
TVCGSI-0011-1102

1

Abstract— This paper describes an efficient algorithm to
model the light attenuation due to a participating media
with low albedo. Here, we consider the light attenuation
along a ray, as well as the light attenuation emanating
from a surface. The light attenuation is modeled using a
splatting volume renderer for both the viewer and the light
source. During the rendering, a 2D shadow buffer
accumulates the light attenuation. We first summarize the
basic shadow algorithm using splatting [30]. Then an
extension of the basic shadow algorithm for projective
textured light sources is described. The main part of this
paper is an analytic soft shadow algorithm based on
convolution techniques. We describe and discuss the soft
shadow algorithm, and generate soft shadows, including
umbra and penumbra, for extended light sources.

Index Terms— volume rendering, splatting, shadows, soft
shadows, participating media, illumination.

1 INTRODUCTION
OLUME rendering is the display of datasets sampled in
three dimensions. Splatting is one volume rendering

algorithm, which can create high-quality images, and render
efficiently in the case of a sparse dataset. The basic principles
of a splatting algorithm are: (1) represent the volume as an
array of overlapping basis functions with amplitudes scaled by
the voxel values; (2) project these basis functions to the screen
to achieve an approximation of the volume integral [6]. A
major advantage of splatting is that only relevant voxels are
projected and rasterized. This can tremendously reduce the
volume data that needs to be processed and stored.

 A shadow is a region of relative darkness within an
illuminated region, caused by an object totally or partially
occluding the light. Shadows are essential to realistic and
informative images. Earlier implementations of shadows
focused on hard shadows, in which a value of 0 or 1 is
multiplied with the light intensity. In volume rendering, as the

Manuscript received Nov. 15, 2002.
C. Zhang is with the Department of Computer and Information Science,

The Ohio State University, 2015 Neil Ave., Columbus, OH 43210-1277. E-
mail: zhangc@cis.ohio-state.edu.

R. Crawfis is with the Department of Computer and Information Science
and the Advanced Computing Center for the Arts and Design, The Ohio State
University, 2015 Neil, Ave., Columbus, OH 43210-1277. E-mail:
crawfis@cis.ohio-state.edu.

light traverses the volume, the light intensity is continuously
attenuated by the volumetric densities. This amounts to two
separate volume renderings. Here, we investigate a new
shadow algorithm that properly determines this light
attenuation and generates shadows from volumetric datasets,
using a splatting paradigm for volume rendering.

This paper is on the shadow algorithm using sheet-based
splatting [19]. The algorithm uses the same splatting for both
the light attenuation and the rendering, as seen from the light
source and from the eye, respectively. In the following section,
background and previous work are reviewed and the
motivation of this work is given. Section 3 summarizes the
basic shadow algorithm using splatting [30]. In Section 4, we
extend this approach for projective textured lights. This paper
focuses on the soft shadow algorithm using splatting. Section 5
describes and discusses an analytic soft shadow algorithm for
extended light sources using a convolution technique. The
conclusions and future work are given in Section 6.

2 PREVIOUS WORK

2.1 Shadow Algorithms
Earlier implementations of shadows focused on hard shadows
from and onto strictly opaque objects. The algorithm by Crow
[7] introduces the concept of shadow volumes. A shadow
volume is the polygonalized solid that models the volume of a
shadow cast into space by the silhouette of an occluder. During
the rendering, a visible surface or sample point is first checked
to see whether or not it falls inside a shadow volume before it
is illuminated by the light source. In the 2-pass hidden surface
algorithm by Nishita and Nakamae [20] and Atherton et al. [1],
the first pass transforms the image to the view of the light
source, and decomposes the polygon into shadowed and
unshadowed portions. A new set of polygons is created, each
marked as either completely in shadow or visible from the
light source. In the second pass, visibility determination from
the eye is done, and the polygons are shaded taking into
account their shadow flag. This 2-pass hidden surface
algorithm is only suitable for polygon primitives. Williams
[28] uses a z-buffer depth-map algorithm to generate shadows.
A light-source depth-map is first created with respect to the
light source. During the rendering, the z-buffer depth-map is
used to determine if an object point, visible from the eye, is
also visible from the light source. This algorithm supports

Shadows and Soft Shadows with
Participating Media Using Splatting

Caixia Zhang and Roger Crawfis, Member, IEEE Computer Society

V

TVCGSI-0011-1102

2

prim
prob

Th
algor
deter
only
not s
light
atten
flexib
Rayt
repre
gene
et al
brigh
Eber
table
table
point
from
appro
Thus
value
using
inves
the li
datas

Be
shad
volum
prod
volum
rende
perfo
calcu
class
deep
shad
pixel

Fig. 1. Bonsai tree. (a) Without shadows. (b) With shadows. (c) With soft shadows.
itives other than just polygons, but it has aliasing
lems due to the discretized depth-map cells.
e shadow volume algorithm, 2-pass hidden surface
ithm and z-buffer depth-map algorithm can only
mine if an object point is in shadow or not, resulting in
binary values for the light intensity. These algorithms are
uitable for volume rendering. In volume rendering, as the
traverses the volume, the light intensity is continuously

uated by the volumetric densities. Raytracing offers the
ility to deal with the attenuation of the light intensity.

racing has been used to generate shadows for both surface
sentations [27] and volumetric datasets [8, 11, 23]. To
rate shadows for objects represented by densities, Kajiya
. [11] store the contribution of each light source to the
tness of each point in space into a 3D array),,(zyxI i .
t and Parent [8] improve the calculation of the shadow
 by storing the shadow values already calculated in a 3D
 and calculating the shadow table values starting with the
s closest to the light and proceeding to the points farthest
 the light to avoid repeated calculations. Also, to make the
ach feasible, they use a reduced-resolution shadow table.

