B. Chandrasekaran, Todd Johnson, Jack W. Smith, "Task Structure Analysis for
Knowledge Modeling," Communications of the ACM, 33-9, Sep, 1992, pp. 124-136.

B. Chandrasekaran, Todd R. Johnson and Jack W. Smith

Task-Structure Analysis for
Knowiledge Modeling

' nrecent years there has been increasing interest in describing complicated infor-
. . mation processing systems in terms of the knowledge they have, rather than by

e the details of their implementation. This requires a means of modeling the
knowledge in a system. Several different approaches to knowledge modeling have been
developed by researchers working in Artificial Intelligence (AI). Most of these approaches
share the view that knowledge must be modeled with respect to a goal or task. In this arti-
cle, we outline our modeling approach in terms of the notion of a task-structure, which
recursively links a task to alternative methods and to their subtasks. Our emphasis is on
the notion of modeling domain knowledge using tasks and methads as mediating concepts.
We begin by tracing the development of a number of different knowledge-modeling ap-
proaches. These approaches share many features, but their differences make it difficult to
compare systems that have been modeled using different approaches. We present these
approaches and describe their similarities and differences. We then give a detailed descrip-
tion, based on the task structure, of our knowledge-modeling approach and illustrate it with
task structures for diagnosis and design. Finally, we show how the task structure can be
used to compare and unify the other approaches.# ¢ 6 0 0 0 6 0 0 0606060 0 0

Knowledge-Based Systems:
what are they?

A knowledge-based system (KBS)
has explicit representations of
knowledge as weil as inference pro-
cesses that operate on these repre-
sentations to achieve a goal. An in-
ference process consists of a
number of inference steps, each
step creating additional knowledge.
The process of applving inference
steps is repeated until the informa-
tion needed to fulfill the require-
ments of the problem-solving goal
or task is generated. Typically, both
domain knowledge and possible
inference steps have to be modeled
and represented in some form.

In one sense, knowledge is of
general utility—the same piece can
be utilized in different contexts and
problems; so, ualike traditional
procedural approaches. knowledge
should not be tied to one task or
goal. On the ather hand. it is diffi
cult to know what knowledge to put
in a system without having an idea
of the tasks the KBS will confront.
In spite of claims of generality, all

124

KBSs are designed with some task
or class of tasks in mind. Similarly,
they are designed to be operational
across some range of domains.

 Thus, a clear understanding of the

relationship between tasks, knowi-
edge and inferences required to

perform the task is needed before

knowledge in any domain can be
modeled.

Background

Tasks

The word “task” has been used in
somewhat different senses in the
field. contributing 0 much con-
fusion. For example, Wielinga et al.
in [35] describe a task as a “fixed
strategy” for achieving a goal, im-
plving that it is a term synonvmous
with a method or a procedure spec-
ification. In our original work on
generic tasks (GT) (6], there was a
conflation of the goal with the
method: the GTs could be thought
of as components of a composite
methed (e.g., the goal of diagnosis
is achieved bv a method composed
of “data abstraction” and “classifi-

cation™), or they could be thought
of as goals as well (the GT called
“hypothesis assessment” had the
goal to assess hypotheses). In this
article, we use the word “task” as
synonymous with types of problem-
solving goals: for example, we call
diagnosis a task, since we want to
talk abstractly about the family of
problems, all of which are charac-
terized by achieving the goal of
generating a causal explanation of
observed abnarmal behavior. Spe-
afically, we want to separate the
task from the method used to
achieve goals of this type.

