader outsources expensive log appending
and replication to secretaries, reducing workload imbalance.
Observers answer read-only queries, reducing workload for
followers. BW-Raft allows multiple secretaries and observers
to run simultaneously, on spot instances, thus ensuring the cost
efficiency. BW-Raft preserves the safety guarantee of Raft. In
theory, BW-Raft adopts state irrelevancy [24] to prove that
secretary and observer failures do not affect correctness.

In BW-Raft, secretaries and observers are stateless and
execute at any geo-distributed site. They can be deployed
incrementally to achieve high throughput at a low cost as
demanding workload grows. We present an online approach to
discover global, high throughput, and low cost configurations
for BW-Raft. This online algorithm allows BW-Raft to “peek
and peak”, as rafting in a blackwater. BW-Raft always puts a
default node configuration for the arrival workload (i.e., peek),
then reconfigures it after a fixed period, for cost optimization
(i.e., peak). In this optimization, our approach accepts time
sensitive parameters on instance expense and workload latency.
This allows BW-Raft to exploit cheap geo-distributed resources
on spot markets, i.e., cloud markets with cheap but failure prone
resources. For example, in Amazon AWS EC2, spot instances
can cost 90% less than on-demand instances [30], [31], [42],
[44]. Though with a cheaper price, introducing unstable spot in-
stances into Raft infrastructure may hurt overall reliability [38].
To avoid fatal failures due to spot instances while harvesting
cost benefits, BW-Raft uses safe, on-demand instances for leader
and followers, and spot instances for temporary secretaries and
observers only. In the geo-distributed setting, BW-Raft is cheap
per se, as it leases spot instances from the cheapest market
combined (i.e., cost effective). In an environment without spot

instance, BW-Raft can also scale out with some on demand in-

stances hired as secretaries and observers. But this will increase

the cost of BW-Raft.

We deployed BW-Raft on Amazon EC2 and Alibaba Cloud
for more than 3 months serving key-value lookups based on
Google traces [6]. BW-Raft purchases low-cost spot instances
in geo-distributed sites to scale out the performance within the
budget. BW-Raft adaptively boosts read and write throughput
which incurs less than 85% overhead compared to Raft [32].
BW-Raft scales in increments with a 5-7X smaller resource
footprint than the Multi-Raft, the state of the art. BW-Raft
reduces costs by 84.5%, as compared to the Multi-Raft, and im-
proves goodput (i.e., the application-level throughput) of 95"
percentile SLO by 9X. BW-Raft operates key-value services for
over 3 months without losing data or crash.

This paper contributes as follows:

- We identify the scale out performance problem of Raft, a
widely used consistency algorithm, and how today’s solution
fails at expensive costs.

- We propose BW-Raft, an extended Raft design that achieves
cost efficiency by exploiting cheap but unreliable geo-diverse
spot instances.

- We prove in theory that BW-Raft achieves strong consistency
between nodes, and preserves the single-leader policy of Raft.

- We present an online approach to manage the BW-Raft infras-
tructure.

- We have built BW-Raft and deployed it for 2 months on
public clouds, reporting that BW-Raft reduces costs by 84.5%
and improves goodput by 9X, compared to state of the art
mechanisms.

The remainder of this paper is organized as follows. Section
2 overviews Raft and the Cloud market. Section 3 describes BW-
Raft and proves that it retains safety guarantees of Raft. Section
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4 describes BW-Raft implementation over geo-distributed spot
markets. Section 5 illustrates the BW-Raft can greatly reduce
the cost. Section 6 provides a brief on consistency algorithms
and related work. At last, Section 7 concludes the paper.

2 BACKGROUND
2.1 A Consensus Algorithm

In the past decade, Paxos [26] was the algorithm to build dis-
tributed storage service. Due to the difficulty of understanding
a Paxos implementation, it is not practical to build a complete
Paxos system that is clean and easy to understand from a third
party verification. Researchers promote Raft as it can ensure
the linearizability as in Paxos and its notably simplicity and
easy to verify [32]. Raft has attracted attentions from open
source communities in data management. Raft is usually used
to implement a key-value store for data intensive services, as
follows:

« revision id <« write(key k, value v)

« {value v, revision id} < read(key k)
Raft is designed to handle all queries by the leader node,
which sets a global processing order for read/write queries and
ensuring that subsequent queries could return the same value. In
other words, Raft supports linearizable consistency.

In Raft, we assume all nodes can fail inevitably, e.g.,
hardware failures, some node’s logs can diverge from other’s.
Raft uses a leader-follower structure to ensure that all nodes
always agree on the leader. As Figure 1 (top) shows, there is a
conflict between follower and leader log. The leader heartbeats
the “victim” follower, keeping checking the log conflict and
overwriting them until all logs are in consistent. Besides, Raft
forces followers to accept log append from the leader. For
example, some clients send a request to the leader. The leader
saves the message locally and broadcasts it to all followers. The
leader only responds to the client when the majority nodes have
successfully replicated the log.

Raft maintains its consistency against failure through an
election process. In Raft, software threads are either the leader,
followers, or candidates. The leader handles all the requests
from clients and maintains its role by sending heartbeat mes-
sages. After receiving a heartbeat, followers reset a random
election time. If a follower has not received a heartbeat after
the election time, the follower increments its token, announces
its candidate role, and calls for a election. Other followers can
only vote for a candidate whose log token is not larger their
own. If a candidate gets the majority votes, it is elected to be
the new leader.

