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Abstract
Unmanned aerial vehicles (UAV) play a critical role in many
edge computing deployments and applications. UAV are
prized for their maneuverability, low cost, and sensing ca-
pacity, facilitating many applications that would otherwise
be prohibitively expensive or dangerous without them. UAV
are cheaper than alternative aerial analysis methods, but still
incur costs from expensive human piloting and workloads
which necessitate high-resolution coverage of large areas. Re-
cently, autonomous UAV swarms have emerged to increase
the speed of deployments, decrease the cost and scope of
human piloting, and improve the quality of autonomous
decision-making through data sharing. Autonomous UAV
deployments, however, suffer from external factors. UAV
are inherently power-constrained, with low onboard battery
lives and limited ability to siphon power from the edge sys-
tems that support them. Certain environmental conditions,
like inclement weather, wind, extreme heat, and low light
also affect UAV power consumption, sensed data quality,
and ultimately mission success. In this paper, we present
an empirically based model for efficient autonomous swarm
deployment. We built and deployed a real autonomous UAV
swarm to map leaf defoliation in soybeans. Using this deploy-
ment, we determined environmental conditions which led
to malfunctions, inefficient edge energy usage, and mispre-
dictions. Using these findings, we developed a deployment
model for UAV swarms that decreases malfunctions and data
irregularities by 4.9X and decreases edge energy consump-
tion by 45%, while increasing deployment times by only 4%.

CCS Concepts: • Applied computing → Agriculture; •
Computer systems organization→ Distributed archi-
tectures.
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1 Introduction
Throughout the past decade, edge computing had IoT have
matured from an active area of research among academics to
an billion dollar industry. The rise of the internet of things
(IoT) and the need for privacy and near-sensor processing has
spawned a number of interesting consumer edge computing
products, including smart homes and buildings [11], medical
devices [1], Unmanned Aerial Vehicles (UAV) and more [6].
UAV, in particular, have formed broad academic, industry,
and hobby communities. UAV are fast (moving upwards of
40 miles per hour), highly maneuverable, easy to fly, and can
be equipped with high resolution cameras. Their flight can
also be automated, making UAV an important tool for any
task which requires precise, high resolution sensing that is
too dangerous, expensive, or time consuming for humans to
perform.
This use-case is common to many edge and IoT-related

application areas [16]. UAV have found considerable uses
in areas like precision agriculture [27, 28, 30], search and
rescue [3], infrastructure inspection [8], and remote sens-
ing in dangerous areas [17]. UAV are particularly useful in
agriculture [27] for their maneuverability, low cost, and sens-
ing capacity. Farmers, researchers, and companies use UAV
to sense crop diseases, pests, and stressors [18, 29]. UAV
deployments can provide analytics to farmers to influence
sustainable crop management, or can treat crop health con-
ditions on their own [14].
While UAV are quite useful, they can difficult to use for

large or complex deployments. First, UAV have small battery
lives. Most UAV have battery lives on the order of tens of
minutes [13]. Crop fields are large and often require long
deployments, so researchers and companies have recently
begun analyzing crops using groups of cooperating UAV
(called swarms) to both cover areas faster and mitigate short
mission times [21]. Second, the intelligence of each UAV
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agent affects mission time and capability. UAV can be pi-
loted by humans, operating as an extension of their pilot
and her expertise, or flown by software. Human piloting is
by far the most common piloting method, but comes with
drawbacks. UAV pilots are often licensed and can command
high hourly rates, can be scarce or difficult to schedule for
long deployments, and can not control multiple UAV at once.
UAV flown by software [20] can replace expensive human
pilots by either automating UAV flight for pre-defined mis-
sions, or autonomously controlling UAV. Automated UAV fly
pre-defined routes where the flight path and sensing loca-
tions are specified before takeoff. Autonomous UAV sense
and respond to their environment [22], accomplishing com-
plex missions using machine learning. Software piloting of
UAV both decreases deployment cost from human labor and
allows for increased intelligence and response to sensed data.