, only a bilinear interpolation is needed to determine each
 in the shadow table. However, the shadow algorithm
 ray tracing is very costly computationally [15]. Here we
tigate a new shadow algorithm that properly determines
ght attenuation and generates the shadows for volumetric
ets, using a splatting paradigm for volume rendering.
hrens, et al.[2] use texture mapping hardware to add

ows to a texture-based volume renderer. A shadowed
e which contains the light attenuation information is first

uced by the hardware using the original unshadowed
e and the light vector. The shadowed volume is then

red using texture-based volume rendering. However, high
rmance is limited to parallel light sources. Also the pre-
lation of the light attenuation precludes post-
ification. Lokovic and Veach [14] propose the concept of
 shadow maps to deal with light attenuation. A deep
ow map is a rectangular array of pixels in which every
 stores a visibility function. The function value at a given

depth is the fraction of the light beam's initial power that
penetrates to that depth. They implemented deep shadow maps
in a highly optimized scanline renderer. However their work
gives us some ideas into how to deal with the light attenuation
in volume rendering using splatting.

Nulkar and Mueller have implemented an algorithm to add
shadows to volumetric scenes using splatting [21]. They use a
two-stage splatting approach. In the first-stage, splatting is
used to construct a three-dimensional light volume; the second
stage is formed by the usual rendering pipeline. Since the
algorithm needs a 3D buffer to store the light volume, it has
the problem of high storage and memory cost. Also, accurate
shadows are difficult to implement using this method, due to
the limited resolution of the light volume.

We investigate a new algorithm to implement shadows using
splatting that requires only a 2D buffer for each light source
[30]. Kniss, et al. [12] also utilize an off screen render buffer
to accumulate the light attenuation. In this paper, we first give
a summary of our basic shadow algorithm and Kniss et al.’s
shadow algorithm. The main part of this paper is on the
extensions of the basic shadow algorithm, and an analytic soft
shadow algorithm using splatting.

2.2 Image-Aligned Sheet-Based Splatting
In splatting, each voxel is represented by a 3D kernel weighted
by the voxel value. The 3D kernels are integrated into a
generic 2D footprint along the traversing ray from the eye.
This footprint can be efficiently mapped onto the image plane
and the final image is obtained by the collection of all
projected footprints, weighted by the voxel values. This
splatting approach is fast, but it suffers from color bleeding
and popping artifacts due to incorrect volume integration.

Mueller, et al. [19] eliminate these problems by aligning the
sheets to be parallel to the image plane. This splatting method
(as shown in Fig. 2) is called image-aligned sheet-based
splatting. All the voxel kernels that overlap a slab are clipped
to the slab and summed into a sheet buffer. The sheet buffers
are composited front-to-back to form the final image. While
this significantly improves image quality, it requires much
more compositing and several footprint sections per voxel to

TVCGSI-0011-1102

3

be scan-converted. Using a front-to-back traversal, this method
can make use of the culling of occluded voxels by keeping an
occlusion map and checking whether the pixels that a voxel
projects to have reached full opacity [10].

Traditionally, splatting classifies and shades the voxels prior
to projection. Projecting the fuzzy color balls leads to a blurry
appearance of object edges. Splatting using post
classification, which performs the color and opacity
classification and shading process after the voxels have been
projected onto the screen, was proposed by Mueller, et al. [17]
to generate images with crisp edges and well-preserved surface
details. In this paper, we use the post-classification to keep
track of the per-pixel contribution to the light attenuation and
generate per-pixel shadows.

The motivation of this paper is to implement shadows using
the sheet-based splatting to create more realistic and
informative images.

3 BASIC SHADOW ALGORITHM

3.1 Summary of Shadow Algorithm Using Splatting
Visibility algorithms and shadow algorithms are essentially the
same. The former determine the visibility from the eye, and the
latter determine the visibility from the light source. However,
it is hard to implement shadows, especially accurate shadows,
in volume rendering, since the light intensity is continuously
attenuated as the light traverses the volume. Our fundamental
problem therefore is not determining whether a point is visible
from the light, but rather to determine the light intensity
arriving at the point being illuminated.

In our shadow algorithm, we implement shadows by
traversing the volume only once to generate per-pixel accurate
shadows. The same splatting algorithm is used for both the
viewer and the light source. For each footprint, while adding
its contribution to the sheet buffer, as seen from the eye, we
also add its contribution to a shadow buffer, as seen from the
light source. In the sheet-based splatting, the light passing
through the front sheets will be attenuated and cause shadows

on the back sheets along the light rays. At the current sheet, the
light intensity is attenuated by all front sheets. If the light
source resides behind the object, with respect to the viewer,
then a back-to-front compositing order of the sheets is taken.

To generate shadows using splatting, we propose a new non-
image-aligned sheet-based splatting to keep track of accurate
light attenuation [30]. We first calculate the half way vector
between the eye vector and the light vector. Rather than slicing
the reconstruction kernels via planes parallel to the image
plane, we chop the volume by slices perpendicular to the
direction of the half way vector. We keep the image buffer
aligned with the eye and the shadow buffer aligned with the
light source (as shown in Fig. 3) to avoid sampling and
resolution problems. This non-image-aligned sheet-based
splatting along the half way vector will not have the popping
artifacts as mentioned for the volume-aligned sheet-based
splatting in [19], since the splatting direction changes
continuously with the eye vector and/or the light vector.
Therefore, a consistent ray integration is generated with
accurately reconstructed sheets.