With this design, the Raft algorithm has some spare room to
improve. There are many interesting papers on optimizing Raft.
For example, Craft [37] is proposed to to reduce network cost
and storage space. Another C-Raft [14] defines a hierarchical
model of consensus to improve upon throughput in globally
distributed systems. In this paper, we target at the scalability of
Raft with a focus on the cost efficiency.

Scaling out in Raft. Raft permits only one leader at a
time and the leader has a demanding workload. Naively adding
follower nodes does not improve throughput. Instead, it often
degrades throughput by causing more log matching [43]. Multi-
Raft is a widely used approach to scale out Raft. As shown in
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Fig. 2. BW-Raft scales out on spot market resources.

Figure 1 (bottom), Multi-Raft sets up multiple Raft services,
splits the key space and assigns each split to one Raft. Multi-
Raft then migrates each Raft service to its own resources. In
geo-distributed cloud settings, each Raft service uses instances
at each site. For example, Figure 1 shows migration to new
instances at AWS EU-Frankfurt, Asia-Singapore, and US-East
sites. Each Raft is independent and handles their own update,
log commit, and leader elect tasks (e.g., Raft #1 and Raft #2 in
Figure 1). Between leaders of these Rafts, they communicate
and keep in consistency based on the 2-phase commit. The
Multi-Raft approach preserves linearizability within key ranges
and scales out. However, it is not cost efficient, nor propor-
tional to the number of nodes. Each scale-out can double the
resource footprint to resolve light bottlenecks at only one leader
node [43].

2.2 The Cloud Spot Market

In today’s cloud market, spot instances [1] are short-lived in-
stances offered by cloud providers for a very low cost compared
to on-demand or reserved instances. Since customers’ demand
for cloud resources is dynamic, cloud providers use spot market
to map extra resources for peak demand thus monetizing the
cloud capacity. The price of spot instances vary with the supply
and demand. On average, users can save up to 90% expenses,
compared to on-demand instances. Although spot instance can
save lot of money for users, the instance can be interrupted
at any time when it has been outbid. With the growth of
cloud services in recent years, more and more cloud providers
have launched their own spot services to maximize resource
utilization and revenue, such as Azure’s Low-priority VM [2]
and Google Cloud’s Preemptible VM [5]. In the past, spot
instances can only provide unstable services, which makes the
use of the spot instance very limited. In our paper, we propose
to use spot instances to extend the Raft protocol into BW-Raft
that can use unstable instances with strong consistency.

3 DESIGN

In this section, we describe the overall design of BW-Raft.
As aforementioned in Section 1, BW-Raft handles the Raft
protocol across a list of sites to provide data services with
strong consistency. Such performance is obtained using our
BW-Raft mechanism. BW-Raft operates original Raft among
sites while hiring spot instances as secretaries and observers to
offload jobs from the leader and followers, respectively. As such,
we allow one leader to handle a larger number of followers,
compared to the original Raft.

BW-Raft extends Raft with two new types of software
threads: secretary and observer. Secretaries offload the heavy
log appending and log checking jobs from the leader. Observers
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relieve heavy read demand pressure from followers. Secretaries
and observers are stateless, allowing elastically scaling up and
down. BW-Raft ensures linearizable consistency. Like Raft,
BW-Raft allows only one leader thread. The leader is selected
from followers as the original election. Tentative nodes, secre-
taries and observers, can not vote. As such, BW-Raft supports
any number of secretaries and observers.

Secretaries and observers can run on cheap, failure-prone re-
sources, making them well suited for geographically distributed
spot markets, i.e., cloud resources that are heavily discounted
but can be revoked at any time. Figure 2 provides an overview
of our BW-Raft. Clients issue write queries to the leader. The
leader offloads log matching and related tasks to a secretary
which runs on a spot instance. Read queries are handled by
either followers or observers. Note, the number of secretaries
and observers varies from site to site and fluctuates. This gives
our design the feasibility of chasing after cheap spot markets.

The rest of this section first details the algorithm on the
leader election, secretary and observer failures, and the main
safety guarantee. Then, we present a modeling approach for
managing the global cloud resources effectively.

3.1 The BW-Raft Algorithm

BW-Raft, like the original Raft, initializes cloud instances at all
sites and runs leader and follower software threads on them.
Figure 3 shows the whole state transfer in BW-Raft, starting
from leader election.

BW-Raft Leader Election: The leader manages log matching
and replication for followers and secretaries. The execution trace
of commands for the state machine is based on logging.

PROPERTY 3.1. (Leader Election Safety). Like Raft, there is
at most one leader per term in BW-Rafft.

The leader maintains its role by sending heartbeat messages.
After receiving a heartbeat, followers set a random timer. If a
follower does not receive a message before the timer triggers,
the follower calls for an leader election (i.e., Step (1) in
Figure 3). The follower increments its term and tells other
followers that its a candidate for leader. Followers vote for
a candidate whose log is not older than its own. If election
times out, the election would restart again. If a candidate gets
the majority votes from most followers, this secretary becomes
the new leader and BW-Raft provisions secretaries for the new
leader (i.e., Step (2) in Figure 3).