While autonomy can drastically simplify deployment for
UAV applications, deployments must still contend with en-
vironmental issues. This is especially true for agriculture.
Any outdoor edge or IoT deployment must contend with
weatherproofing, but UAV applications are particularly vul-
nerable. Unlike embedded sensors and edge devices, UAV
explore their environments, making them susceptible to fail-
ures due to rain, lightning, heat, and other environmental
factors. Furthermore, limited UAV battery life and continual
recharges can put energy pressure on already constrained
edge systems. These issues are compounded again by the
remote nature of many agricultural UAV deployments. Crop
fields cover large areas with poor provisioning for power
and network capabilities. UAV malfunction, data loss, and
weather-related misclassification can lead to incorrect re-
sults, extension of deployments, or complete mission failure
if incorrectly mitigated.

A successful autonomous UAV deployment must contend
with these environmental challenges. Prior work has dis-
patched UAV and duty-cycled edge hardware based on cloud-
cover to conserve renewable power [27]. Other viable flight
conditions, such as heat, low light, and moderate wind may
affect the energy that UAV consume in flight, the odds of UAV
malfunction, and model classification results. Researchers
have shown that adaptive deployment models, deploying
UAV when conditions are conducive to mission success, is a
helpful for structural inspection [10] and air pollution moni-
toring [7]. In this paper, we propose an adaptive deployment
mechanism for agriculture.

In this paper, we explore a range of environmental effects
that UAV deployments experience and provide an empirical
model that reserves edge resource for environmental condi-
tions conducive to UAV flight. We designed a crop scouting
UAV swarm that assesses leaf defoliation in soybeans, a glob-
ally important crop. We flew over 150 autonomous crop
scouting missions in different environmental conditions to
measure the effects that environmental conditions have on

UAVmalfunctions, data quality, and energy consumption. Us-
ing this information, we develop and simulate a deployment
model for autonomous UAV swarms which saves UAV batter-
ies for conditions where malfunction is least likely, energy
consumption is minimized, and data quality is assured. Our
simulation results show that this model decreases malfunc-
tions by 4.9X and decreases UAV battery consumption by
45% over the course of a deployment while only increasing
total deployment lengths by 4% on average.

This paper is organized as follows. Section 2 covers back-
ground information on UAV deployment concerns and prior
deployment models. Section 3 describes the design and im-
plementation of our deployment. Section 4 details results
from our deployment. Section 5 presents our empirical de-
ployment model for autonomous UAV swarms.

2 Background
Recent UAV work has led to automated and autonomous de-
ployments in a wide range of areas [9, 15, 23, 27]. Particularly
in agriculture, UAV have been deployed to scout important
crops[9, 28], diagnose diseases and pest infections [2], and
apply treatments [14]. Crop scouting and treatment appli-
cation is a continual process, with best practice suggesting
repeated scouting every 7-10 days over the course of a grow-
ing season [12]. While researchers (and, increasingly, com-
panies [19]) work to build crop scouting models, techniques
are often tested in simulation or through manned flights or
short-term deployments.

As the ability to scout and treat crops using swarms of UAV
matures, the need for more long-term deployment automa-
tion arises. Today’s deployments are generally supervised
by research teams regardless of the amount of automation
or autonomy the UAV have in flight. This expert supervi-
sion removes the need to implement a complex deployment
model, replacing it with expert human intuition and plan-
ning. FarmBeats [27], however, deployed a long-term UAV
scouting solution which required some weather awareness,
duty-cycling components of their IoT base-station to save
solar-generated power. More recent theoretical work has
explored the effects that weather can have on package de-
livery [25, 26] by using optimization to maximize customer
satisfaction under different weather conditions. Other work
has used adaptive deployment to provide continuity of ser-
vices in structural inspection [10]. In this paper, we take
inspiration from these approaches by deriving a model from
long-term deployment experience.