The Knowledge Level

Newell's Knowledge Level (KL)
framework [27) is very useful for
describing intelligent systems with-
out becoming bogged down in acci-
dental features of implementation
languages (see {20] in this issue for
additional discussion and exampies
of the knowledge level). Much of
the discussion in the field has been
vitiated by too premature a com-
mitment to a symbol-level repre-

Sepeember 1992/Vol 33, Na.9/COMMUNIOATIONS OF THE ACM

default
B. Chandrasekaran, Todd Johnson, Jack W. Smith, "Task Structure Analysis for
Knowledge Modeling," Communications of the ACM, 33-9, Sep, 1992, pp. 124-136.

sentation {e.g.. whether the repre-
sentation will be rules or frames.
and whether backward- or for-
ward-chaining will be emploved).
Newell proposed that problem-
solving agents can be characterized
in terms of the knowledge and
goals thatcan be attributed to-them,
and the Principle of Rationality by
means of which intelligent agents
can be assumed to use knowledge
relevant to their goals. Thus, in dis-
cussing a diagnostic system,
whether it is implemented as a rule-
based system or a connectionist net-
work, we can talk about the task (or
goal) as diagnosis of a certain tvpe,
and can identifv the knowledge
content of the system in two wavs:
as knowledge about the set of mal-
functions. and knowledge that aids
in mapping from observations to
the malfunctions. Hence. at the
knowledge-modeling level, we re-
late the task to the types of knowl-
edge needed to accomplish it. We
can then make additional imple-
mentation commitments which will,
in turn, give us additional con-
straints on the forms of knowledge.
The knowledge-level view does
not include a specific account of
how the problem will be solved (i.e.,
it does not indicate the representa-
tions and inference methods uti-
lized to accomplish the task). How-
ever, the knowledge-level view can
~ be applied recursively: that is, some
commitment to an inference
method can be made fairly ab-
stractly: then this too can be repre-
sented as knowledge at the knowi-
edge level. This process can be
repeated until the knowledge-level
description includes some descrip-
tion of the strategies as well. Each
commitment to a method requires
some commitment to how the prob-
lem will be solved. but not as de-
tailed a symboi-level commitment
as is normally done when a pro-
gramming language such as rules
_ or frame languages is employed.
To see how the KL is used, con-
sider how it can be applied to de-
scribe MYCIN, a KBS for selecting
therapies for bacterial intections of
the blood {33]. At the highest

COMMUNNCATIONS OF THE ACSE ~ iro wiar Lmis \ L, ,°

knowtedge level the goal of MYCIN
is to select a therapy. The knowi-
edge required to do this maps signs
and svmptoms to therapies. At the
next level we can reapply the KL
and say that MYCIN’s therapy goal
is accomplished by first identifying
the bacterial infection present. then
selecting a therapy for that.infec-
tion. Hence, we break the top goal,
therapy. into two subgoals, diagno-
sis and selection. At this level we
can be more specific about the types
of knowledge required for the task.
Diagnosis requires knowledge-
mapping signs and symptoms to an
infection. Selection requires knowl-
edge mapping infections and pa-
tient data to a therapy. In such a
way, ‘we can continue to apply the
KL until the system is specified in
sufficient detail to allow its imple-
mentation. In MYCIN, each of the
subtasks is implemented in a back-
ward-chaining rule-based system.
The point, however, is that an accu-
rate KL description of MYCIN
hides implementation details of the
system.

There are many ways to specify
an information processing system
without describing implementation
details. Examples include the
knowledge level, abstract algorithm
specifications and Marr's informa-
tion processing level {22]. The se-
lection of an information process-
ing description depends largely on
the system being described and the
purpose of the description. The KL
is primarily designed for use in de-
scribing inteiligent agents: hence it
describes an information process-
ing svstemn as having goals, actions
and bodies of knowledge.

Background Work in Kxnowiedge
Modeling

Some of the earliest work in knowl-
edge modeling was done as part of
the rule-based system approach. In
this approach, the agent's knowl-
edge was viewed mainly as directly
available recognition knowledge
(i.e., knowledge that indicates ex-
actly what te do in a situation). The