BW-Raft starts each term (T°) with a leader election. When
a new leader is elected, it broadcasts an empty log to notify
higher term. Meanwhile, the new leader in BW-Raft always tells
followers which secretaries are responsible for this log, such that
log management can be offload to assigned secretaries (i.e., Step
(4) in Figure 3). If the election is fail, a new term starts with a
new election.

PROPERTY 3.2. (BW-Raft State Machine Safety) Each repli-
cated copy of the state machine executes the same commands in
the same order.

Established in Woos and Wilcox’s prior research in
Raft [39], this property provides consistency guarantees for logs
between all leader, secretaries, followers, and observers in the
protocol.

(5) Replicate log to
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(3) Discovers higher term. Drop all \::\ RN observers
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Fig. 3. The state machine and stateless nodes in BW-Raft. The central
part in rectangle preserves the classic Raft state machine.

Offload Log Replication

! Secretary \

'
! X4 ye5 73 '
v

/ ‘
! Replication
Success

\
Replication
Success

Maintain Leadership & Log Replication

Fig. 4. Secretary offloads log replication from the leader.

Log Replication: BW-Raft targets at optimizing the perfor-
mance in the log replication phase. In log replication, the list
of commands to execute on the state machine is kept in log,
and the position of a command in the log is called its index.
Each node has its own copy of the log from leader, and state
machine safety reduces to maintaining agreement between all
copies of the log. Figure 4 shows an example of BW-Raft. When
a client sends a write to the leader, the leader first appends a
new log entry containing that command to its local log. Then
the leader sends an appended message containing the entry to
an assigned secretary, which is responsible to replicate the log
to the followers in the same site. Each follower in the same site
appends the entries to its log and sends the acknowledgment
to the assigned secretary. To ensure that followers’ logs stay
in consistent with the log of the leader, secretary’s messages
include the index and term of the previous entry in its local log;
the follower checks whether it has an entry with the index and
term before appending new entries to its log. This consistency
check guarantees the following property:

PROPERTY 3.3. (Log Matching). If any two logs contain same
index and term, then the logs are identical in BW-Raft.

In BW-Raft, all logs are replicated from leader to follower,
or from leader to secretary to follower. After the secretary learns
the majority followers have acknowledged the new entry, it
notifies the leader the number of follower and agreed index.
Once the leader learns the majority followers have acknowl-
edged the new entry, it executes the command contained in
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the committed entry in the state machine and responds to the
client with the output. The followers and observers can safely
execute the command on their state machines after receiving
the heartbeat with the committed index. Thus, in both leader
election and log replication, both secretaries and observers are
state irrelevant.

PROPERTY 3.4. (State Irrelevancy). If any secretaries/ob-
servers fail during the term at different locations, then the logs
are still matched because state machines in both leader and
followers are irrelevant to secretaries and observers.

We first prove the State Irrelevancy in secretaries. Given
an execution trace 7 of BW-Raft, assuming one secretary fails
during the trace, we shall find an existing o such that 7
linearizes to o. To find the o, we revert BW-Raft back to a
single Raft, then we pick the sequence of commands executed
by the followers on their local state machines. State machine
safety guarantees that all nodes agree on this sequence.

The remaining job is to show that without failing certain
secretaries, we have 7’ linearizes to o. Let 7' be the sequential
input—output trace corresponding to ¢ in 7. That is, for each
command executed in o, 7’ contains an input immediately
followed by the corresponding output for that command. All
commands from/to secretaries can be omitted in 7/, which
makes it a permutation of 7 that respects the ordering condition
of properties. Each of these is established as a separate invariant
by induction on the execution. The proof for observers are
similar since they never affect the order of local state machine
of followers.

With properties inherited from Raft, while the additional
roles in BW-Raft are state-irrelevant, we have,

PROPERTY 3.5. (linearizability) Properties 3.1-3.4 imply
linearizability in BW-Rafft.

The proof trivially follows the linearizability proof in
Raft [39]. Once an entry is committed, it becomes durable, BW-
Raft operates log replication with linearizability.

PROPERTY 3.6. (Liveness).
cluster membership.

BW-Raft also provides a liveness guarantee: if there are
sufficiently few failures, then the system will eventually process
and respond to all client commands.

BW-Raft supports changes in

3.2 Global Resource Management

BW-Raft offloads some operations to secretaries and observers,
by exploiting cheap but revocable resources, such as spot
instances, for cost efficiency. This section answers a critical
infrastructure question, for a given data service, how many and
which sites the required instances are purchased.

In our design, BW-Raft manages its global resource via
“peek and peak”. Whenever a new data service arrives, BW-Raft
use “peek and peak” mechanism to predict a configuration for
it. For example, BW-Raft can run under the original Raft model
at the beginning. However, in practice, to keep the handler
open on accessing spot instances, we set at least one secretaries
and observers when Bw-Raft is initialized, allowing the BW-
Raft implementation to keep the connection without rebooting
the instance create API. Once the target service load increases
beyond the original Raft’s capacity, BW-Raft starts to scale,

5
Symbol  Description
p The unit price of spot instance
B The unit price of on-demand instance
¢ The available budget
ks The number of secretaries in cluster
ko The number of observers in cluster
Akg The number of new secretaries
Ak, The number of new observers
k The number of spot instances that need to be rented
N, The number of read requests in last period
N/ The number of read requests in current period
A The growth rate of the number of read requests
w The write ratio threshold
¢ The write ratio in current period
m The number of data centers
F; The number of followers in i;;, data center
koi The number of observers in i}, data center
f The number of followers one secretary can handle
C A linear function of network cost

Algorithm 1 The Algorithm of the Top-K sites Decision

Input: The parameters mentioned in Table 3.1
Output: k: the number of new spot instance, including secre-
tary and observer
1: initial k; = 0, k, = 0, ©w=30%;
2: for every period time 1" do
N

3: k;(—z f

i=1
Aky K, — &,

4
5 if( <w th/en

6: A w

7 if A>10% then

8: Ak, +—m .