3 Design
Computer system deployments in the wild can be compli-
cated and error-prone, with risk factors increasing for UAV
deployments where equipment traverses its environment.
We deployed a long-term UAV swarm to study the risks that
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Figure 1. Deployment Overview: UAV scout a crop field to build defoliation maps over time using edge hardware and machine
learning software for classification and map generation.

UAV and equipment face in the wild. In this section, we
describe this deployment and it’s implementation.
UAV Deployment: Our UAV deployment, depicted in fig-
ure 1 uses three UAV to regularly scout a crop field. The goal
of aerial crop scouting is to turn sensed field images into use-
ful reports for farmers. UAV fly over crop fields periodically
and capture images which are then analyzed and compiled
into field reports that farmers can use to diagnose and treat
pests, disease, environmental stress, and other crop health
issues. Our deployment seeks a specific crop health condi-
tion: leaf defoliation. Leaf defoliation denotes loss of leaf area
which occurs naturally as plants mature, but can be caused
prematurely by pests, resulting in decreased yield [31]. Pre-
mature defoliation in soybeans caused by pests is a common
problem experienced by farmers around the world.
To scout soybeans using UAV, we implemented a convo-

lutional neural network (CNN) model, called DefoNet [31],
to predict the leaf defoliation conditions quickly from aerial
images. DefoNet is a binary CNN model that classifies soy-
bean leaves into two classes: defoliated or healthy as shown
in figure 1. DefoNet accepts as input 108x108 pixel soybean
leaf images. The main structure contains eight convolutional
layers divided into three sections (Three layers in the first
section, three layers in the second section, and two in the
last). Following each convolutional section are activation
and pooling layers. Before the final fully connected layer,
we add a dropout layer to avoid model overfitting. In our
test cases, DefoNet is able to achieve over 92% accuracy on
classifying soybean leaf defoliation.
To efficiently and quickly build crop-scouting maps, we

relied on prior work to sample crop fields using multi-agent
reinforcement learning. We used WholeField-RL [30], a rein-
forcement learning based sampling technique for crop health
modeling, and MARbLE [4], an edge-conscious autonomous
swarm deployment architecture to simplify our deployment.
Whole-field RL allows our UAV swarm to build accurate crop
maps while sampling a subset of the field, using neural net-
works to extrapolate ground truth samples across unsampled

regions. MARbLE provides us an efficient dispatch mecha-
nism which automatically schedules UAV flights, conserves
edge resources by duty-cycling edge hardware, and retrains
reinforcement learning policies online to improve mapping
performance.
Implementation: Using this design, we built and deployed
a UAV swarm to track soybean defoliation at a local private
soybean farm. Our swarm was deployed for three weeks
from August 27th to September 16th 2021, running more
than 150 missions over that time. Our swarm consisted of
three DJI Mavic Pro UAV with six interchangeable UAV bat-
teries. UAV were controlled by SoftwarePilot [5] running on
three android tablets as shown in Figure 1c. Each tablet was
connected via USB to a Mavic RC Controller via 5GHz WiFi
to a MARbLE cluster.

OurMARbLE cluster consists of two Lenovo T470 Thinkpad
laptops and oneDell precision 7920workstation. Each Lenovo
had an Intel i7 CPU and ran Ubuntu 18.04. One Lenovo lap-
top was used as the head node of MARbLE as well as the
master node of the MARbLE kubernetes cluster, controlling
all UAV communication. This machine was provisioned with
24 GB of RAM. The second Lenovo laptop was used for UAV
control and retraining offloading, and was provisioned with
8GB of RAM. The Dell workstation had one Intel Xeon 6258R
CPU, 64 GB of RAM, and one NVIDIA RTX 2080 Ti GPU.
This machine was used for DefoNet classification and as the
primary node for reinforcement learning retraining.
Each swarm mission was managed by MARbLE but was

manually dispatched by one of two on-site researchers. Mis-
sions covered 0.4 hectares of soybeans per UAV, taking be-
tween 5 and 20 minutes depending on the actual coverage
rate of the 0.4 hectares. To determine the effects of environ-
mental conditions on UAV swarms, we executed missions in
varying degrees of heat, wind, humidity, lighting, and cloud
cover. We refrained, however, from executing missions in
hazardous conditions with winds higher than 15mph, rain, or
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Figure 2. high winds, extreme heat, and low light all con-
tribute to malfunctions. We recommend flying in calm con-
ditions, avoiding extreme temperatures, and flying when the
sun is high for best results.

storms. We sought specifically to find the effects that seem-
ingly reasonable flight conditions could have on UAV swarm
performance.

