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Abstract— This paper describes an efficient algorithm to 
model the light attenuation due to a participating media 
with low albedo. Here, we consider the light attenuation 
along a ray, as well as the light attenuation emanating 
from a surface. The light attenuation is modeled using a 
splatting volume renderer for both the viewer and the light 
source. During the rendering, a 2D shadow buffer 
accumulates the light attenuation. We first summarize the 
basic shadow algorithm using splatting [30]. Then an 
extension of the basic shadow algorithm for projective 
textured light sources is described. The main part of this 
paper is an analytic soft shadow algorithm based on 
convolution techniques. We describe and discuss the soft 
shadow algorithm, and generate soft shadows, including 
umbra and penumbra, for extended light sources.  
 

Index Terms— volume rendering, splatting, shadows, soft 
shadows, participating media, illumination.  
 

1 INTRODUCTION 
OLUME rendering is the display of datasets sampled in 
three dimensions. Splatting is one volume rendering 

algorithm, which can create high-quality images, and render 
efficiently in the case of a sparse dataset. The basic principles 
of a splatting algorithm are: (1) represent the volume as an 
array of overlapping basis functions with amplitudes scaled by 
the voxel values; (2) project these basis functions to the screen 
to achieve an approximation of the volume integral [6]. A 
major advantage of splatting is that only relevant voxels are 
projected and rasterized. This can tremendously reduce the 
volume data that needs to be processed and stored. 

 A shadow is a region of relative darkness within an 
illuminated region, caused by an object totally or partially 
occluding the light. Shadows are essential to realistic and 
informative images. Earlier implementations of shadows 
focused on hard shadows, in which a value of 0 or 1 is 
multiplied with the light intensity. In volume rendering, as the 
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light traverses the volume, the light intensity is continuously 
attenuated by the volumetric densities. This amounts to two 
separate volume renderings. Here, we investigate a new 
shadow algorithm that properly determines this light 
attenuation and generates shadows from volumetric datasets, 
using a splatting paradigm for volume rendering. 

This paper is on the shadow algorithm using sheet-based 
splatting [19]. The algorithm uses the same splatting for both 
the light attenuation and the rendering, as seen from the light 
source and from the eye, respectively. In the following section, 
background and previous work are reviewed and the 
motivation of this work is given. Section 3 summarizes the 
basic shadow algorithm using splatting [30]. In Section 4, we 
extend this approach for projective textured lights. This paper 
focuses on the soft shadow algorithm using splatting. Section 5 
describes and discusses an analytic soft shadow algorithm for 
extended light sources using a convolution technique. The 
conclusions and future work are given in Section 6. 

 

2 PREVIOUS WORK  

2.1 Shadow Algorithms  
Earlier implementations of shadows focused on hard shadows 
from and onto strictly opaque objects. The algorithm by Crow 
[7] introduces the concept of shadow volumes. A shadow 
volume is the polygonalized solid that models the volume of a 
shadow cast into space by the silhouette of an occluder. During 
the rendering, a visible surface or sample point is first checked 
to see whether or not it falls inside a shadow volume before it 
is illuminated by the light source. In the 2-pass hidden surface 
algorithm by Nishita and Nakamae [20] and Atherton et al. [1], 
the first pass transforms the image to the view of the light 
source, and decomposes the polygon into shadowed and 
unshadowed portions. A new set of polygons is created, each 
marked as either completely in shadow or visible from the 
light source. In the second pass, visibility determination from 
the eye is done, and the polygons are shaded taking into 
account their shadow flag. This 2-pass hidden surface 
algorithm is only suitable for polygon primitives. Williams 
[28] uses a z-buffer depth-map algorithm to generate shadows. 
A light-source depth-map is first created with respect to the 
light source. During the rendering, the z-buffer depth-map is 
used to determine if an object point, visible from the eye, is 
also visible from the light source. This algorithm supports 
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Fig. 1. Bonsai tree.  (a) Without shadows. (b) With shadows. (c) With soft shadows. 
itives other than just polygons, but it has aliasing 
lems due to the discretized depth-map cells.  
e shadow volume algorithm, 2-pass hidden surface 
ithm and z-buffer depth-map algorithm can only 
mine if an object point is in shadow or not, resulting in 
binary values for the light intensity. These algorithms are 
uitable for volume rendering. In volume rendering, as the 
traverses the volume, the light intensity is continuously 

uated by the volumetric densities. Raytracing offers the 
ility to deal with the attenuation of the light intensity. 

racing has been used to generate shadows for both surface 
sentations [27] and volumetric datasets [8, 11, 23]. To 
rate shadows for objects represented by densities, Kajiya 
. [11] store the contribution of each light source to the 
tness of each point in space into a 3D array ),,( zyxI i . 
t and Parent [8] improve the calculation of the shadow 
 by storing the shadow values already calculated in a 3D 
 and calculating the shadow table values starting with the 
s closest to the light and proceeding to the points farthest 
 the light to avoid repeated calculations. Also, to make the 
ach feasible, they use a reduced-resolution shadow table. 