‘knowledge modeling scheme was

simply to list. as knowledge, the

condition-action rules bv which a
system behaves. Simple condition-
action statements, in which the con-
ditions match the current situation
and the actions add to or modifv
that situauon. are termed produc-
tion rules. However, this level of
description does not indicate the
real control structure of the svstem
at the task level. For example. the
fact that R1 {23] performs a linear
sequence of subtasks is not explic-
itly encoded; the system designer
“encrypted,” so to speak. this con-
trol in the pattern-matching of
OPS3, the production-rule system
in which R1 is implemented.
Another early knowledge-
modeling scheme was based on
frames. Frames were often pro-
posed to be at the “knowledge
level,” since they supposedly were
used for representing objects in the
domain and their relations. a
“deeper” level of representation
than production rules. The knowl-
edge-level idea behind frames is
that they capture . stereotypical
knowledge; this idea, however, is
not sufficient for modeling control
knowledge at the task level. The
problem is that frames and frame
languages do not provide a task-
level vocabulary for modeling con-
trol knowledge. When frame lan-
guages were used, control of a sys-

‘tem was often described at a

syntactic level: for example, in
terms of which links to pursue for
inheritance.

The problem was that during the
first decade of knowledge-based
systems research, the discussion was
aimost entirely in terms of the sym-
bol level: in the rule-based para-
digm all the problems were posed
as issues at the rule architecture
level. Very litde discussion took
place at the level of the relation be-
tween the task for which the system
was being designed and the kinds
of knowledge needed. For exam-
ple, a major research issue for rule-
based systems was the development
of an appropriate domain- and
task-independent conflict resolution
strategy that would let the system
choose which production rule to

1238

fire when muitiple rules matched.
When the knowledge is viewed at
the appropriate level, however. we
can often see the existence of orga-
nizations of knowledge that bring
up onlv a small. highly relevant
bodv of knowledge without any
need for conflict resclution.

The first set of insights regard-

ing the analysis of knowledge svs-

tems at one level removed from
their implementations came from a
number of sources. Gomez and
Chandrasekaran identified classifi-
cation as a common element in di-
agnosis [13], and Miwal and
Chandrasekaran added data ab-
straction as another common ele-
ment (23]. This work led directly to
a knowledge-modeling scheme in
the form of generic task (GT) lan-
guages [6]. A generic task identifies

a task of general udlity (such as

classification), a method for doing
the task and the kinds of knowledge

needed by the method. The lan--

guage is made of primitives that
allow the required knowledge to be
directly described for any domain
in which the task can be performed.
Chandrasekaran and his colleagues
identified a number of such generic
tasks (6]. They also showed by ex-
ample how complex tasks such as
diagnosis could be decomposed
into such generic tasks (9].

Hierarchical classification [5, 9)
was the first generic task to be iden-
tified and will serve as a good ex-
ample of the task-based approach
that we and other researchers have
been developing. The task of hier-
archical classification is the identifi-
cation of an object based on a set of
features. For example, diagnosis
can be viewed as classification in
which the input is a set of manifes-
tations and the output is the dis-
order associated with these mani-
festations. The name of the generic
task, hierarchical classification, ai-
ludes to the method identified to
solve the task. The method. called
Establish-Refine, assumes the exis-
tence of a classification hierarchy of
output categories. In the case of
medical diagnosis. the hierarchy

1268

contains diseases. More general
classes of diseases are located at the
top of the hierarchy; more specific
diseases are located near the bot-
tom. The method operates by first
attempting to establish (i.e., con-
firm to a certain level of confi-
dence) the topmost category. If this
can be established. it is then re-
fined: its successors become cate-
gory hypotheses for the system to
consider next. Categories that can-
not be established are not refined:
hence the hierarchy below these
categories does not need to be ex-
plored. The generic task descrip-
tion clarifies the control structure
and knowledge of a classification
system. Instead of describing the

- system in terms of rules or frames,

we can describe the system in terms
of categories, category evaluation
and refinement. The knowledge
required to use hierarchical classifi-
cation is made explicit: knowledge
must be available to test and refine
categories. The control of the sys-
tem is explicitly described at a task
level—categories are evaluated and
then (if necessary) refined—rather
than at the implementation or sym-
bol level.