For high-quality rendering, we need to support per-pixel
post classification and illumination. This implies the need to
also support per-pixel shadowing. This is not possible with
previous methods which store a 3D light buffer, such as Kajiya
[11] or Nulkar [21]. During the rendering, when we calculate
the illumination for a pixel at the current sheet, we look-up the
accumulated opacity for the pixel from the shadow buffer by
mapping the pixel to the shadow buffer. The pixel (i,j) at the
current image buffer is first transferred back to the point x in
the eye space using the current sheet’s z-value. It is then
projected to the pixel (i’,j’) at the shadow buffer, aligned with
the light source (as shown in Fig. 3).

The light intensity arriving at the point x is calculated using
the accumulated opacity stored at the corresponding pixel
(i’,j’) on the shadow buffer:

Fig. 2. Image-aligned sheet-based splatting.

eye

light

shadow buffer plane

half way vector

slices

the pixel to
the eye, (i,j)

the corresponding pixel
to the light, (i’j’)

image plane

Fig. 3. Non-image-aligned sheet-based splatting.

TVCGSI-0011-1102

4

 lightIxxI *))(0.1()(α−= (1)

where,)(xα is the accumulated opacity at x , which is the

value at),('' ji on the shadow buffer, and lightI is the

original intensity of the light source.
 This shadow buffer has accumulated the energy loss from

all the sheets in front of the current sheet. In this way, the light
attenuation is accurately modeled. For a given point x, we get
its)(xα by choosing its nearest pixel’s opacity value in the
shadow buffer, or using bilinear interpolation of the opacity
values of nearby pixels in the shadow buffer. Since the shadow
buffer is generated in lock-step with the image for each view,
we can easily guarantee correct sampling of the shadow buffer.

Kniss, et al. [12] recently have proposed a similar idea of a
half angle slice axis using 3D texture mapping for the volume
rendering. Instead of creating a volumetric shadow map, they
use an off screen render buffer to store the accumulated light
attenuation. Also, they modify the slice axis to be the direction
between the view and light directions. This allows the same
slice to be rendered from both the eye and the light point of
view. They use a p-buffer, an off screen render buffer, to store
the accumulated light attenuation. Light is attenuated by
simply accumulating the opacity for each sample using the
over operator. Then, they copy the results to a texture, which is
multiplied with the volume slice in the 3D volume renderer
before it is blended into the frame buffer. In this way, they
generate interactive shadows for volumes using 3D texture-
mapping hardware.

Compared to image-aligned sheet-based splatting without
shadows, two additional 2D buffers are needed in our shadow
algorithm: a 2D shadow buffer to store the accumulated
opacity from the light to the current sheet, and a working 2D
sheet shadow buffer to which the current slab of voxel
footprints are added into. The reason we need the sheet
shadow buffer is that several voxel segments may contribute to
a pixel within the current slab, and the contributions are
evaluated voxels by voxels and added together to the sheet
shadow buffer. In this way, the sheet shadow buffer keeps the
opacity contribution of the current slab. Then, a per-pixel
classification is applied to the sheet shadow buffer, which is
then composited into the accumulated shadow buffer. Kniss, et
al. [12] implement the shadows using graphics hardware. They
use a p-buffer to store the accumulated light attenuation,
equivalent to our 2D shadow buffer. The 3D texture rasterizer,
reconstructs the function for the current slice, which is
accumulated to the p-buffer using the over operator.

 Our shadow algorithm using sheet-based splatting is
demonstrated with the following pseudo code.

1. Transform each voxel to the coordinate system having the half way
vector as the z-axis;

2. Bucket sort voxels according to the transformed z-values;
3. Initialize opacity map to zero;
4. Initialize the shadow buffer to zero;
5. For each sheet in front-to-back order
6. Initialize image sheet buffer;

7. Initialize shadow sheet buffer;
8. For each footprint
9. Rasterize and add the footprint to the current image sheet

buffer;
10. Rasterize and add the footprint to the current shadow sheet

buffer;
11. End for;
12. Calculate the gradient for each pixel using central difference;
13. Classify each pixel in the current image sheet buffer;
14. Map pixel to the shadow buffer and get its opacity;
15. Calculate the illumination to obtain the final color;
16. Composite the current image sheet buffer to the frame buffer;
17. Classify each pixel on current shadow sheet buffer and

composite it to the accumulated shadow buffer;
18. End for;

3.2 Shadow Results
Using the above algorithm, we have implemented shadows for
two different types of light sources: parallel light sources and
point light sources. More details on this algorithm can be
found in [30]. Here, we will present some results before
discussing our extensions to soft shadows.

The shadow of the rings composed of torus primitives is
shown in Fig. 4. Notice how the per-pixel classification
algorithm produces sharp shadows.

Fig. 5 is the HIPIP (high-potential iron-sulfur protein)
dataset, which describes a one-electron orbital of a four-iron
and eight-sulfur cluster found in many natural proteins. The
data is the scalar value of the wave function ‘psi’ at each point.
Shadows provide spatial relationship information.

Our splatting algorithm has been extended to support
hypertextures. Fig. 6 shows the shadow of a hypertextured
object, which is constructed using Perlin’s turbulence function
[22].