9: Ak, + min(Ak,, M)
10: else if A< — 10% then

11 Aky  maz(—k,, —m)

12: end if

13: ¥ maz(0,9 — pAk,)

14: Akg + min(Aks, %)

15: ¥ max (0,9 — pAks)

16: else

17: Ak <= min(Akg, 2)

18: 9 < maz(0,9 — pAks)

19: Ak, min(m, %)

20: ¥+ maz (0,9 — pAk,)

21: end if

22: ke < ks + Ak,

23: ko, < ko, + Ak,

24: k +— Ak, + Ak,
25: end for

predict, and assign new resources, as rafting in black water,
or “peek”. On the other hand, if the target service scales out
configuration has been determined, we would like to pick at least
k nodes to meet the demand. This decision recurs every epoch,
which allows BW-Raft to select best cost-efficient instances
online, or “peak” efficiently.

Peek in BW-Raft. Given a newly arrived service, BW-Raft runs
for a fixed period of time 7, e.g., 1 hour. The value of 7" should
be set according to the Service Level Agreement (SLA) require-

Authorized licensed use limited to: The Ohio State University. Downloaded on May 21,2023 at 02:01:02 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3161297, IEEE

Transactions on Cloud Computing

Algorithm 2 Select Top-K Spot Instances

Input: score: queue of spot instances’s score; discard: array
of discarded instance in last 7" period; k: the number of spot
instances selected;

Output: topk|]: array of selected spot instances’s index

1: initial L = 1 and R = len(score);

2: function TOP-K(k, L, R, score)

3: if £ > 1 then 1
4 m(—binornd(R—L—i—l,i);

5 [+ LkJ,
6 TOP-K(l, L, L +m — 1, score);
7: It < the [ smallest element in first m samples;
8 fori=L+m — Rdo
9: val + scorelil;
10: if This instance was discard in last 7" period then
11: discard.append(i)
12: end if
13: if val > l;, & topk.size() < k then
14: topk.append(i);
15: end if
16: end for
17: else
18: len(—R—Lﬁ— 1;
en
19: D floor(emp(l)),
20: ma < score[L];
21: fori=L—L+p—1do
22: val < scorelil;
23: if val > mx then
24: mz < val;
25: end if
26: end for
27: fori=L+p— Rdo
28: val + scorelil;
29: if val > mx then
30: topk.append(i);
31: return
32: end if
33: end for
34: topk.append(L);
35: end if

36: end function
37: if topk.size() < k then
38: for i € discard do

39: if topk.size() < k then
40: topk.append(i)

41: end if

42 end for

43: end if

ment. During this period, BW-Raft collects request statistics
and the price of instances in the past 7' time. Based on this
information, BW-Raft determines the number of spot instances
needed for expansion by algorithm 1. Since the resources of
the spot instance are limited, BW-Raft needs to prioritize the
number of secretaries and observers based on the read-write
ratio of workload. For example, if the write ratio  in current

6

period time is less than ©w=30%, BW-Raft gives the priority to
the number of observers (line 5-15). Otherwise, the number of
secretaries is given priority (line 16-20). @ is an user-defined
variable in practice. When prioritizing observer, BW-Raft first
computes the growth rate of read requests A (line 6). Because
observers are only used to process read requests, the number of
required observers is related to the amount of read requests.
Taking system fluctuations into account, we argue that it is
unnecessary to rent new observers or withdraw old observers
when |A| < 10%, for the sake of avoiding extra overhead.
When A>10%, BW-Raft rents new observers. However, subject
to the constraint of budget ¥ and unit price p, in m data centers
BW-Raft can hire at most Ak, new observers (line 8-9). When
A< — 10%, BW-Raft can cut down at most m observers (line
11) to rent secretaries or directly update available budget (line
13-15).

When the read burst varies frequently, BW-Raft can handle
it within a bounded overhead. Reads start to burst yet BW-Raft
does not have sufficient nodes to handle it. BW-Raft will start
to hire more nodes as observers, to compute reads, in the next
epoch t+1. In this way, if such burst continues in epoch t+1, the
overhead from insufficient scheduled resources is limited up to
one period duration, i.e., epoch length T. If such burst drops in
epoch t+1, BW-Raft may make a bad decision on hiring nodes,
thus suffers from less cost savings. Note that, the spot instance
is much cheaper than on-demand instances. Thus, this would not
inflate too much cost and we allow to pay this price, in order to
make a simple design against unpredictable workload dynamics
in practice instead of making a complex yet inefficient workload
prediction. Now the key design issue is how to find a proper T
such that we do not make decision too often in BW-Raft yet
a bad decision would not cost us too much. When prioritizing
secretary, we assume one secretary can manage f followers,
then BW-Raft can get the total number of secretaries needed
to offload leader’s workload in current cluster (k., line 3) and
the number of new secretaries (Akj, line 4). Just like hiring
observers, BW-Raft hires new secretaries with the rest budget
and calculate available budget (line 17-20). After Algorithm 1
calculates the total number of new secretaries and new observers
in cluster (i.e., ks and k,), The estimated total expense can be
calculated by equation (1):

cost = {BF;} + B+ plks + ko) + C (1)
i=1

where C is a linear function of network cost related to the total
number of instances in cluster.