Somewhat near this time, Clan-
cey had identified “heuristic classi-
ficauon” [11) as a somewhat ab-
stract pattern of inference impiicit
in MYCIN (see Figure 1). Heuristic
classification itself was presented as
independent of the rule language
in which MYCIN was written so
that this higher-level inference pat-
tern could be seen independent of
the rule-level representation. Clan-
cey's approach is similar to the GT
approach, having identified a task
(classification), a method (heuristic
classification) and the kinds of
knowledge needed to use the
method. In fact, the three infer-
ences in heuristic classification (see
Figure 1) can be interpreted as
three subtasks. MDX (9], the ge-
neric-task diagnosis system, also
incorporated the same task decom-
position. Data abstraction was done

_ using an intelligent database: heu-
ristic match was done bv establish-

ing categories.in the classification

hierarchv. and refinement was
done during classification. The dif-
ference between the two ap-
proaches lies in the expiicit idenufi-
cation bv Clancev of this combined
inference structure as heuristic
classification, whereas Chandrase-
karan et al. had broken this struc-
ture down into its components.

McDermott and associates
started investigating the roles of
knowledge in various methods for
several tasks [24]. Their goal was to
develop programs that could auto-
matically acquire knowledge from a
domain expert. To do this they de-
veloped role-limming methods for
solving general tasks, such as the
cover-and-differentiate method for
diagnosis and the propose-and-
revise method for design. Role-
limiting methods are “methods that
strongly guide knowledge collec-
tion and encoding [24]." They pro-
ceeded to specify the roles various
types of knowledge plav in the op-
eration of each method. The major
difference between the role-limit-
ing method approach and most of
the other approaches discussed
here is the requirement that a role-
limiting method be completely
specified (i.e., that all tasks and sub-
tasks be prespecified down to the
level of primitive operations).

Musen investigated ways to
model classes of planning problems
and the required domain knowi-
edge [26]. He advocated the devel-
opment of a task model followed by
the use of the model to acquire
domain facts. His system, Protegé.
provides a language for modeling
classes of planning problems based
on skeletal plan refinement. Once
modeled, Protegé created a knowl-
edge editor domain which experts
could interact with to build KB3s
that solved problems in the plan-
ning class.

Gruber and Cohen investigated
task models as mediating represen-
tations of knowledge acquisition for
a diagnostic task [16). They con-
structed MU, a task-specific archi-
tecture for building application
programs that do prospective diag-
nosis. A companion system, cailed

Sepcember 1992/ Vol 13, No 9/ COMMMMBOATIONS OF TWE ACH

Heuristic Match
Data Abstractions = Solution Abstractions

Data Abstraction

Data

i L Inference structure for
heuristic ciassification. Adapted from

(RRIR

ASK for “Acquisition of Strategicb

Knowledge,” interacts with an ex-
pert to acquire knowledge for MU-
based systems. Because ASK is writ-
ten specifically for MU, it knows
about the strategy and types of
knowledge needed for the task;
hence ASK can interact with an
expert at the task level rather than

. at a lower implementational level.
In Europe. Wielinga and
Breuker proposed a set of primitive
terms in which to model the tasks
that expert systems perform and. in
turn, the use of these terms as a
modeling language to capture the
knowledge in the domain [1 I. Their
methodology, called KADS, advo-
cates a bottom-up approach to ex-
pert knowledge modeling where
the knowledge modeler begins with
an expert verbal protocol, modeis
this with primitive terms, then
builds higher levels of analysis on
top of the primitive model. This is
quite different from the methodol-
ogy behind GTs in which the
knowledge modeling takes place in
a top-down fashion by matching
known generic tasks to the task
being modeled. ‘
More recently, Steels has pro-
posed work along lines that build
on the notion of tasks and task
structures [34]. In his formulation,
the task structure is intended to
specify the task/subtask decomposi-
tion of a complex task such as diag-
nosis. There is a clear recognition
that the subtasks of a task depend
on the method used for the task.
For example, a task such as diagno-
sis might be done using a classifica.
tion method. Classification specifies

COMMMNNCLTIONS OF THE ACH “ i1 -1y ¢

Refinement

Solutions

additional subtasks, such as evaluat-
ing and refining hvpotheses. The
task structure notion of Steels does
not explicitly represent alternate
methods for each of the tasks: in-
stead it is a tree of tasks and sub-
tasks, with the method chosen im-
plicit in the analysis. Thus a given
task structure implicitly assumes
the choice of some method for a
given task. Therefore, it is a good
tool for the description of how a
particular knowledge svstem solves
the task for which it is intended.
The notion of the task structure we
will develop later in this article ex-
plicitly represents the methods for
each task, which then provides a
framework for the dynamic selec-
tion of methods at run time.