Fig. 7 is the uncBrain with and without shadows. The insets
are close-up renderings and precise curved shadows are
generated. Again, notice that the shadows are calculated per-
pixel rather than per-voxel.

The above images are generated using a front-to-back
rendering. If the light source is behind the objects, this
algorithm proceeds as normal, but the compositing direction is
changed from front-to-back to back-to-front. The room scene
in Fig. 8 is an example of a back-to-front rendering: light
comes into the room through the window from the back. A
desk and a chair reside in the room filled with a light haze, and
cast shadows.

When light is attenuated, the running time is longer than the
time without shadows, because footprint evaluation and
shadow buffer compositing need to be done with respect to the
light source. The algorithm with shadows takes less than twice
the time without shadows. For the Bonsai tree (256*256*128)
rendered to a 512*512 image, the running time with shadows
is only about 56% slower, providing a nice and efficient
extension to our software based image-aligned sheet-based
splatting software.

4 PROJECTIVE TEXTURED LIGHTS
Projective textures can be added for special effects. We use a

TVCGSI-0011-1102

5

light screen to get the effect of a “light window” or slide
projector cast into the scene. The range of the shadow buffer is

determined by projecting the light screen to the shadow buffer
plane. The light screen is then given an initial image.

The projective textured lights are modeled as in Fig. 9.
Now, the light intensity at point x not only depends on the
light attenuation, but also depends on the light color.
Currently, we only support wavelength independent
attenuation. This is a limitation of our current implementation,
rather than the basic algorithm.

))(0.1(*)(_*)(xxcolorlightIxI light α−= (2)

Fig. 4. Shadows of rings.

(a) (b)

Fig. 5. A scene of a HIPIP data set. (a) Without shadow. (b) With shadow.

Fig. 6. A hypertextured object with the shadow.

(a) (b)

(c) (d)

Fig. 7. uncBrain with shadow. (a) Without shadow. (b) With shadow.
(c) and (d) Close-up rendering of the specified patch.

Fig. 8. Room scene (an example of back-to-front rendering).

TVCGSI-0011-1102

6

If the light screen, or projection direction, is not aligned to
the shadow buffers, we need to warp the light pattern to the
shadow buffer plane. This defines the initial distribution of the
light intensity in the buffer. During the rendering, the
corresponding values can be obtained from this buffer using a
simple bilinear interpolation.

A room scene in Fig. 10 is lit by a light with an image of the
logo of The Ohio State University. Shadows are generated by
the robot and the rings which reside in the room.

In Fig. 11, a parallel area light source containing a grid
texture casts the regular pattern onto the HIPIP dataset. By
controlling the grid pattern, this gives us some dimensional
information of the object.

Fig. 12 compares images with light beams passing through a
semi-transparent cube. Three light beams with red, green and
blue colors enter the cube at the right top, traverse the cube
and come out from the left bottom. The image in Fig. 12(a) is
without consideration of light attenuation, while the image in

Fig. 12(b) is with light attenuation. The light intensity exiting
the cube is the same as the original intensity entering the cube
in the image in Fig. 12(a), while the resulting light intensity
exiting the cube is diminished in the image in Fig. 12(b).
Within the cube, the beam colors are partially blocked by the
front participating media of the cube.

In Fig. 13, a light beam perpendicular to the eye vector
passes through a translucent rectangular parallelepiped, which
is rotated by 35°. The image in Fig. 13(a) is without

 transparent light screen
with some texture on it

light region

(a) (b)

Fig. 9. A schematic of projective textured light models. (a) point light.
(b) parallel light.

Fig. 10. A room scene for a light screen with an image of OSU logo.

Fig. 11. HIPIP with grid pattern.

(a) (b)

Fig. 12. A scene with beams of light that pass through the cube. (a)
Without attenuation. (b) With attenuation.

(a) (b)

Fig. 13. A scene with a beam of light that passes through the rectangular
parallelepiped. (a) Without shadow. (b) With shadow.

TVCGSI-0011-1102

7

attenuation, while the image in Fig. 13(b) considers the light
attenuation. In the right image, most of the energy is
attenuated, and only a little energy escapes from the
rectangular parallelepiped.

5 SOFT SHADOWS FOR EXTENDED LIGHT
SOURCES

5.1 Soft Shadow Algorithm
The generation of soft shadows is a difficult topic in computer
graphics. Soft shadows include an umbra region, areas for
which no part of the extended light source is visible, and a
penumbra region, areas in which part of the extended light
source is visible and part is hidden or occluded. The
generation of soft shadows requires integrating the
contributions of extended light sources on the illumination of
objects.
 In general, there are two main techniques to treat the
extended light source: sampling techniques [3, 4] and
analytical techniques [29]. The first technique is to sample the
light source, and add the contributions of all the samples
together to form a soft shadow. The sampling techniques are
prone to image artifacts unless they are pushed to a stage
where they become too expensive. In the second technique, the
contribution of the extended light source is integrated using
some form of numerical quadrature. These techniques typically
require expensive data structures.

Soler and Sillion [24] use a convolution technique to
calculate soft shadows that avoids both sampling artifacts and
the building of expensive data structures to represent visibility.
For the special case where the light source, the receiver and
the occluder are all planar, and lie in parallel planes, they
express the shadow as a convolution operation. For a general
configuration, they construct a virtual light source, a virtual
occluder and a virtual receiver, which are all planar and
parallel to each other. They then compute the shadow for the
virtual receiver using the constructed virtual geometry. Finally,
they project the resulting shadow back to the actual receiver.