, only a bilinear interpolation is needed to determine each 
 in the shadow table. However, the shadow algorithm 
 ray tracing is very costly computationally [15]. Here we 
tigate a new shadow algorithm that properly determines 
ght attenuation and generates the shadows for volumetric 
ets, using a splatting paradigm for volume rendering.     
hrens, et al.[2] use texture mapping hardware to add 

ows to a texture-based volume renderer. A shadowed 
e which contains the light attenuation information is first 

uced by the hardware using the original unshadowed 
e and the light vector. The shadowed volume is then 

red using texture-based volume rendering. However, high 
rmance is limited to parallel light sources. Also the pre-
lation of the light attenuation precludes post-
ification. Lokovic and Veach [14] propose the concept of 
 shadow maps to deal with light attenuation. A deep 
ow map is a rectangular array of pixels in which every 
 stores a visibility function. The function value at a given 

depth is the fraction of the light beam's initial power that 
penetrates to that depth. They implemented deep shadow maps 
in a highly optimized scanline renderer. However their work 
gives us some ideas into how to deal with the light attenuation 
in volume rendering using splatting. 

Nulkar and Mueller have implemented an algorithm to add 
shadows to volumetric scenes using splatting [21]. They use a 
two-stage splatting approach. In the first-stage, splatting is 
used to construct a three-dimensional light volume; the second 
stage is formed by the usual rendering pipeline. Since the 
algorithm needs a 3D buffer to store the light volume, it has 
the problem of high storage and memory cost. Also, accurate 
shadows are difficult to implement using this method, due to 
the limited resolution of the light volume. 

We investigate a new algorithm to implement shadows using 
splatting that requires only a 2D buffer for each light source 
[30]. Kniss, et al. [12] also utilize an off screen render buffer 
to accumulate the light attenuation. In this paper, we first give 
a summary of our basic shadow algorithm and Kniss et al.’s 
shadow algorithm. The main part of this paper is on the 
extensions of the basic shadow algorithm, and an analytic soft 
shadow algorithm using splatting. 

2.2 Image-Aligned Sheet-Based Splatting 
In splatting, each voxel is represented by a 3D kernel weighted 
by the voxel value. The 3D kernels are integrated into a 
generic 2D footprint along the traversing ray from the eye. 
This footprint can be efficiently mapped onto the image plane 
and the final image is obtained by the collection of all 
projected footprints, weighted by the  voxel  values. This  
splatting  approach  is  fast, but  it  suffers from color bleeding 
and popping artifacts due to incorrect volume integration.  

Mueller, et al. [19] eliminate these problems by aligning the 
sheets to be parallel to the image plane. This splatting method 
(as shown in Fig. 2) is called image-aligned sheet-based 
splatting. All the voxel kernels that overlap a slab are clipped 
to the slab and summed into a sheet buffer. The sheet buffers 
are composited front-to-back to form the final image. While 
this significantly improves image quality, it requires much 
more compositing and several footprint sections per voxel to 
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be scan-converted. Using a front-to-back traversal, this method 
can make use of the culling of occluded voxels by keeping an 
occlusion map and checking whether the pixels that a voxel 
projects to have reached full opacity [10]. 

Traditionally, splatting classifies and shades the voxels prior 
to projection. Projecting the fuzzy color balls leads to a blurry 
appearance of object edges.  Splatting using post 
classification, which performs the color and opacity 
classification and shading process after the voxels have been 
projected onto the screen, was proposed by Mueller, et al. [17] 
to generate images with crisp edges and well-preserved surface 
details. In this paper, we use the post-classification to keep 
track of the per-pixel contribution to the light attenuation and 
generate per-pixel shadows. 

The motivation of this paper is to implement shadows using 
the sheet-based splatting to create more realistic and 
informative images. 
 

3 BASIC SHADOW ALGORITHM 

3.1 Summary of Shadow Algorithm Using Splatting 
Visibility algorithms and shadow algorithms are essentially the 
same. The former determine the visibility from the eye, and the 
latter determine the visibility from the light source. However, 
it is hard to implement shadows, especially accurate shadows, 
in volume rendering, since the light intensity is continuously 
attenuated as the light traverses the volume. Our fundamental 
problem therefore is not determining whether a point is visible 
from the light, but rather to determine the light intensity 
arriving at the point being illuminated.  