These approaches share two
important features. First, they
identify tasks at various levels of
abstraction above the implementa-
tion language level. Second. they
identify types of knowledge and
strategies closely associated with
such tasks. This is the key point in
knowledge modeling: once such
terms are identified, we have a fan-
guage in which to model the knowl-
edge in the domain and the strate-
gies o solve the problem. The
terms in the vocabulary can be used
to encode knowledge, mediate
knowledge acquisition (4] and pro-
vide suitable explanations {10).

Need for Uniform Framework
In spite of the last decade having
seen a clear consensus in favor of
task-level analyses and the advan-
tages they offer for knowledge
modeling and acquisition, con-
fusion remains regarding the fol-
lowing: -)

l. Distinctions between tasks and

SN Y N

methods and how complex generic
tasks and simple generic tasks are
related, .

2. The great varietv of knowledge-
modeling terms that have been pro-
posed without any simple wav 1o
map between them.

3. Avoiding overdetermination
and rigidity in the ways various
tasks are performed in the various
proposals. That is, we need to show
how these various task-level ideas.
at various grain sizes, can be com-
bined flexibly.

To overcome these problems. we
develop the notions of a task.
method, subtask, and the concept
of a task structure. The task struc-
ture is a uniform task-levet analysis
framework for describing systems.
By viewing the various task-level
approaches in terms of the rask
structure we can begin to compare
the approaches and also unravel
the current confusions.

The Task Structure

The Task Structure is the tree of

tasks, methods and subtasks ap-

plied recursively until tasks are

reached that are in some sense per-
formed directly using available

knowledge. Figure 2 graphically

represents part of the task structure

for diagnosis. A task (as we defined

earlier) is a problem type, such as

diagnosis. Tasks are represented

graphically using circles. A method
is a way of accomplishing a rtask.

These are represented graphically
using rectangles. In the figure,
Bayesian Explanation, Abductive As-
sembly and Cover-and-differentiate are
identified as methods for diagnos-
ing. All of these methods can be
classified as abductive methods,'
hence they appear as a subtype of
Abduction Methods. In general, a task
can be accomplished using any one
of several alternative methods; thus
in the task structure we can explic-
itly identify alternative methods for
each task. A method can set up sub-
tasks, which themseives can be ac-

' Abducuon i the problem of reasoning from
effect to cause.

127

complished by various methods.
For example in the Dwagnosis task
structure Abductive Assembly has
been decomposed into two sub-
tasks: Generate Plausible Hypotheses
and Select Hvpotheses.

Knowledge in a task structure
comes in four forms. First, each
task must be accomplished using
knowledge that maps the input of
the task to the output. Second,
knowledge must indicate when an
applicable subtask is needed.
Third, when a method.consists of
subtasks, knowledge is needed to
sequence the subtasks. Fourth,
when a task can be accomplished
using two or more methods, knowi-
edge is needed to select a method.

The following subsections de-
scribe the task structure in detail.
The section “Examples of Task

‘e ‘

. Part of the task structure
for Diagnosis. Circles represent tasks;
rectangies represent methods. See sec-
tion "Exampies of Task Structure for
Design and Diagnosis’’ for a aiscussion
of the role of simutation.

Structure ‘tor Design and Diagno-
sis” discusses the task structures for
design and diagnosis in deail.