4 Deployment Results
Throughout our deployment, we collected data on UAV and
battery drain, system malfunctions and causes, machine
learning mispredictions, and flight times for certain weather
conditions. Our analysis shows that three key conditions
(wind, temperature, and lighting) have serious effects on mis-
sion performance. Shown in Figure 2, wind speeds greatly
affect flight times.We found that average single-UAVmission
times degraded as wind speed increased. Our data shows
that UAV in calm conditions (wind less than 5mph) had 19%
longer battery lives than UAV flown in conditions where
wind was on average faster than 10mph. Wind affects the
power required for our UAV to fly between GPS waypoints.
Wind can be helpful if it blows in the direction the UAV is
traveling [27], but more often UAV must fight the wind to
traverse the field and stabilize while capturing images and
waiting for instructions, leading to increased battery drain.

Heat also has negative effects on equipment. Throughout
our deployment, we ran missions in various temperatures
between 60F and 95F. We found that 5% of missions run in
temperatures below 80F experiencing a malfunction due to
equipment failure, while 51% of missions run at temperatures
over 90F experienced malfunctions. Equipment malfunctions
included communication errors between UAV and remotes,

network errors, equipment overheating, and heat-based UAV
battery malfunctions. Not all errors were caused directly by
overheating, but many were compounded by high tempera-
tures as suggested in Figure 2.

Lighting was another major contributor to mission errors.
Lighting, in this case sunlight, affects the quality of images
that UAV capture. While all missions were flown within
United States FAA regulated flight periods (between 30 min-
utes before sunrise and 30 minutes after sunset in a day, low
light and long shadows from a low solar angle contributed
to increased mispredictions from DefoNet. We found via
manual inspection of predictions that 50% of missions flown
between sunrise and 10:00am and 57% of missions flown
between 6:00pm and sunset contained mispredictions, while
only 6% of missions flown between 10:00am and 6:00pm con-
tained mispredictions. Mispredictions were generally false-
negatives (predicting defoliated crop regions as healthy) due
to DefoNet’s inability to discern holes in leaves obscured by
shadow.

Using these identified failure points for UAV missions, we
provide recommendations for UAV deployments to avoid
failures and unnecessary energy consumption. First, we rec-
ommend flying in conditions where sustained winds do not
exceed 10 mph. While UAV can fly safely in winds higher
than 10mph, we recommend conserving UAV battery for
periods where weather is calm to maximize mission lengths,
especially for deployments where power is scarce, harvested
from compute resources, or generated by renewable sources.
Second, we suggest avoiding flights during extreme temper-
atures, and always providing ample shade for equipment.
High temperatures (over 90F) greatly increased incidence of
equipment failure from UAV, edge, and networking hardware.
For UAV, failures were limited mainly to battery malfunc-
tions from short-term exposure to sun and high tempera-
tures while flying which can be mitigated by conserving UAV
batteries for cooler periods of the day. Furthermore, edge
equipment malfunctions were often due to overheating from
direct sun exposure. We suggest shading equipment from
direct sunlight and potentially moving throughout the day
as shade shifts with solar angle. Lastly, lighting effects on
mispredictions can be mitigated by flying UAV when the sun
is high, especially when areas are obscured in shadow at
dawn or dusk.