In our shadow algorithm, we implement shadows by 
traversing the volume only once to generate per-pixel accurate 
shadows. The same splatting algorithm is used for both the 
viewer and the light source. For each footprint, while adding 
its contribution to the sheet buffer, as seen from the eye, we 
also add its contribution to a shadow buffer, as seen from the 
light source. In the sheet-based splatting, the light passing 
through the front sheets will be attenuated and cause shadows 

on the back sheets along the light rays. At the current sheet, the 
light intensity is attenuated by all front sheets. If the light 
source resides behind the object, with respect to the viewer, 
then a back-to-front compositing order of the sheets is taken. 

To generate shadows using splatting, we propose a new non-
image-aligned sheet-based splatting to keep track of accurate 
light attenuation [30]. We first calculate the half way vector 
between the eye vector and the light vector. Rather than slicing 
the reconstruction kernels via planes parallel to the image 
plane, we chop the volume by slices perpendicular to the 
direction of the half way vector. We keep the image buffer 
aligned with the eye and the shadow buffer aligned with the 
light source (as shown in Fig. 3) to avoid sampling and 
resolution problems. This non-image-aligned sheet-based 
splatting along the half way vector will not have the popping 
artifacts as mentioned for the volume-aligned sheet-based 
splatting in [19], since the splatting direction changes 
continuously with the eye vector and/or the light vector. 
Therefore, a consistent ray integration is generated with 
accurately reconstructed sheets.  

For high-quality rendering, we need to support per-pixel 
post classification and illumination. This implies the need to 
also support per-pixel shadowing. This is not possible with 
previous methods which store a 3D light buffer, such as Kajiya 
[11] or Nulkar [21]. During the rendering, when we calculate 
the illumination for a pixel at the current sheet, we look-up the 
accumulated opacity for the pixel from the shadow buffer by 
mapping the pixel to the shadow buffer. The pixel (i,j) at the 
current image buffer is first transferred back to the point x in 
the eye space using the current sheet’s z-value. It is then 
projected to the pixel (i’,j’) at the shadow buffer, aligned with 
the light source (as shown in Fig. 3).  

The light intensity arriving at the point x is calculated using 
the accumulated opacity stored at the corresponding pixel 
(i’,j’) on the shadow buffer: 

 
Fig. 2. Image-aligned sheet-based splatting. 
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Fig. 3. Non-image-aligned sheet-based splatting. 
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                         lightIxxI *))(0.1()( α−=          (1) 

where, )(xα  is the accumulated opacity at x , which is the 

value at  ),( '' ji  on  the shadow buffer, and lightI  is the 

original intensity of the light source.  
 This shadow buffer has accumulated the energy loss from 

all the sheets in front of the current sheet. In this way, the light 
attenuation is accurately modeled. For a given point x, we get 
its )(xα  by choosing its nearest pixel’s opacity value in the 
shadow buffer, or using bilinear interpolation of the opacity 
values of nearby pixels in the shadow buffer. Since the shadow 
buffer is generated in lock-step with the image for each view, 
we can easily guarantee correct sampling of the shadow buffer. 

Kniss, et al. [12] recently have proposed a similar idea of a 
half angle slice axis using 3D texture mapping for the volume 
rendering. Instead of creating a volumetric shadow map, they 
use an off screen render buffer to store the accumulated light 
attenuation. Also, they modify the slice axis to be the direction 
between the view and light directions. This allows the same 
slice to be rendered from both the eye and the light point of 
view. They use a p-buffer, an off screen render buffer, to store 
the accumulated light attenuation. Light is attenuated by 
simply accumulating the opacity for each sample using the 
over operator. Then, they copy the results to a texture, which is 
multiplied with the volume slice in the 3D volume renderer 
before it is blended into the frame buffer. In this way, they 
generate interactive shadows for volumes using 3D texture-
mapping hardware. 

Compared to image-aligned sheet-based splatting without 
shadows, two additional 2D  buffers are needed in our shadow 
algorithm: a 2D shadow buffer to store the accumulated 
opacity from the light to the current sheet, and a working 2D 
sheet shadow buffer to which the current slab of voxel 
footprints are added into. The reason we need the sheet 
shadow buffer is that several voxel segments may contribute to 
a pixel within the current slab, and the contributions are 
evaluated voxels by voxels and added together to the sheet 
shadow buffer. In this way,  the sheet shadow buffer keeps the 
opacity contribution of the current slab. Then, a per-pixel 
classification is applied to the sheet shadow buffer, which is 
then composited into the accumulated shadow buffer. Kniss, et 
al. [12] implement the shadows using graphics hardware. They 
use a p-buffer to store the accumulated light attenuation, 
equivalent to our 2D shadow buffer. The 3D texture rasterizer, 
reconstructs the function for the current slice, which is 
accumulated to the p-buffer using the over operator.  