Tasks . :

Tasks are specified as transforming
an initial problem state with certain
-features to a goal state with certain
additional features. For example. in
the diagnostic task the initial state
includes malfunction observations
and the goal state includes intorma-
ton about the causes of the mal-
functions. It is important to distin-
guish between a task and a task
instance. A task instance is a partic-
ular problem/goal state pair, such
as the diagnosis of a particular pa-

. tient with specific symptoms. In

contrast. a task specifies a family of.
task instances of a certain type. This
family can be defined at various
levels of generality. For example,
the diagnosis of a patient with spe-
cific symptoms is a task instance of
the medical diagnosis task. which is
itself a subclass of the general diag-
nosis task.

Bayesian
Explanation

Covaer-and-
Differentate

Hypothasis

Axiomatic
Matching

Methods

Simulation

Methods and Subtasks

Methods are ways of accomplishing
tasks and may be-of many types:
they may be computational. or “sit-
uated.” (i.e.. involve extracting in-
formation from the surrounding
phvsical world). For example. the
task of predicting behavior of a
device may be solved by a computa-
tional method that performs a sim-
ulation. or it mav be solved bv ma-
nipulating a phvsical model of the
device and seeing what happens.
Within the class of computational
methods. a method mav be couched
as executing a precompiled algo-
rithm, search in a state space, as a

_ connectionist network and so on.

Our uniform framework for
describing methods is based on
the problem-space computational
model® [28] and was adopted as a
result of work on TIPS (31}, an ar-
chitecture for dvnamically integrat-
ing generic tasks, and work done
integrating generic tasks using
problem spaces in the Soar archi-
tecture {18). We define a method to
be a set of subtasks that can be used
to transform the initial state of a
task to the goal state. The method
may contain additional information
about ordering the subtasks, called
search-control knowledge {21], or this
knowledge can be generated at
run time.

While the task structure allows
the specification of methods of dif-
ferent types, those that are mod-
cled as problem-space search have a
special role for two reasons. For
one thing, one way to understand
knowledge systems as a distinct tvpe
of information technology is to note
that the role of explicit knowledge
in them is to set up alternatives,
evaluate and refine them. In
MYCIN, for example. the knowl-
edge in its knowledge base enables
it 10 set up and evaluate various
bacterial infection hypotheses. Sec-
ond, the architecture that inte-
grates the different methods itseif
can be viewed as operating in a

‘For an example of a direct application ot the
probiem-space computational model see [0}
in this 1ssue.

“cptemore 1992/ Vol J3. No 4 COMMUIMICATIONS OF THE ACM

search space of methods and mak-
ing selections m it. Third, we will
see that the notion of subtasks
emerges .naturally in the frame:
work of search in problem spaces.

To clarify this. let us consider
how to represent the Establish-
Refine method for hierarchical clas-
sification (see earlier subsection
“Background Work.in Knowledge
Modeling™ using the framework
described. Hierarchical classifica-
tion is used in many diagnosis sys-
tems as a way of quickly focusing on
possible malfunctions. The initial
state of the classification task is a set
of data (e.g., manifestations in a
diagnosis task) and an initial high-
level hypothesis (e.g., liver disease).
The goal state is one containing
plausible malfunction hypotheses
(i.e.. the most detailed hypotheses
consistent with the data). The
method works by first considering a
high-level malfunction category,
such as liver disease, to determine if
the malfunction appears likely
given the data at hand. If it appears
likely. then the malfunction is re-
fined w0 more specific diseases,
hepatitis and cancer, for example.
The more specific malfunctions are
then evaluated against the data and
any that appear likely are refined.
This process continues until no
more maifunctions can be refined.

We can specify this method using
two subtasks:

svaluate hypothesis
refine hypothasts

The first, cvaluate, takes some hy-
pothesis (such as a malfunction
hypothesis) and assigns a likelihood
based on the current case dawa. A
precondition for applying evaluate
to a hypothesis is that the hypothe-
sis must not have aiready been eval-

- uated. The second subtask, refine,
takes a hypothesis as input and pro-
duces the refinements for that hy-
pothesis. Refine has two precondi-
tions: the hypothesis must be likely
and must not have already been
refined.

We must also specify when an

operation should be considered for

application to a state. For the hier-
archical classification method ‘we
are describing, the operations eval-
uate and refine should be considered
whenever their preconditions are
met.