In this paper, we investigate an analytic method to generate
soft shadows using the convolution technique. This soft
shadow algorithm is based on the basic shadow algorithm
discussed in section 3. Since we proceed in the volume
rendering slice by slice, where all slices are parallel to each
other, we can avoid some constraints and artifacts present in
Soler’s virtual occluders.

For an extended light source, we integrate over the light
source to determine the contribution at a given point x.

aaobj IkCxC *)(=
dyyxLxNyxyIkC lightd

A
obj))),()((*)),(0.1(*)(*(⋅−+ ∫ α

dyyxRxEyxyIk nk

A
lights))),()((*)),(0.1(*)((⋅−+ ∫ α (3)

where, y is a point on the light source and A is the area of the
extended light source.

At a given point x,)(yI light ,),(yxα ,),(yxL and

),(yxR depend on the extended light source. We assume the
light intensity is uniform across the extended light source. Also
we denote the light vector from the center of the light to the
point x as L(x), and approximate),()(yxLxN ⋅ by

)()(xLxN ⋅ . Here,)()(xLxN ⋅ can be considered to

approximate the average of the),()(yxLxN ⋅ across the
extended light source. This approximation is reasonable in
cases where the light source is not very close to the objects.
Similarly, we use)()(xRxE ⋅ to approximate

),()(yxRxE ⋅ .
This leads to the following illumination model:

aaobj IkCxC *)(=

dyyxxLxNIkC
A

lightdobj)),(0.1())()((** α−⋅+ ∫

dyyxxRxEIk
A

k
lights

n)),(0.1())()((* α−⋅+ ∫ (4)

The term dyyx
A

)),(0.1(α−∫ in the above equation is the

integral of the light fraction arriving at the point x over the
extended light source. We can also express the integral as

dyyxv
A

),(∫ , where v(x,y) is how much fraction of the light

intensity at y on the light source arrives at point x on the
receiver.

We calculate the term dyyx
A

)),(0.1(α−∫ using

convolutions. We use a box kernel, having a width determined
by the penumbra region for the current slice. If L is the size of
the extended light source, Z is the distance from the light to the
occluder, and Z∆ is the distance from the occluder to the
receiver (Fig. 14), then the width of the penumbra region is
calculated by the formula:

light

umbra penumbra

occluder

receiver

Z

L

x∆
Z∆

Fig. 14. A schematic of the light source, the occluder and the receiver.

TVCGSI-0011-1102

8

Z

ZLx ∆=∆ * (5)

We notice the x∆ is constant across the receiver if the light
source, the occluder, and the receiver are parallel, due to the
geometrical properties of equivalent triangles. To achieve soft
shadows, we can easily apply this mathematical formulation to
analytically determine the penumbra region.

Using the shadow algorithm in section 3, we generate the
shadow region with respect to the center of the extended light
source (Fig. 15). The soft shadow, including both an umbra
region and a penumbra region, is generated by convolving the
above shadow region (as shown in Fig. 15) with a kernel size
of x∆ obtained from the above formulation. Referring to Fig.
15, the boundary of the shadow region with respect to the
center of the virtual light is exactly in the middle of the
penumbra region. We can derive it from the geometrical
properties of the equivalent triangles. The shadow region is
convolved using a box convolution kernel of size x∆ . Thus,
we get the exact penumbra region for the configuration in Fig.
15. The penumbra region depends on the size of the extended
light, the distance from the light to the occluder, and the
distance from the occluder to the receiver, as illustrated by
equation (5). At a given point, the average shadow value of its
neighborhood within the kernel is taken as its convolved
shadow value.

In sheet-based splatting, we implement rendering slice by
slice. At the current slice, all slices in front of it are occluders,
and the current slice itself is the receiver. The contribution of
the current slice should be composited into the accumulated
shadow buffer to prepare for the next slice. Here, Z is the
distance from the extended light source to the current sheet,
and Z∆ is the distance between two adjacent sheets (Fig. 16).
The penumbra region x∆ is calculated for each slice using
equation (5) and transformed to screen space. The contribution
of the current sheet is obtained by projecting the occluder on
the current sheet onto the shadow buffer with respect to the
center of the extended light source. The accumulated shadow
image, including the contribution of the current sheet, is taken

to do the convolution and the convolved shadow values are
stored in the accumulated shadow buffer to be used for the
next slice.

At the sheet i, the shadow value obtained from the
accumulated shadow buffer is the convolved shadow value,
which has considered the contribution of the extended light
source. The sheet shadow buffer contributed by the current
sheet is composited to the accumulated shadow buffer, which
is then convolved to prepare for the illumination at next sheet.
We repeat the above convolution slice by slice (as shown in
Fig. 16). At a pixel to be illuminated, we transfer it back to the
eye space, then project it to the accumulated shadow buffer
and obtain the light attenuation for it (Fig. 3). The obtained
light intensity includes the contribution of the extended light
source on the pixel.

Since we convolve the accumulated shadow buffer slice by
slice, the contribution of a front sheet on the subsequent sheets

light

umbra penumbra

occluder

receiver

Z

L

x∆
Z∆

Fig. 14. A schematic of the light source, the occluder and the receiver.

 light
center

occluder

receiver

shadow region
wrt to the light
center

Fig. 15. A schematic of the shadow region with respect to the light source.
 sheets shadow buffer plane

extended light

i i+1 i+2

Z

Z∆

Fig. 16. Soft shadow algorithm in splatting.

half way vector

eye

shadow buffer plane

image plane
sheets

extended
light sourcevirtual

light source

Fig. 17. Construction of a virtual light source.