 Our shadow algorithm using sheet-based splatting is 
demonstrated with the following pseudo code. 
 

1. Transform each voxel to the coordinate system having the half way 
vector as the z-axis; 

2. Bucket sort voxels according to the transformed z-values; 
3. Initialize opacity map to zero; 
4. Initialize the shadow buffer to zero; 
5. For each sheet in front-to-back order 
6.     Initialize image sheet buffer; 

7.     Initialize shadow sheet buffer; 
8.     For each footprint 
9. Rasterize and add the footprint to the current image sheet 

buffer; 
10. Rasterize and add the footprint to the current shadow sheet 

buffer; 
11. End for; 
12. Calculate the gradient for each pixel using central difference; 
13. Classify each pixel in the current image sheet buffer; 
14. Map pixel to the shadow buffer and get its opacity; 
15. Calculate the illumination to obtain the final color; 
16. Composite the current image sheet buffer to the frame buffer; 
17. Classify each pixel on current shadow sheet buffer and 

composite it to the accumulated shadow buffer; 
18. End for; 

 

3.2 Shadow Results 
Using the above algorithm, we have implemented shadows for 
two different types of light sources: parallel light sources and 
point light sources. More details on this algorithm can be 
found in [30]. Here, we will present some results before 
discussing our extensions to soft shadows. 

The shadow of the rings composed of torus primitives is 
shown in Fig. 4. Notice how the per-pixel classification 
algorithm produces sharp shadows.    

Fig. 5 is the HIPIP (high-potential iron-sulfur protein) 
dataset, which describes a one-electron orbital of a four-iron 
and eight-sulfur cluster found in many natural proteins. The 
data is the scalar value of the wave function ‘psi’ at each point. 
Shadows provide spatial relationship information.  

Our splatting algorithm has been extended to support 
hypertextures. Fig. 6 shows the shadow of a hypertextured 
object, which is constructed using Perlin’s turbulence function 
[22].  

Fig. 7 is the uncBrain with and without shadows. The insets 
are close-up renderings and precise curved shadows are 
generated. Again, notice that the shadows are calculated per-
pixel rather than per-voxel. 

The above images are generated using a front-to-back 
rendering. If the light source is behind the objects, this 
algorithm proceeds as normal, but the compositing direction is 
changed from front-to-back to back-to-front. The room scene 
in Fig. 8 is an example of a back-to-front rendering: light 
comes into the room through the window from the back. A 
desk and a chair reside in the room filled with a light haze, and 
cast shadows. 

When light is attenuated, the running time is longer than the 
time without shadows, because footprint evaluation and 
shadow buffer compositing need to be done with respect to the 
light source. The algorithm with shadows takes less than twice 
the time without shadows. For the Bonsai tree (256*256*128) 
rendered to a 512*512 image, the running time with shadows 
is only about 56% slower, providing a nice and efficient 
extension to our software based image-aligned sheet-based 
splatting software. 

4 PROJECTIVE TEXTURED LIGHTS 
Projective textures can be added for special effects. We use a 
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light screen to get the effect of a “light window” or slide 
projector cast into the scene. The range of the shadow buffer is 

determined by projecting the light screen to the shadow buffer 
plane. The light screen is then given an initial image.  

The projective textured lights are modeled as in Fig. 9. 
Now, the light intensity at point x not only depends on the 
light attenuation, but also depends on the light color. 
Currently, we only support wavelength independent 
attenuation. This is a limitation of our current implementation, 
rather than the basic algorithm. 

                                                         
))(0.1(*)(_*)( xxcolorlightIxI light α−=        (2) 

 
 
Fig. 4. Shadows of rings. 
 
 

 
 

(a)                                                          (b) 
 

Fig. 5. A scene of a HIPIP data set. (a) Without shadow. (b) With shadow. 
 
 

 
 

Fig. 6. A hypertextured object with the shadow. 

    
 

(a)                                                      (b) 
 

      

 

 
 

(c)                                                      (d) 
 
Fig. 7. uncBrain with shadow. (a) Without shadow. (b) With shadow. 
(c) and (d) Close-up rendering of the specified patch. 
 
 

 
 
Fig. 8. Room scene (an example of back-to-front rendering). 
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If the light screen, or projection direction, is not aligned to 
the shadow buffers, we need to warp the light pattern to the 
shadow buffer plane. This defines the initial distribution of the 
light intensity in the buffer. During the rendering, the 
corresponding values can be obtained from this buffer using a 
simple bilinear interpolation.  