" The initial and goal states and
the subtasks -define a search space
or problem space. Figure 3 iilus-
trates the search space that results
when the method described is ap-
plied to a liver diagnosis problem.
The search space is the set of states
reachable from the inital state by
applving the operators for the
method. The figure shows part of

the search space of the task. begin-
ning with the inital state, S1. con-
taining manifestauons indicative of
a viral infection (labeled Data) and
the high-level hypothesis liver dis-
ease. The oalv operator applicable
to this state is evafuate liver disease.
Application of this operation re-

7 L part of the search space for
the hierarchical ctassification method
as applied to liver disease. The data for
this example are ingicative of a viral
infection. Hypothases in plain text are
unevaiuated: those in boid are likely:
thosa SNown in strke-thraugh are un-
likely.

Data
livar disease

S1

Data
liver disease

S2

QData

liver disease
cancer
infection

S3

Evaluate cancer

Data

liver disease
canced 14 ”
infection S4 sS4

‘ Evaluate liver disease

* Refine liver disease

Evaluate infection

Data

{iver disease
cancer
Infection

Evaluate canc/

Data

liver dissase
—sancer

infection

Refine infection

Data

liver dissase
cancer
infection
bactanal

viral

ssl’

A

AN

COMMMNBOATIONS OF THE ACH. N irmner 198! Ao 15 N

129

sults in a new state. S2. in which
liver disease is rated likely (in the
figure this is noted by setting the
hvpothesis in bold face). Onlyv one
operator is applicable to S2, refine
liver disease. resulting in S3 which
contains the refinements of liver dis-
euse: cancer and infection. At S3 two
operators are applicable: evaluate
cancer and evaluate infection; hence
the tree branches to show both pos-
sibilities: evaluate cancer results in
S+ in which cancer is determined to
be unlikely and evaluate infection
results in S4" in which infection is
-rated likely.

In the PSCM framework, prob-
lems are solved bv searching
through a problem space for a path
from the initial state to the goal
state. Problem-space search is done
by enumerating subtasks applicable

to the current state (which at the .

start of problem-solving is the ini-
tial state of the task instance), se-
lecting from these a single subtask
and then applving that operation to
the current state. The resulting
state then becomes the new current
state and the whole process of oper-
ation selection and application is
repeated until the goal state is
reached. '

Search-control knowledge guides
the search through the problem
space. For example, in hierarchical
classification the agent might apply
a heuristic that it is better to evalu-
ate hvpotheses with higher likeli-
hoods than those with low likeli-
hoods. or it might decide that the

decision about which evaluate oper-

ator to apply is not important,
hence either operator can be se-
lected. In the task structure, we
specifv the minimum amount of
search knowledge needed for each
method. No search control knowl-
edge is specified for the hierarchi-
cal classification method because
anv such knowledge would unduly
constrain the method. For example,
if either of the heuristics mentioned
previously were included in the
search-control knowledge for the
method. it would limit the applica-
tion of the method to those do-
mains and task instances in which

the heuristics apply.

The independent specification of
search control knowledge and sub-
tasks lead to two of the primary
advantages of the problem-space
approach o specifving methods:

[. In the task structure we are not

torced to specity a parucular sub-

task sequence. We can specify the
search-control knowledge that is
general to all task instances for a
method -and defer other decisions
about subtask sequencing to system
designers or run-time computation.
By doing this, we ensure that the
method can be applied to as wide a
range of task instances as possible.
In contrast, early GT work often

‘overconstrained the sequencing of

subtasks, limiting the use of each
method to a narrow range of prob-
lems.

2. Search controt knowledge en-
sures a dvnamic or situated svstem.
Each bit of search control knowl-
edge is sensitive to the subtasks and
the current state, hence the precise
sequence of subtasks is determined
dynamically at run time.