TVCGSI-0011-1102

9

is updated with the convolutions. For example, consider the
contribution of the sheet i on the sheet i+50. The contribution
of the sheet i is composited to the accumulated shadow buffer,
and the shadow buffer has been convolved many times when
the rendering proceeds to the sheet i+50. This satisfies
equation (5), where the penumbra region caused by the sheet i
on the sheet i+50 depends on the distance Z∆ .

As discussed in section 3, we still slice the volume along the
half-way vector. But, we keep the normal of the shadow buffer
aligned with the half way vector, instead of the light vector, so
that the shadow buffer is parallel to the slices (Fig. 17). This is
required by equation (5).

To accomplish soft shadows, we add one extra step to the
shadow algorithm given in Section 3.1. At each sheet, after
compositing the sheet shadow buffer into the accumulated
shadow buffer, we calculate the x∆ . The accumulated shadow
buffer is convolved using a kernel size of x∆ to prepare for the
next sheet.

5.2 Discussion of Soft Shadow Algorithm
In this section, we will discuss several factors which may
affect the accuracy of the soft shadows.

(1) Constructing a virtual light

In our soft shadow algorithm, the occluder and the receiver
are rendered slice by slice using sheet-based splatting. They
have arbitrary geometry, but they are treated as parallel slices
during the rendering. So, there is no need to approximate the

occluder and the receiver in our soft shadow algorithm as in
[24]. However, the above analytic soft shadow algorithm
requires the extended light source to be parallel to the slices
such that the penumbra and umbra regions can be calculated
using equation (5). If the extended light source is not parallel
to the slices, a virtual light source is created by using an
orthogonal projection of the original light source (as shown in
Fig. 17 and Fig. 18).

If the angle between the normal of the extended light source
and the volume slicing direction is small, the virtual light
source generated by the above orthogonal projection will not
introduce artifacts. If the angle is large (since the slicing
direction is the half way vector between the eye vector and the
light vector, the maximum degree is 45°), the virtual light will
change the distribution of the penumbra region (as shown in
Fig. 18). Here, we use a parallel planar occluder and receiver
to analyze the approximation error. In Fig. 18, the penumbra
region is smaller on the left side and bigger on the right side
for the original extended light source, while the virtual light
generates the same-size penumbra region on the both sides. In
the cases where the light is small or not close to the occluder,
and/or the receiver is not far from the occluder, the difference
in the penumbra region will be small. A variable convolution
kernel can be used to adjust the distribution of the penumbra
region.

(2) Dealing with discretized shadow buffers

The above description is section 5.1 dealt with continuous
convolution functions. The soft shadow algorithm is accurate
mathematically. However, since we convolve the shadow
buffer in screen space, we need to handle the discrete pixels.
This implementation can introduce some artifacts.

From equation (5), we know the penumbra region x∆ is
calculated using ZZL /* ∆ . In sheet-based splatting, Z∆ is
the distance between two adjacent sheets. Since Z∆ is very
small, x∆ may also be very small. When x∆ is transformed to
the screen plane, it may be smaller than two pixels. In screen
space, we accumulate x∆ until it is greater than two pixels.
Then, we do the convolution using the kernel size of the
integer part of the x∆ , and the rest part of the x∆ is counted
into the next accumulation. Therefore, we need to keep the last
recent convolved sheet position, and use it to calculate the
accumulated x∆ . Here, Z is the distance from the light source
to the last convolved sheet, and Z∆ is the distance from the
last convolved sheet to next sheet following the current sheet.

The above convolution calculation can cause some
inaccuracy problems. Since we keep only one accumulated
shadow buffer, when the accumulated x∆ is greater than two
pixels, the contributions of all the sheets, between the last
recent convolved sheet and the current sheet, are convolved.
This problem is an implementation problem in dealing with
discrete pixels, and it is not a problem mathematically. Using
high-resolution shadow buffer can improve the accuracy. Also,
obtaining shadow value using bilinear interpolation can

computed penumbra region

exact penumbra region

virtual light original light

Fig. 18. Computed and exact penumbra regions.

TVCGSI-0011-1102

10

improve the accuracy.

(3) Calculating average light size

In our soft shadow algorithm, box kernels are used to do the
convolution. Given a light source with an irregular shape, we
first calculate its center and average size, then use these as the
light center to which the occluder is projected and the light
size L in equation (5) to calculate x∆ .

The penumbra region depends on the average light size. The
light shape is not considered. The effect of the light shape on
the penumbra can be implemented by extending the
convolution method by Soler and Sillion [24] to deal with the
occluder with values in [0,1].

Compared with the convolution technique [24] by Soler and
Sillion, our method has some advantages. Firstly, we don’t
need to approximate the occluder and the receiver. They are
rendered slice by slice using splatting, so the occluders and the
receivers are parallel slices during the rendering. We just need
to create the virtual light. Secondly, we use splatting, a volume
rendering method, so our soft shadow algorithm deals with the
visibility in the range of [0,1], not just 0 or 1. Also we model
the light attenuation slice by slice and we can generate self
shadows.

Similar to the soft shadow algorithm in [24], the
disadvantage of our soft shadow algorithm is that it is an
approximate method. The orthogonal projection of light
sources and the convolution of the shadow buffer using the
accumulated x∆ introduce some approximation.