A room scene in Fig. 10 is lit by a light with an image of the 
logo of The Ohio State University. Shadows are generated by 
the robot and the rings which reside in the room. 

In Fig. 11, a parallel area light source containing a grid 
texture casts the regular pattern onto the HIPIP dataset. By 
controlling the grid pattern, this gives us some dimensional 
information of the object.  

Fig. 12 compares images with light beams passing through a 
semi-transparent cube. Three light beams with red, green and 
blue colors enter the cube at the right top, traverse the cube 
and come out from the left bottom. The image in Fig. 12(a) is 
without consideration of light attenuation, while the image in 

Fig. 12(b) is with light attenuation. The light intensity exiting 
the cube is the same as the original intensity entering the cube 
in the image in Fig. 12(a), while the resulting light intensity 
exiting the cube is diminished in the image in Fig. 12(b). 
Within the cube, the beam colors are partially blocked by the 
front participating media of the cube. 

In Fig. 13, a light beam perpendicular to the eye vector 
passes through a translucent rectangular parallelepiped, which 
is rotated by 35°. The image in Fig. 13(a) is without 

 transparent light screen 
with some texture on it 

light region 

 
(a) (b) 

 
Fig. 9. A schematic of projective textured light models. (a) point light. 
(b) parallel light. 

 

 
 
Fig. 10. A room scene for a light screen with an image of OSU logo. 

 
 

Fig. 11. HIPIP with grid pattern. 
 

  
 

(a) (b) 
 

Fig. 12. A scene with beams of light that pass through the cube. (a) 
Without attenuation. (b) With attenuation. 
 

  
 

(a)                                                      (b) 
 

Fig. 13. A scene with a beam of light that passes through the rectangular 
parallelepiped. (a) Without shadow. (b) With shadow. 
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attenuation, while the image in Fig. 13(b) considers the light 
attenuation. In the right image, most of the energy is 
attenuated, and only a little energy escapes from the 
rectangular parallelepiped.  

5 SOFT SHADOWS FOR EXTENDED LIGHT 
SOURCES  

5.1 Soft Shadow Algorithm 
The generation of soft shadows is a difficult topic in computer 
graphics. Soft shadows include an umbra region, areas for 
which no part of the extended light source is visible, and a 
penumbra region, areas in which part of the extended light 
source is visible and part is hidden or occluded. The 
generation of soft shadows requires integrating the 
contributions of extended light sources on the illumination of 
objects. 
  In general, there are two main techniques to treat the 
extended light source: sampling techniques [3, 4] and 
analytical techniques [29]. The first technique is to sample the 
light source, and add the contributions of all the samples 
together to form a soft shadow. The sampling techniques are 
prone to image artifacts unless they are pushed to a stage 
where they become too expensive. In the second technique, the 
contribution of the extended light source is integrated using 
some form of numerical quadrature. These techniques typically 
require expensive data structures.  

Soler and Sillion [24] use a convolution technique to 
calculate soft shadows that avoids both sampling artifacts and 
the building of expensive data structures to represent visibility. 
For the special case where the light source, the receiver and 
the occluder are all planar, and lie in parallel planes, they 
express the shadow as a convolution operation. For a general 
configuration, they construct a virtual light source, a virtual 
occluder and a virtual receiver, which are all planar and 
parallel to each other. They then compute the shadow for the 
virtual receiver using the constructed virtual geometry. Finally, 
they project the resulting shadow back to the actual receiver. 

In this paper, we investigate an analytic method to generate 
soft shadows using the convolution technique. This soft 
shadow algorithm is based on the basic shadow algorithm 
discussed in section 3. Since we proceed in the volume 
rendering slice by slice, where all slices are parallel to each 
other, we can avoid some constraints and artifacts present in 
Soler’s virtual occluders. 

For an extended light source, we integrate over the light 
source to determine the contribution at a given point x.  
 

aaobj IkCxC *)( =
dyyxLxNyxyIkC lightd

A
obj ))),()((*)),(0.1(*)(*( ⋅−+ ∫ α

dyyxRxEyxyIk nk

A
lights ))),()((*)),(0.1(*)(( ⋅−+ ∫ α      (3)                                                                                     

where, y is a point on the light source and A is the area of the 
extended light source. 