In extreme cases, In some extreme cases, the number of
read and write requests in multiple consecutive periods could
be small. BW-Raft may roll back up to ks secretaries and k,
observers to save cost. This recall process takes m observers
and % secretaries in each period to avoid drastic fluctuations
from the resource estimation in BW-Raft. On the other hand,
when dealing with heavy read and write workloads, we have
two cases. (1) When the resource budget is sufficient, BW-Raft
can rent as many spot instances as requested to mitigate the load
peak. (2) In the case of insufficient budget, BW-Raft prioritizes
all budgets for renting spot instances as secretaries. Therefore,
BW-Raft rents % secretaries and rest instances to observers. In
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this way, both Algorithm 1 and Algorithm 2 can always adapt
to these edge cases.
Peak in BW-Raft. Spot instance is quantified by the following
estimation function 2, based on CPU capacity c, available mem-
ory ¢, average price o and revocation probability £. The revo-
cation probability ¢; can be calculated by RevPred model [27].
Y4 1¢+ €2¢ + £3%
score= —— )

3

When BW-Raft needs k£ new spot instances, we use
Multiple-Choice Secretary Algorithm (MCSA) [25] to select
Top-K spot instances. Since the spot instances can be revoked
at any time, any static offline algorithm could fail. We choose
MCSA for two reasons, (1) we need to find a set of instances
that provides the best revenue within a bounded time; (2) the
algorithm shall be sufficiently simple and effective. The Multi-
Choice Secretary Algorithm (MCSA) outstands other candidates
because (1) the selection algorithm follows a linear behavior;
(2) the near-optimal algorithm performs within a reasonable
performance upper bound. MCSA can choose k elements and
maximize their return within a bounded time at a competitive
ratio of 1 — O(y/1/k).

In our implementation the Algorithm 2 is designed recur-
sively under the following rules: If £ = 1, find the maxi-
mum number max of previous |n/e] elements (line 18-26),
then iterate over the remaining elements and select the next
element which exceeds max if such an element appears (line
27-34). If k > 1, search space is divided into two groups.
Choose up to | k/2] elements among the first binornd(n, 1/2)
samples (line 4-6), then, pick elements from the left n — m
elements which larger than the |k/2]| smallest element in prior
binornd(n, 1/2) samples (line 7-16). Since the instance pool
changes dynamically in BW-Raft, new instances can add or
discard at any time. When encountering a new instance, BW-
Raft can get its priority score by equation (2). Considering
additional cost caused by frequently discarding and renting the
same instance, if a instance is deprecate in last 7' period, we
do not consider it temporarily (line 10-11) unless there is no
adequate instances to meet our demand (line 37-43). When
BW-Raft discards instances in past 7' period while running
Algorithm 2 (line 2-36), it can choose some new instances
from them when needed (line 37-43). According to Algorithm
2, BW-Raft can get the best top k instances and maximize their
scores. The time complexity of algorithm 2 can be evaluated as
follow:

n n n n
T:O(270+§+272+"'+2l07) 3)
1
= 02~ ) )

Note that due to the randomness of binomial distribution, time
complexity of our algorithm is difficult to specifically figure out.
However, it is clear that the worst time complexity is O(n) +m,
where m is the sum of binornd(n, 1/2) in recursion.

Gradually, BW-Raft calculates k based on the statistical
information of the previous T time (peek), and then selects the
best k spot instances to allocate new secretaries and observers
(peak). In practice, T is changeable, if T is set to a fine-grained
manner, BW-Raft can approach to a real time system.

Redirct read request
to follower _.--=-

s i yes

Maintain Leadership ]

Log Replication

i * US-East
" e el
- o ‘ US-west
client Use readindex

to read data

Fig. 5. Observer offloads read request from the follower.

4 IMPLEMENTATION

We have implemented a prototype of BW-Raft as an extension
from the original Raft protocols. The whole implementation
covers the two roles of nodes, i.e., secretary and observer. The
BW-Raft prototype supports basic key-value store operation.
To adapt the mordern cloud services, we use LevelDB [8] as
the storage engine and GRPC [7] for communications between
nodes.

Roles: Follower|Leader|Secretary |Observer
Message Entry: {Index, Key, Value}
// Leader| Follower | Candidate
service BW-RAFT {

rpc RequestVote (RequestVoteArgs)
returns (RequestVoteReply){};
AppendEntries (AppendEntriesArgs)
returns (AppendEntriesReply){};
GetReadindex (ReadIndexArgs)
returns (ReadIndexReply){};

rpc
rpc

}
// Secretary
service BW-Secretary {
rpc L2SAppendEntries (AppendEntriesArgs)
returns (L2SAppendEntriesReply){};
}
// Observer
service BW-Observer{
rpc AppendEntries (AppendEntriesArgs)
returns (AppendEntriesReply){};
}
// Client|Server
service BW-KV {
rpc PutAppend (PutAppendArgs)
returns (PutAppendReply){};
Get (GetArgs)
returns (GetReply){};

rpc

}

Listing 1. Remote Procedure Call in BW-Raft.