5 Adaptive Deployment Model
UAV deployments are, at heart, a resource allocation problem.
UAV and edge devices require power which can be drawn
from electric grids, stored in batteries, or supplied by renew-
able sources. Conventional UAV rely entirely on batteries
which must be recharged between short missions. Flights
generally last less than 40 minutes, while battery recharge
periods can extend to over 90 minutes, incensing the impor-
tance of both parallel execution of UAV flights in the form
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Figure 3. Simulation Results: a) greedy dispatching uses more energy that adaptive dispatching, b) adaptive dispatching
encounters less malfunctions, c) adaptive dispatching saves energy without significantly impacting mission time.

of swarms and over-provisioning of batteries. Swarm de-
ployment workflows are cyclical, with periods of UAV flight,
battery interchange, and downtime where all batteries are
depleted or recharging.
Based on our deployment results, we designed a simple

adaptive deployment model to dispatch UAV flights based on
environmental factors. Our goal is to implicitly leverage the
flight and charging cycle to charge batteries in unfavorable
conditions to maximize flight times in favorable conditions.
Specifically, our goals are to minimize the following three
quantities: 1) total mission time for aerial coverage of a target
region, 2) total UAV energy consumption by avoiding re-
scouting due to malfunctions, and 3) re-scouting of areas
deemed mispredictions.

𝑇 =< 𝑇𝑡 ,𝑇𝑑𝑠 ,𝑇𝑑𝑒 ,𝑇𝑤 >=< 85, 10:00, 18:00, 10 > (1)

Model Definition: Our model explicitly schedules UAV
flights for periods where conditions are favorable, and keeps
UAV grounded while conditions are deemed unfavorable
regardless of battery availability. Favorable conditions are
determined via user-provided threshold vector𝑇 set based on
deployment type, risks, and empirical experience. 𝑇 , shown
as an example in Equation 1, holds thresholds for the three
unfavorable environmental conditions we determined from
our experiments: temperature (𝑇𝑡 ), appropriate start and end
flight times (𝑇𝑑𝑠 and 𝑇𝑑𝑒 ), and wind speed (𝑇𝑤).

𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑇 ) =
{
𝑇𝑟𝑢𝑒 𝑖 𝑓 𝑡 ≤ 𝑇𝑡 ,𝑇𝑑𝑠 ≤ 𝑑𝑡 ≤ 𝑇𝑑𝑒 ,𝑤 ≤ 𝑇𝑤
𝐹𝑎𝑙𝑠𝑒

(2)
Equation 2 shows the dispatch equation which determines

whether waiting UAV with charged batteries should begin
their mission or wait until conditions improve. This simple
method charges and conserves batteries through unfavorable
conditions, assuring longer flights and less malfunctions. It
may, however, lead to underutilization of UAV resources and
greatly increased total mission times if unfavorable condi-
tions persist for too long. To test the effectiveness of our

model under a variety of conditions, we tested it in a simu-
lated version of our deployment.
Simulation and Results: Our simulator was created using
SoftwarePilot [5], the same UAV control platform used to
build our original deployment. We simulated UAV flight over
a 50-hectare field similar in size to our deployment field. The
field was cut into 10,000 individual management zones for
UAV sampling. Our simulated UAV flight characteristics were
based on data from our deployment, maintaining similar
mission times, battery discharge rates, and sampling rates.

Environmental characteristics and their effects were sim-
ulated using prior work and empirical information. Sunrise
and Sunset were set at 7:00 am and 8:03 pm respectively, the
corresponding sunrise and sunset for September 1st 2021
in the rural town when and where our experiments were
performed. Temperature was simulated based on the actual
seasonal weather data from the experiment site obtained
from the United States National Weather Service [24]. It was
modeled using a sinusoidal curve with each given day being
given a random temperature within the range of two stan-
dard deviations of local seasonal weather data. Temperatures
experienced in flight by simulated UAV were between 60F
and 93F. Wind was modeled by selecting a random wind
value at the beginning of every simulated day and randomly
increasing or decreasing it by up to 3mph (between 0 and
15mph) twice per simulated hour. Each simulated configura-
tion was executed 100 times until the field was completely
mapped without mispredictions. We simulated configura-
tions with both single-UAV flights and swarms of 3 UAV
as performed in our deployment, and with between 1 and
18 interchangeable batteries shared between UAV. For each
configuration, our deployment model was compared against
a naive greedy model which dispatches UAV missions when-
ever sufficient batteries are available.
Figure 3 shows results from our simulations. Figure 3 (a)