At a given point x, )(yI light , ),( yxα , ),( yxL  and 

),( yxR  depend on the extended light source. We assume the 
light intensity is uniform across the extended light source. Also 
we denote the light vector from the center of the light to the 
point x as L(x),  and approximate ),()( yxLxN ⋅  by 

)()( xLxN ⋅ . Here, )()( xLxN ⋅  can be considered to 

approximate the average of the ),()( yxLxN ⋅  across the 
extended light source. This approximation is reasonable in 
cases where the light source is not very close to the objects. 
Similarly, we use )()( xRxE ⋅  to approximate 

),()( yxRxE ⋅ .  
This leads to the following illumination model: 

 

aaobj IkCxC *)( =       

dyyxxLxNIkC
A

lightdobj )),(0.1())()((** α−⋅+ ∫  

dyyxxRxEIk
A

k
lights

n )),(0.1())()((* α−⋅+ ∫            (4) 

The term dyyx
A

)),(0.1( α−∫  in the above equation is the 

integral of the light fraction arriving at the point x over the 
extended light source.  We can also express the integral as 

dyyxv
A

),(∫ , where v(x,y) is how much fraction of the light 

intensity at y on the light source arrives at point x on the 
receiver. 

We calculate the term dyyx
A

)),(0.1( α−∫  using  

convolutions. We use a box kernel, having a width determined 
by the penumbra region for the current slice. If L is the size of 
the extended light source, Z is the distance from the light to the 
occluder, and Z∆ is the distance from the occluder to the 
receiver (Fig. 14), then the width of the penumbra region is 
calculated by the formula: 

light 

umbra penumbra

occluder

receiver 

Z

L

x∆
Z∆

 
 

Fig. 14. A schematic of the light source, the occluder and the receiver. 
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Z

ZLx ∆=∆ *                                   (5) 

We notice the x∆ is constant across the receiver if the light 
source, the occluder, and the receiver are parallel, due to the 
geometrical properties of equivalent triangles. To achieve soft 
shadows, we can easily apply this mathematical formulation to 
analytically determine the penumbra region.  

Using the shadow algorithm in section 3, we generate the 
shadow region with respect to the center of the extended light 
source (Fig. 15). The soft shadow, including both an umbra 
region and a penumbra region, is generated by convolving the 
above shadow region (as shown in Fig. 15) with a kernel size 
of x∆  obtained from the above formulation. Referring to Fig. 
15, the boundary of the shadow region with respect to the 
center of the virtual light is exactly in the middle of the 
penumbra region. We can derive it from the geometrical 
properties of the equivalent triangles. The shadow region is 
convolved using a box convolution kernel of size x∆ . Thus, 
we get the exact penumbra region for the configuration in Fig. 
15. The penumbra region depends on the size of the extended 
light, the distance from the light to the occluder, and the 
distance from the occluder to the receiver, as illustrated by 
equation (5). At a given point, the average shadow value of its 
neighborhood within the kernel is taken as its convolved 
shadow value. 

In sheet-based splatting, we implement rendering slice by 
slice. At the current slice, all slices in front of it are occluders, 
and the current slice itself is the receiver. The contribution of 
the current slice should be composited into the accumulated 
shadow buffer to prepare for the next slice. Here, Z is the 
distance from the extended light source to the current sheet, 
and Z∆  is the distance between two adjacent sheets (Fig. 16). 
The penumbra region x∆ is calculated for each slice using 
equation (5) and transformed to screen space. The contribution 
of the current sheet is obtained by projecting the occluder on 
the current sheet onto the shadow buffer with respect to the 
center of the extended light source. The accumulated shadow 
image, including the contribution of the current sheet, is taken 

to do the convolution and the convolved shadow values are 
stored in the accumulated shadow buffer to be used for the 
next slice.  

At the sheet i, the shadow value obtained from the 
accumulated shadow buffer is the convolved shadow value, 
which has considered the contribution of the extended light 
source. The sheet shadow buffer contributed by the current 
sheet is composited to the accumulated shadow buffer, which 
is then convolved to prepare for the illumination at next sheet. 
We repeat the above convolution slice by slice (as shown in 
Fig. 16). At a pixel to be illuminated, we transfer it back to the 
eye space, then project it to the accumulated shadow buffer 
and obtain the light attenuation for it (Fig. 3). The obtained 
light intensity includes the contribution of the extended light 
source on the pixel. 

Since we convolve the accumulated shadow buffer slice by 
slice, the contribution of a front sheet on the subsequent sheets 

light 

umbra penumbra

occluder

receiver 

Z

L

x∆
Z∆

 
Fig. 14. A schematic of the light source, the occluder and the receiver. 
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Fig. 15. A schematic of the shadow region with respect to the light source. 
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Fig. 16. Soft shadow algorithm in splatting. 
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Fig. 17. Construction of a virtual light source. 
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is updated with the convolutions. For example, consider the 
contribution of the sheet i on the sheet i+50. The contribution 
of the sheet i is composited to the accumulated shadow buffer, 
and the shadow buffer has been convolved many times when 
the rendering proceeds to the sheet i+50. This satisfies 
equation (5), where the penumbra region caused by the sheet i 
on the sheet i+50  depends on the distance Z∆ . 