5.3 Soft Shadow Results
The soft shadows, including umbra and penumbra, for
extended light sources, are shown in Fig. 19−23 and Fig. 1(c),
where the extended light source is a round area light. In the
soft shadows of the rings (Fig. 19) and the robots (Fig. 20(b)),
there is a penumbra region due to the extended light source.
Compared to the hard shadows (Fig. 4 and Fig. 20(a)), the soft

shadows have penumbra regions. The further the receiver is,
the more blurred the shadow. For example, in Fig. 20(b), the
shadows near the foot and the legs are hard, and the shadows
of the body and the head become soft.

Fig. 21 shows that the shadow caused by the blue object
passes through the translucent rectangular parallelepiped. The
image in Fig. 21(a) is the hard shadow, while the image in Fig.
21(b) is the soft shadow. At the top entrance, the penumbra
region is pretty small, so there is nearly no difference between
the two images. As the shadow traverses the rectangular
parallelepiped and comes out, the penumbra region becomes
obvious for the soft shadow in Fig. 21(b), compared to the
hard shadow in Fig. 21(a).

The soft shadow of the Bonsai tree is shown in Fig. 1(c).
Compared with the hard shadow in Fig. 1(b), the Bonsai tree
with soft shadows is more realistic. Also, the soft shadow of
the hypertextured object is shown in Fig. 22.

In Fig. 23, a beam of light passes through a hole of an

Fig. 19. Soft shadows of rings.

(a)

(b)

Fig. 20. (a) Soft shadow of robots. (b) Hard shadow of robots.

TVCGSI-0011-1102

11

opaque planar occluder (modeled in the light attenuation, but
not displayed in the image), then traverses the translucent
rectangular parallelepiped. In this image, soft shadows are
implemented, so the light beam expands to the penumbra
region. Also, due to the light attenuation as the light beam
traverses the rectangular parallelepiped, the resulting light
intensity is lower than the original light intensity.
 Our method is a fast soft shadow calculation method. It
keeps only one accumulated shadow buffer which stores the
convolved shadow values. The contribution of the extended
light source is integrated slice by slice using a convolution
technique. For example, the running time of soft shadow of the
robots takes 20% longer than the time for the same image with
hard shadows.

6 CONCLUSIONS
In this paper, we have described an algorithm to model the

light attenuation through a volume using the non-image-
aligned sheet-based splatting. This algorithm models the light
attenuation with respect to the light source and generates
shadows. We need a 2D buffer to store the accumulated
opacity. For the running time, the algorithm with shadows
takes less than twice the time without shadows. This algorithm
has the advantage of saving storage and running time.

The basic shadow algorithm has been extended for
projective textured light sources. Projective textured lights are
used to create images with special effects or quantitative
analysis. From some images lit by projective textured lights,
we can see the light attenuation visually.

We propose an analytic soft shadow algorithm using
splatting to deal with extended light sources and generate soft
shadows with penumbra and umbra. Our soft shadow
algorithm is a fast analytic method using a convolution
technique. We discuss several factors which may affect the
accuracy of the soft shadows. Also, we generate soft shadows

(a)

(b)

Fig. 21. Soft shadow passing through the translucent rectangular
parallelepiped. (a) Hard shadow. (b) Soft shadow.

Fig. 22. Soft shadow of a hypertextured object.

Fig. 23. A scene with a beam of light that passes through a rectangular
parallelepiped, with soft shadows implemented.

TVCGSI-0011-1102

12

and compare them with the shadows generated using the basic
shadow algorithm.

Our future work includes integrating polygonal rendering
with our volume rendering with shadows, and extending the
shadow algorithm for textured lights. We will study how the
light texture changes using the convolution technique. In the
future, we also plan to implement the shadow algorithm using
hardware to improve the performance.

ACKNOWLEDGMENTS
Special thanks go to Rick Parent for his helpful reviews and
proof-reading of the implementation. We also wish to thank
the guest editor and the reviewers for their suggestions and
careful reviews. We acknowledge the University of Erlangen-
Nuremberg for the Bonsai tree dataset. This work was
supported by the NSF Career Award (#9876022).

REFERENCES
[1] P. Atherton, K. Weiler, D. Greenberg, “Polygon Shadow Generation”,

Proc. SIGGRAPH’78, pp. 275-281, 1978.
[2] U. Behrens and R. Ratering, “Adding Shadows to a Texture-based

Volume Renderer”, 1998 Symposium on Volume Visualization, pp. 39-
46, 1998.

[3] B. Brotman, N. Badler, “Generating Soft Shadow With a Depth Buffer
Algorithm”, IEEE CG&A, 4(10), pp.71-81, 1984.

[4] R. Cook, T. Porter, L. Carpenter, “Distributed Ray Tracing”, Computer
Graphics, 18(3), pp. 137-145, 1984.

[5] R. Crawfis, J. Huang, “High Quality Splatting and Volume Synthesis”.
[6] R. Crawfis, N. Max, “Texture Splats for 3D Scalar and Vector Field

Visualization”, Proc. Visualization’93 , pp. 261-266, 1993.
[7] F. Crow, “Shadow Algorithm for Computer Graphics”, Proc.

SIGGRAPH’77, pp. 242-248, 1977.
[8] D. S. Ebert, R. E. Parent, “Rendering and Animation of Gaseous

Phenomena by Combining Fast Volume and Scanline A-buffer
Techniques”, Proc. SIGGRAPH’90, pp. 357-366, 1990.

[9] F. Foley, A. Van Dam, S. Feiner, J. Huges, Computer Graphics:
Principles and practice, Addison Wesley, 1996.

