
CSE Programming in C# Roger Crawfis 

The Ohio State University 

Programming Assignment #2 

A SceneGraph Library 

Start with the accompanying worksheet and write a small library (.dll) for a SceneGraph interface (see 

http://en.wikipedia.org/wiki/Scenegraph). The library will support various nodes (derived from a base 

type of SceneNode) for drawables, for materials, for transformations and for other state changes. The 

class hierarchy will look like the following: 

 ISceneNode 

o IDrawableNode (derived from ISceneNode) 

 DrawableNodeBase (implements IDrawNode) 

 Cube (derived from DrawableNodeBase) 

 Sphere (derived from DrawableNodeBase) 

 Building (derived from DrawableNodeBase) 

 Terrain (derived from DrawableNodeBase) 

o ITransformNode (derived from ISceneNode) 

 Camera (implements ITransformNode) 

 Rotate (implements ITransformNode) 

 Translate (implements ITransformNode) 

 Scale (implements ITransformNode) 

 Perspective (implements ITransformNode) 

o IStateNode (derived from ISceneNode) 

 DrawMode (implements IStateNode) 

o IGroupNode (derived from ISceneNode) 

ISceneNode, IDrawableNode, ITransformNode and IStateNode are all interfaces. DrawableNodeBase is 

an abstract class and has a partial implementation in it. ISceneNode has several behaviors defined: 

 ISceneNode 

o void Accept(IVisitor visitor) 

o string Name { get; } 

 

You will also create an interface called IVisitor as part of the Visitor Design Pattern 

(http://www.dofactory.com/Patterns/Patterns.aspx). Its behavior or contract is as follows (C++ style): 

 Visitor 

o public: 

 virtual void PreVisit(IDrawableNode) = 0; 

http://en.wikipedia.org/wiki/Scenegraph
http://www.dofactory.com/Patterns/Patterns.aspx


 virtual void PostVisit(IDrawableNode) = 0; 

 virtual void PreVisit(ITransformNode) = 0; 

 virtual void PostVisit(ITransformNode) = 0; 

 virtual void PreVisit(IStateNode) = 0; 

 virtual void PostVisit(IStateNode) = 0; 

 virtual void PreVisit(IGroupNode) = 0; 

 virtual void PostVisit(IGroupNode) = 0; 

In C++ we would call a class a pure abstract class if all of its members were defined this way (public, 

virtual and no implementation (=0)), and it contained no fields or other data. We will implement a few 

of concrete classes that support the IVisitor interface. One will simply walk the tree and print out the 

names. Another will print out the name as well as the type (using the ToString method of the Type type). 

It should print this out in a pretty format, with indentation of the children (aka a treeview like display). 

 Visitor 

o NameVisitor – prints out the names to the console (implements IVisitor). 

o NameTypeVisitor – prints out the name and the type to the console (implements 

IVisitor). This was done in the accompanying worksheet. 

Other details: 

 DrawableNodeBase has an abstract Draw method. 

 GroupNode will need an additional method to add and remove children from its collection. You 

should use a generic collection internally for the children. 

 Both IStateNode and ITransformNode have methods for Apply and Unapply. 

 For Draw and the Apply/Unapply methods simply print out a message to the console as your 

implementation of these in your concrete classes. 

A Sample Application 

You will also create an additional application (a Console app) that will create the scenegraphs and print 

them out. For now, we will hard code the creation process. Use good functional decomposition in this 

sample application. In other words have a separate procedure or method to create each scenegraph. 

Test your code out with several scenegraphs. Each scenegraph has a single root node. Provide a depth 

up to seven levels and a fairly good breadth. Test out printing of a sub-graph of your scene. Note: The 

scene graphs should be Directed Acyclic Graphs (DAG), meaning that a child of one of the nodes should 

not also be an ancestor (parent, grandparent, etc.) of the same node. 

Additional Tasks 

1. In the Properties folder, Open the AssemblyInfo.cs file and fill in the Title through the Copyright 

information. This information will be displayed if you look at the properties of your .exe file. 

2. Provide comments explaining your logic. Also, add a block comment to the beginning of the file 

listing your name, the course and a description of the lab (from above but in a completed tense). 

3. Do a Build Clean, zip up your solution (no .exe files are allowed) and then submit your 

assignment using submit c459ae directory. 



 