As discussed in section 3, we still slice the volume along the 
half-way vector. But, we keep the normal of the shadow buffer 
aligned with the half way vector, instead of the light vector, so 
that the shadow buffer is parallel to the slices (Fig. 17). This is 
required by equation (5). 

To accomplish soft shadows, we add one extra step to the 
shadow algorithm given in Section 3.1. At each sheet, after 
compositing the sheet shadow buffer into the accumulated 
shadow buffer, we calculate the x∆ . The accumulated shadow 
buffer is convolved using a kernel size of x∆ to prepare for the 
next sheet. 
 

5.2 Discussion of Soft Shadow Algorithm 
In this section, we will discuss several factors which may 
affect the accuracy of the soft shadows. 

 
(1) Constructing a virtual light 

In our soft shadow algorithm, the occluder and the receiver 
are rendered slice by slice using sheet-based splatting. They 
have arbitrary geometry, but they are treated as parallel slices 
during the rendering. So, there is no need to approximate the 

occluder and the receiver in our soft shadow algorithm as in 
[24]. However, the above analytic soft shadow algorithm 
requires the extended light source to be parallel to the slices 
such that the penumbra and umbra regions can be calculated 
using equation (5). If the extended light source is not parallel 
to the slices, a virtual light source is created by using an 
orthogonal projection of the original light source (as shown in 
Fig. 17 and Fig. 18). 

If the angle between the normal of the extended light source 
and the volume slicing direction is small, the virtual light 
source generated by the above orthogonal projection will not 
introduce artifacts. If the angle is large (since the slicing 
direction is the half way vector between the eye vector and the 
light vector, the maximum degree is 45°), the virtual light will 
change the distribution of the penumbra region (as shown in 
Fig. 18). Here, we use a parallel planar occluder and receiver 
to analyze the approximation error. In Fig. 18, the penumbra 
region is smaller on the left side and bigger on the right side 
for the original extended light source, while the virtual light 
generates the same-size penumbra region on the both sides. In 
the cases where the light is small or not close to the occluder, 
and/or the receiver is not far from the occluder, the difference 
in the penumbra region will be small. A variable convolution 
kernel can be used to adjust the distribution of the penumbra 
region.  

 
(2) Dealing with discretized shadow buffers 

The above description is section 5.1 dealt with continuous 
convolution functions. The soft shadow algorithm is accurate 
mathematically. However, since we convolve the shadow 
buffer in screen space, we need to handle the discrete pixels. 
This implementation can introduce some artifacts. 

From equation (5), we know the penumbra region x∆ is 
calculated using ZZL /* ∆ . In sheet-based splatting, Z∆  is 
the distance between two adjacent sheets. Since Z∆  is very 
small, x∆ may also be very small. When x∆ is transformed to 
the screen plane, it may be smaller than two pixels. In screen 
space, we accumulate x∆ until it is greater than two pixels. 
Then, we do the convolution using the kernel size of the 
integer part of the x∆ , and the rest part of the x∆  is counted 
into the next accumulation. Therefore, we need to keep the last 
recent convolved sheet position, and use it to calculate the 
accumulated x∆ . Here, Z is the distance from the light source 
to the last convolved sheet, and Z∆  is the distance from the 
last convolved sheet to next sheet following the current sheet. 

The above convolution calculation can cause some 
inaccuracy problems. Since we keep only one accumulated 
shadow buffer, when the accumulated x∆ is greater than two 
pixels, the contributions of all the sheets, between the last 
recent convolved sheet and the current sheet, are convolved. 
This problem is an implementation problem in dealing with 
discrete pixels, and it is not a problem mathematically. Using 
high-resolution shadow buffer can improve the accuracy. Also, 
obtaining shadow value using bilinear interpolation can 

   

computed penumbra region   

exact penumbra region   

virtual light   original light   

 
 
Fig. 18. Computed and exact penumbra regions. 
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improve the accuracy. 
 
(3) Calculating average light size 

In our soft shadow algorithm, box kernels are used to do the 
convolution.  Given a light source with an irregular shape, we 
first calculate its center and average size, then use these as the 
light center to which the occluder is projected and the light 
size L in equation  (5) to calculate x∆ . 

The penumbra region depends on the average light size. The 
light shape is not considered. The effect of the light shape on 
the penumbra can be implemented by extending the 
convolution method by Soler and Sillion [24] to deal with the 
occluder with values in [0,1]. 
 