shows total energy expenditure for both swarms and single
UAV using both greedy and adaptive deployment models.
Total energy expenditure is 41.4% less for single UAV and
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45.8% less for swarms when dispatched adaptively. This de-
crease is due to multiple factors. First, These UAV do not
operate in windy conditions, which degrade batteries 19%
faster than calm conditions, but this accounts for only part
of the decrease. The main decrease comes from repeated
scouting of areas that were mispredicted or where data was
lost or missions were cut short due to malfunction. Flying
back to these potentially remote areas of the field for partial
missions cuts other missions short and overall wastes energy
compared to flying missions at opportune times.
Figure 3 (b) dives deeper into the malfunctions that both

deployment models experience. Both single UAV and swarms
experience about 4.9X less malfunctions when dispatched
using our adaptive model compared to the greedy method.
Malfunctions in this case, include any region that has to be
re-sampled due to a hardware malfunction or data mispre-
diction. For greedy dispatching, 33-35% of all zones must be
sampled more than once due to malfunction as opposed to
6% with adaptive dispatching. This decrease in resample is
the primary driver for energy savings in Figure 3 (a).

Figure 3 (c) shows total mapping times for single UAV and
swarm mapping using both greedy and adaptive dispatching
with varying numbers of available batteries. One concern
with adaptive dispatching is that UAV idle while they could
be sampling the field which should lead to commensurately
increasedmapping times. Contrary to this supposition, figure
3 (c) shows that adaptive dispatching does not significantly
impact overall deployment times. Across all simulations,
deployment times were increased by only 4% when using
our adaptive strategy, with the largest increases (11-12%)
shown when sufficient batteries are available to eliminate
UAV wait-time for battery recharging (7 batteries for single
UAV, 18 for swarm). Adaptive dispatching performs best
when batteries are scarce and UAV wait-times are long, but
maintains effectiveness evenwhen batteries are plenty due to
aforementioned decreases in malfunction-based remapping.

6 Limitations and Future Work
In our experiments, we measured many environmental ef-
fects, but only identified three (wind, temperature, and light)
that significantly impacted mission performance. Only these
three factors, therefore, are considered in our adaptive de-
ployment model. Other environmental factors that did not
effect our missions may impact missions with different char-
acteristics. Similarly, UAV who fly longer missions, fly at
higher altitudes, or operate in different climates may experi-
ence weather effects differently than our low-flying agricul-
tural UAV. We believe that our adaptive deployment model
will hold for low-flying UAV in common agricultural set-
tings, but UAV that fly at higher altitudes, for instance, may
experience different magnitudes of effect from temperature,
lighting, and wind. Furthermore, misprediction rates due to
lighting and their effects are model-specific. Some models

are more robust to lighting differences than others, but our
adaptive deployment model is meant to provide guidelines
for flight that guarantees the best chances to capture qual-
ity data. Future work should address these shortfalls of our
adaptive model. Researchers should test the effects that en-
vironmental factors have on UAV who fly different mission
types, and in different application areas.

7 Conclusion
UAV deployments are complicated, requiring environmental
considerations beyond those of normal edge and IoT de-
ployments. While extreme weather will clearly impact UAV
flights, some viable flight conditions like excessive heat, mod-
erate winds, and low lighting can cause malfunctions and
waste UAV energy. In this paper, we use data from over
150 missions of a long-term autonomous crop scouting UAV
swarm to inform UAV deployment scheduling. In simulation,
our empirical model decreases machine learning mispredic-
tions by 4.9X, decreases overall swarm energy consumption
by 45%, and increases total deployment times by only 4%.
Acknowledgments: This work was funded by NSF Grant
OAC-2112606 and the Ohio Soybean Council.
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