[10] J. Huang, K. Mueller, N. Shareef, R. Crawfis, “FastSplats: Optimized
Splatting on Rectilinear Grids”, Visualization’2000, pp. 219-227, 2000.

[11] J. T. Kajiya, B. P. Von Herzen, “Ray Tracing Volume Densities”, Proc.
SIGGRAPH’84, pp. 165-174, 1984.

[12] J. Kniss, G. Kindlmann, C. Hansen, “Multi-Dimensional Transfer
Function for Interactive Volume Rendering”, TVCG 2002.

[13] J. Kniss, S. Premoze, C. Hansen, D. Ebert, “Interactive Translucent
Volume Rendering and Procedural Modeling”, IEEE Visualization
2002.

[14] T. Lokovic, E. Veach, “Deep Shadow Map”, Proc. SIGGRAPH’2000,
2000.

[15] M. Meissner, J. Huang, D. Bartz, K. Mueller, R. Crawfis, “A Practical
evaluation of Popular Volume Rendering Algorithms”, 2000 Symposium
on Volume Rendering, pp. 81-90, Salt Lake City, October 2000.

[16] K. Mueller, T. Moeller, J.E. Swan, R. Crawfis, N. Shareef, R. Yagel,
“Splatting Errors and Antialiasing”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 4, No. 2, pp. 178-191,
1998.

[17] K. Mueller, T. Moeller, R. Crawfis, “Splatting Without the Blur”, Proc.
Visualization’99, pp. 363-371, 1999.

[18] K. Mueller, N. Shareef, J. Huang, R. Crawfis, “High-quality Splatting
on Rectilinear Grids with Efficient Culling of Occluded Voxels”, IEEE
Transactions on Visualization and Computer Graphics, Vol. 5, No. 2,
pp. 116-134, 1999.

[19] K. Mueller, R. Crawfis, “Eliminating Popping Artifacts in Sheet Buffer-
based Splatting”, Proc. Visualization’98, pp.239-245, 1998.

[20] T. Nishita, E. Nakamae, “An Algorithm for Half-Tone Representation of
Three-Dimensional Objects”, Information Processing in Japan, Vol. 14,
pp. 93-99, 1974.

[21] M. Nulkar, K. Mueller, “Splatting With Shadows”, Volume Graphics
2001.

[22] K. Perlin, E. M. Hoffert, “Hypertexture”, Proc. SIGGRAPH’89, pp. 253-
262, 1989.

[23] L. Sobierajski, A. Kaufman, “Volumetric Ray Tracing”, 1994
Symposium on Volume Visualization, pp. 11-18, 1994.

[24] C. Soler, F.X. Sillion, “Fast Calculation of Soft Shadow Textures Using
Convolution”, Proc. SIGGRAPH’98, pp. 321-332, 1998.

[25] L. Westover, “Interactive Volume Rendering”, Proceedings of Volume
Visualization Workshop (Chapel Hill, N.C., May 18-19), Department
of Computer Science, University of North Carolina, Chapel Hill, N.C.,
1989, pp. 9-16.

[26] L. Westover, “Footprint Evaluation for Volume Rendering”, Proc.
SIGGRAPH’90, pp. 367-376, 1990.

[27] T. Whitted, “An Improved Illumination for Shaded Display”,
Communications of the ACM, Vol. 23, No. 6, pp. 343-349, 1980.

[28] L. Williams, “Casting Curved Shadows on Curved Surfaces”, Proc.
SIGGRAPH’78, pp. 270-174, 1978.

[29] A. Woo, P. Poulin, A. Fournier, “A Survey of Shadow Algorithm”,
IEEE Computer Graphics and Applications, Vol. 10, No. 6, 1990.

[30] C. Zhang, R. Crawfis, “Volumetric Shadows Using Splatting”, Proc.
Visualization 2002, pp. 85-92, 2002.

[31] C. Zhang, “Implementation of Shadows Using Splatting”, The Ohio
State University Master thesis, 2002.

Caixia Zhang received a MS degree in computer and information science
from The Ohio State University in 2002. She is currently working on a PhD
degree in computer and information science at The Ohio State University,
where she also holds a graduate research appointment. Her research interests
reside in volume graphics and scientific visualization. For more information
see http://www.cis.ohio-state.edu/~zhangc.

Roger Crawfis received his BS in computer science and applied mathematics
from Purdue University in 1984, and his MS and PhD degrees in computer
science from the University of California, Davis, in 1989 and 1995,
respectively. He is an associate professor at The Ohio State University. His
research interests include scientific visualization, computer graphics, and
volume rendering. Prior to joining OSU, Dr. Crawfis was the Graphics
Technology Group Leader at the Lawrence Livermore National Laboratory,
where he was in charge of coordinating several visualization projects for the
past 12 years. He has published many research papers on scientific
visualization and the volume rendering of scalar and vector fields.

	INTRODUCTION
	PREVIOUS WORK
	Shadow Algorithms
	2.2	Image-Aligned Sheet-Based Splatting

	BASIC SHADOW ALGORITHM
	Summary of Shadow Algorithm Using Splatting
	Shadow Results

	PROJECTIVE TEXTURED LIGHTS
	SOFT SHADOWS FOR EXTENDED LIGHT SOURCES
	Soft Shadow Algorithm
	Discussion of Soft Shadow Algorithm
	(1) Constructing a virtual light
	(2) Dealing with discretized shadow buffers
	(3) Calculating average light size

	Soft Shadow Results

	CONCLUSIONS