Compared with the convolution technique [24] by Soler and 
Sillion, our method has some advantages. Firstly, we don’t 
need to approximate the occluder and the receiver. They are 
rendered slice by slice using splatting, so the occluders and the 
receivers are parallel slices during the rendering. We just need 
to create the virtual light. Secondly, we use splatting, a volume 
rendering method, so our soft shadow algorithm deals with the 
visibility in the range of [0,1], not just 0 or 1. Also we model 
the light attenuation slice by slice and we can generate self 
shadows.  

Similar to the soft shadow algorithm in [24], the 
disadvantage of our soft shadow algorithm is that it is an 
approximate method. The orthogonal projection of light 
sources and the convolution of the shadow buffer using the 
accumulated x∆  introduce some approximation. 
 

5.3 Soft Shadow Results 
The soft shadows, including umbra and penumbra, for 
extended light sources, are shown in Fig. 19−23 and Fig. 1(c), 
where the extended light source is a round area light. In the 
soft shadows of the rings (Fig. 19) and the robots (Fig. 20(b)), 
there is a penumbra region due to the extended light source. 
Compared to the hard shadows (Fig. 4 and Fig. 20(a)), the soft 

shadows have penumbra regions. The further the receiver is, 
the more blurred the shadow. For example, in Fig. 20(b), the 
shadows near the foot and the legs are hard, and the shadows 
of the body and the head become soft.  

Fig. 21 shows that the shadow caused by the blue object 
passes through the translucent rectangular parallelepiped. The 
image in Fig. 21(a) is the hard shadow, while the image in Fig. 
21(b) is the soft shadow. At the top entrance, the penumbra 
region is pretty small, so there is nearly no difference between 
the two images. As the shadow traverses the rectangular 
parallelepiped and comes out, the penumbra region becomes 
obvious for the soft shadow in Fig. 21(b), compared to the 
hard shadow in Fig. 21(a). 

The soft shadow of the Bonsai tree is shown in Fig. 1(c). 
Compared with the hard shadow in Fig. 1(b), the Bonsai tree 
with soft shadows is more realistic. Also, the soft shadow of 
the hypertextured object is shown in Fig. 22.  

In Fig. 23, a beam of light passes through a hole of an 

 

 
 

Fig. 19. Soft shadows of rings. 

 
 

(a) 
 

 
 

(b) 
 

Fig. 20. (a) Soft shadow of robots. (b) Hard shadow of robots. 
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opaque planar occluder (modeled in the light attenuation, but 
not displayed in the image), then traverses the translucent 
rectangular parallelepiped. In this image, soft shadows are 
implemented, so the light beam expands to the penumbra 
region. Also, due to the light attenuation as the light beam 
traverses the rectangular parallelepiped, the resulting light 
intensity is lower than the original light intensity. 
    Our method is a fast soft shadow calculation method. It 
keeps only one accumulated shadow buffer which stores the 
convolved shadow values. The contribution of the extended 
light source is integrated slice by slice using a convolution 
technique. For example, the running time of soft shadow of the 
robots takes 20% longer than the time for the same image with 
hard shadows. 

6 CONCLUSIONS  
In this paper, we have described an algorithm to model the 

light attenuation through a volume using the non-image-
aligned sheet-based splatting. This algorithm models the light 
attenuation with respect to the light source and generates 
shadows. We need a 2D buffer to store the accumulated 
opacity. For the running time, the algorithm with shadows 
takes less than twice the time without shadows. This algorithm 
has the advantage of saving storage and running time. 

The basic shadow algorithm has been extended for 
projective textured light sources. Projective textured lights are 
used to create images with special effects or quantitative 
analysis. From some images lit by projective textured lights, 
we can see the light attenuation visually. 

We propose an analytic soft shadow algorithm using 
splatting to deal with extended light sources and generate soft 
shadows with penumbra and umbra. Our soft shadow 
algorithm is a fast analytic method using a convolution 
technique. We discuss several factors which may affect the 
accuracy of the soft shadows. Also, we generate soft shadows 

 
 

(a) 
 

 
 

(b) 
 

Fig. 21. Soft shadow passing through the translucent rectangular 
parallelepiped. (a) Hard shadow. (b) Soft shadow. 

 
 

Fig. 22. Soft shadow of a hypertextured object. 
 

 

 
 

Fig. 23. A scene with a beam of light that passes through a rectangular 
parallelepiped, with soft shadows implemented. 
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and compare them with the shadows generated  using the basic 
shadow algorithm. 

Our future work includes integrating polygonal rendering 
with our volume rendering with shadows, and extending the 
shadow algorithm for textured lights. We will study how the 
light texture changes using the convolution technique. In the 
future, we also plan to implement the shadow algorithm using 
hardware to improve the performance.  
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