4.1 Original Raft Implementation

When all spot instances are not available or too expensive to
hire, BW-Raft gradually shrinks to a original Raft design, with
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nodes as leader, follower, and candidate. As shown in Listing 1,
we have defined the BW-Raft service to provide functions, such
as, RequestVote and AppendEntries. When a follower has not
received the heartbeat for a certain period of time, it increases
its term and turns into a candidate. Once a candidate is created,
the candidate starts a new election and uses RequestVote RPC
to collect votes. If the term and index of the candidate’s last
log are at least up-to-date as logs from other followers, the
follower votes for the candidate. Otherwise, the candidate’s
voting request gets rejected. After a round of election, if a
candidate collects more the majority votes (more than 50%),
this candidate becomes the new leader. Otherwise, a new round
of election starts. When a new leader is elected, the leader starts
to synchronize the logs with each node and sends heartbeat to
prevent new election.

4.2 Secretary Implementation

Since the secretary is used to offload the leader’s log replication
task. As shown in Listing 1, we have defined the BW-Secretary
service to synchronize the leader and secretary logs. When a
new leader is elected, the leader runs Algorithm 1 to determine
how many secretaries to hire according to the current workload.
Then the spot instance used to run these secretaries is selected
by Algorithm 2 to get lower cost and higher throughput. When
a leader hires a secretary, the leader specifics some followers to
secretary and lets the secretary replicate log to the specified
followers. Figure 4 shows an example of BW-Raft how to
hire a local spot instance as secretary to offload leader’s log
replication task. When the leader sends a new log to a secretary,
the secretary replicates the log to the followers. After the log has
been appended to the majority of followers or after the set time
has passed, the secretary sends the number of followers who
successfully replicated the log and the agreed index to the leader.
As spot instance can be interrupted at any time, all the heartbeat
messages are sent by leader to maintain leadership. BW-Raft
can also hire global secretary to offload the communication
task of confirming the leader status. Global secretary is used
to further reduce the communication pressure of leader when
there are too many nodes in the decision space. When there are
multiple secretaries and one secretary fails, the leader can assign
tasks of failed secretary to other secretaries. If the leader cannot
communicate with the global secretary, the leader directly sends
a heartbeat to confirm the status.

4.3 Observer Implementation

In order to deal with a large number of hot data reads, we
implement an interface to call Algorithm 1 and Algorithm 2
to make BW-Raft dynamically rent spot instances as observer
to offload client’s read operation. Figure 5 shows an example
of BW-Raft how to hire a local spot instance as observer to
offload reads from followers. In BW-Raft, if a observer receives
a read request, it uses GetReadindex to get the newest readindex
from the leader, and return to the client after the state machine
executes the readindex. However, with no additional measures,
readindex operations would run at the risk of returning staled
data, since the responding message might have been superseded
by a newer leader. In original Raft, before the leader responses
to the client’s read request, the leader heartbeats to check the
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leadership. In BW-Raft, we hire a global secretary to do this.
Therefore, as long as the leader communicates with global
secretary , the replacement status is obtained.

We have published one version of BW-Raft in
practice, which has been included in original Raft
project https://raft.github.io. Those who are interested may refer
https://github.com/eraft-io/eraft for more information.

5 EVALUATION

BW-Raft is designed to achieve a cheap and scale-out consis-
tency protocol by using on-demand instances and spot instances,
which can handle different workflows and run on some unstable
machines. In this section, we evaluate the performance of BW-
Raft by prototyping it onto our physical testbed and Amazon
AWS EC2 [1], [29].
System Setup: We deploy BW-Raft onto Amazon AWS EC2’s
instances (t2.small) to evaluate the runtime performance of BW-
Raft by using Google workload. For the burstable spot instance,
we report 0.415$/H on average. Spot instances are up to 90%
cheaper than corresponding regular on-demand instances. We
also build a physical testbed to illustrate the performance of
BW-Raft by using YCSB [15] workload. The testbed contains
12 servers with Intel Xeon 2603 1.70GHz and 32GB DDR4
memory, 2TB HHD and connected by a switch router Ruijie
RG-S2952G.
Software Setup: The operating system is built as Ubuntul6.04
(kernel version 4.15.0) and the version of YCSB is 0.17.0. Our
experiments are built based on a client-server model, as shown
in Figure 2. The client sends batched workload as reads/writes
operation, with different CPU/memory demands, arrived in a
Poisson distribution.

In this paper, we mainly evaluate BW-Raft with the follow-
ing baselines:

e Original implements a state-of-the-art Raft design from
Ongaro et al. [32];

e Multi-Raft is a state-of-the-art multi-raft implementation
using sharding [20];

e Oracle is a theoretical best baseline based on offline
analysis.

Workloads and Traces: We verify the performance of BW-
Raft using real world workloads and traces. We use the popular
Google cluster trace [6] which contains one-month job statistics
in Google cluster. Workloads are random reads/writes, con-
trolled ratio R/W batches, and read/write-only workloads. All
workloads are tested with small, medium, and large block size,
namely 256KB, 1024KB, and 2048KB, respectively.

o Read is a batch of workload with read-only queries.

o Write is a batch of workload with all writes.

o «-Static is an « controlled workload batch with o as the
read/write ratio.

Performance Snapshots: First, we report the performance
snapshot of running BW-Raft, Multi-Raft, and Original. The
whole experiment lasts for 1200 epochs (i.e., 50 days) in
Amazon EC2. Figure 6 plots the average latency when executing
Read (top) and Write (bottom). For reads, BW-Raft provides
the shortest average response time (i.e., 1.26s), which is 27% of
Multi-Raft (4.6s) and 15% of Original (7.9s). However, in some
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and the footprint of each operation is 4kB.

extreme cases, BW-Raft can perform badly, such as overshoots
in epoch 410 and 578 in Figure 6(a) top. Similar overshoot
happens when BW-Raft executes larger reads. Such overshoots
happen when the majority of observers failed and BW-Raft
had to reschedule workloads to correspondent followers. The
overshoot can be mitigated when we spreading observers onto
many sites instead of a few cheap ones, which is a tradeoff
between performance and cost.

For the write operation, BW-Raft scales out in proportion
to the ever-increasing updates, nicely. The secretary in BW-
Raft runs on the spot instance. Sometimes, the secretary may
fail or lack sufficient spot instances to run. In this case, the
write response delay could be large because of the chain effect
of write operation. In the next period, BW-Raft reallocates
secretary resources, which makes the response time fairly stable.
Multi-Raft also scales, however, with a price of 3X larger

response time due to maintaining the 2-PC communication
between leaders. Original cannot handle constant updates when
scaling-out. When the size of appended logs increases to a limit
in all nodes, Original fails at the leader blocking the overall
write performance, slowing down 2.5X, compared to BW-Raft.
Overall, BW-Raft shows significant performance improvement,
as it scales in increments 3-12X compared to Multi-Raft and
Original.

Scalability: BW-Raft can easily scale in proportional to per-
formance and cost. Figure 7 demonstrates such proportionality
when the workload batch size increases by 700X. In Figure 7(a),
both BW-Raft and Multi-Raft grow in proportional to the work-
load size. BW-Raft exhibits a better scale-out performance than
Multi-Raft, and is close to the theoretically best performance in
Oracle. Original does not scale. When the workload increases,
Original suffers from managing too many logs at the leader
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node, which prevents scale-out. Multi-Raft can scale out at a
much higher cost. As shown in Figure 7(b), Multi-Raft leases
more on-demand nodes in scaling out while BW-Raft harnesses
the salient feature of cheap spot instances. Compared to Oracle,
BW-Raft still has rooms to improve, especially in the workload
and resource provisioning.

Overall Statistics: Figure 8 shows the overall performance and
expense comparison between BW-Raft and other baselines. In
goodput (i.e., correct queried result over unit time), BW-Raft is
7X and 1.5X, larger than Original and Multi-Raft, respectively.
Considering both reads and writes, BW-Raft has smaller varia-
tion than Multi-Raft. BW-Raft has significantly smoothed write
delay curve due to secretaries often reside in more sites than
followers, which reduces unexpected long wide-area network
delay. For expenses, BW-Raft exploits cheap spot instances for
secretaries and observers in many sites. BW-Raft spends 86%
and 80% less than Multi-Raft and Original, respectively. Multi-
Raft usually costs more than Original due to its multiple leaders
thus expensive resource footprints. Note that, it seems unfair to
show this expense comparison while only BW-Raft can use spot
instances. However, there is no existing design on both Raft
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and Multi-Raft that can exploit spot instances. If we deploy
spot instance in Original and Multi-Raft, they can be drown in a
nonstop leader re-election and provide almost zero performance.
Performance Distribution. Figure 9 demonstrates the curricu-
lum distribution functions of all jobs running in BW-Raft and
other baselines. A small portion of jobs do suffer in BW-Raft
due to runtime spot instance failures and errors in resource
provisioning. In the worst case, BW-Raft could shrink back as a
Raft handling a small number of jobs. However, BW-Raft has a
much shorter tail than Multi-Raft in the latency distribution.
Comparing the 95th-percentile SLO, BW-Raft performs 3X
better than Multi-Raft, and 9X better than Original.

BW-Raft’s Performance with Different Configuration: Be-
cause BW-Raft extends the role of secretary and observer to
offload the read and write requests, we evaluate the performance
of Bw-raft under different numbers of secretary and observer.
In Figure 11(a), different YCSB benchmark tests show that
BW-Raft’s average throughput is 1.5-2 higher than original
Raft. However, as Figure 10(a)(b) shows, the improvement
of reading and writing performance is not significant when
the request batch is small. Besides, adding secretary can lead
to some performance degradations as shown in Figure 10(d),
due to the communication latency between the leader and
the secretary. With the increasing number of instances, more
and more network connections and data pile up, the CPU
footprints of Raft leader soon be exhausted, as shown in the
Figure 11(c).The response delay rockets. In this case, BW-Raft
increases the number of secretary, reducing the write latency
and improving the performance. Besides, due to part of the log
replication tasks are offloaded from the leader to the local sec-
retary, the network bandwidth of the leader is greatly reduced,
which can also improve the performance in the limited network
bandwidth in Figure 11(c). In the case of read-only workload,
appropriately increasing the number of observers can greatly
improve the throughput and reduce the response overhead as in
Figure 10(a)(b).
Impact of Design Factors: In our provision process, we have
two major factors (i.e., workload R/W ratio o and spot instance
failure rate ¢). The factor « affects the provision process in BW-
Raft, while the factor ¢ could collapse the provision decision.
Figure 12 illustrates the impact of «. The average goodput
is increasing linearly when BW-Raft serves more reads than
writes. BW-Raft can handle reads well because BW-Raft abu-
sively employs many observers to serve reads. These observers
are cheap, thus the overall expense in BW-Raft grows much
slower than performance gain.

Figure 13 shows how spot instances fail affects BW-Raft.
In our model, we assume a static ¢ based on history analysis,
however, ¢ is hard to predict at runtime. When this failure rate
increases in a single site, BW-Raft gradually reduces the number
of secretaries at this site, and increases the number of observers
in other sites. As such, the number of followers decreases since
secretaries decrease. BW-Raft reduces secretaries on purpose,
in order to reduce the possibility of update failure, and thus the
cost from the consensus management. While BW-Raft suffers
performance loss from writes, it hedges performance gain from
reads as it hires more observers.

Limitations of BW-Raft in the Wild: We report the server-side
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statistics in Figure 14. In order to provide large-scale node raft
scenarios, we assign a setup as, EU-Frankfort 20 node, Asia-
Singapore 55 node, US-East 70 nodes, US-West 75 nodes, from
demand instances.

As shown in Figure 14, BW-Raft hires 15-20X more spot
instances than on-demand ones. On the one hand, when BW-
Raft leases on-demand instance, it takes the maximum use of
the resource, exhibiting more than 80% utilization in all sites.

BN Leader EEE Follower BB Secretary [ZZ Observer
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80%

60%

40%

20%

Ratio of Differnt Roles
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0% 20% 40% 60% 80% 100%

Spot Failure Rate ¢

Fig. 13. The impact of spot failure rate ¢ in BW-Raft .

On the other hand, BW-Raft abusively leases spot instances
without fully exploiting its resources, with an average of 35%
utilization. It is mainly because of the failure-prone behavior of
spot instances that BW-Raft only uses a short period during
their living period. If the burstable period of spot instance
can be accurately predicted, BW-Raft can provide much better
performance at scale-out. In addition, BW-Raft can only run
in a non Byzantine environment. If there are malicious nodes
involved, BW-Raft will not be able to guarantee the consistency
of the system.
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Fig. 14. Number of leased instances and average utilizations (on top
of the bar) of BW-Raft in EU-Frankfort, Asia-Singapore, US-East, and
US-West.

6 RELATED WORK

Consensus algorithms, such as Paxos and Raft, are designed to
maintain consensus across multiple shared data replicas. These
algorithms scales by sharding [34] or automatically adding/-
dropping followers [17]-[19], [36]. However, for high write
throughput, applications turn to over-provisioned sharding, mul-
tiplying inefficiency. Our work, BW-Raft scales incrementally
and does so using cheap, failure-prone spot instances.

Raft Consensus Algorithm: In the past few decades, re-
searchers have proposed a large number of consensus algorithms
[26], [32]. Raft algorithm [32] is one of the most widely
used [4], [12]. Many companies have found that Raft is easy-to-
implement and provides good performance. Paris et al. reduced
energy footprint of Raft [33]. Gramoli et al. put forward a fast
consensus-based dynamic reconfigurations method which can
speedup a primary-based rolling upgrade [18]. Copeland et al.
propose a Byzantine Fault Tolerant variant of the Raft consensus
algorithm [16]. These approaches have not explored efficient
scaling out on Raft, while our work focusing on improving the
scale-out performance with Raft on spot instances.
Geo-Replication: Droopy and Dripple [28] , two sister ap-
proaches, reduce latency by dynamically reconfigure leader
set. Tuba [13] improves utility by automatic reconfiguration.
SPANStore [40] offers low cost storage services making use of
the price difference between suppliers. Cadre [41], Lynx [45],
and Flutter [22] achieve low latency by avoiding long distance
transmission.

Spot Instance Market: In the cloud market, suppliers provide
on demand instance and spot instance. Spot instance is usually
much cheaper than on-demand instance. However, due to spot
instance is unstable and may stop at any moment, it is not reli-
able for data tasks, especially in maintaining data consistency.
There are many research reduce cost by using spot instances.
EAIC [23] reduce cost by adaptive checkpointing. And PADB
[35] algorithm was put forward get maximized mean profit.

7 CONCLUSION

In a cloud computing environment, it is important to support
intensive data service at scale out. While preserving strong con-
sistency, it is expensive and complex support this data-intensive
services at geo-diverse sites. In this paper, we proposed BW-
Raft, an extended Raft framework that offloads log management
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to secretaries and offloads read request to observers as a new
scheme to support strong consistency between services. We de-
signed a global resource management to make this management
cheap. In practice, we prototype a key-value store service in
BW-Raft framework. Our source code can be found at [3].
We analyzed the performance of BW-Raft with many other
protocols, and concluded that that (1) BW-Raft significantly
boosts throughput by up to 9X, compared to Raft, and (2)
BW-Raft is 84.5% cheaper than Multi-Raft. In general, BW-
Raft is a practical framework to support scale out data-intensive
computing across geo-diverse sites. In future work, we intend
to extend BW-Raft to private and federated clouds to obtain
the performance and cost saving of BW-Raft under limited spot
instance resources.
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