Method Selection Knowledge
Functionally, there are four tvpes
of knowledge in a task structure.
We discussed three of these (search
control, subtask application and
subtask proposal knowledge) in the
previous subsection. since they are
related to the description of a
method. The remaining tvpe.
method selection knowledge, is as-
sociated with a task. or a task/
method combination. For exampie.
the task structure for Diagnosis in-
cludes multiple methods for evalu-
ating a hypothesis. When a svstern
has two or more of these methods,
method selection knowledge must
be present 1o determine the best
method to take for the task instance
being solved.

Direct vs. Dertved Knowledge
The four types of knowledge in a
task structure can be available in

wo forms: it can be directly avail-

able for the task or it can be com-
puted by another method. Directly

available knowledge is in a form
that maps the input of the task to
the output. For example. directly
available knowledge for refine is of
the form:
If task is refine Aypothesis then re-
finements are r{, r2. 13 .
For instance:
[f task is refine liver disease then
refinements are infection and can-
cer.

No complex computation is re-
quired to use this knowledge to ac-
complish the refine task—the
knowledge is in a form directly
applicable to the task. [f knowledge
is not directlv available, it must be
derived from existing knowledge or
acquired from the external envi-
ronment. In either case. a method
must be used to acquire knowledge
of the desired form. For example.
refine can be accomplished using a
method that knows about different
refinement dimensions, such as re-
finements along etiologic and sub-
part relations. This method can
evaluate various dimensions and
then select the dimension appropri-
ate for the task instance. For exam-
ple, liver disease could be refined
using etiology to infectzon and cancer
or using anatomic structure to cen-
tral-area and portal area. The most
appropriate dimension to use de-
pends on the task instance (i.e., the
kinds of manifestations available).

Whenever any of the four types
of knowledge is not directly avail-
able, subtasks to acquire the knowl-
edge can be created and set up as
new problems. These subtasks are
viewed like anv other task: thev
have an initial state and a goal state
and can be accomplished by the
application of a method consisting
of a set of operations. Hence. al-
though a method requires certain
kinds of kne . led'ge to be applied to
a task, this knowledge does not
have to be known before problem-
solving can begin, but can be dv-
namically acquired or derived at
run-time.

This idea is also closely related to
the distinction between “deep” and
“shallow” knowledge, sometimes

September 1992V 1S NG ' COMMMNRGATIONS OF THE ACM

called” “deep” and “compiled”
kuowledge. There is also often an-
other distinction between model-
based and rule-based reasoning,
models being more general knowi-
edge describing the principles of
the domain. while rules refer to rel-
ativelv ad hoc associations between
evidence and hvpotheses. In (3], we
provide an analysis of these terms
and develop a notion of “depth” of
knowledge that is important for
knowledge modeling. We give a
brief description of this idea.

Let K(T.M) denote the knowi-
edge needed by method M in per-
torming the task T. If a knowledge
svstem performing T using M has
the knowledge K(T.M) directly
available in its knowledge base, let
us say the knowledge svstem has the
knowledge in a compiled form. How-
ever, suppose some knowledge ele-

ment & in K(T.M) is missing in the

knowledge base. and the task of
generating this knowledge is set up
as a subtask. If there exists some
other body of knowledge in the
knowledge base, say K', so that by
additional problem-solving using K
we can generate the knowledge ele-
ment &, we can say that K’ is deep
relative to k.

In the refine example we saw that
anatomic structure is one of the di-
mensions along which refinement
could be done. So-called model-
based reasoning is an approach in

which structural descriptions of the:

device under diagnosis are used to
. generate refinement hypotheses.
From this device model, we can
generate a list of malfunctions (e.g.,
one malfunction category can be
assigned to the failure of each of
the functions of each component;
moreover, malfunction categories
can correspond to errors in connec-

tions between components). The

_same structural model can be used
to generate knowledge needed for
the evaluation subtask in Figure 2.
The structural model can be simu-
lated for each malfunction. and
information about the relation

between malfunctions and obser-’

vations, which is the ot

tvpe

knowledge needed for the methods.

COMMUMCATIONS OF TIR ACM. ~ i titar’, 7ol \oy 3

of the evaluation subtask. can be
generated (see the next section for
information on simulation). Thus
the structural model is a deep
model for the methods ot classifica-
tion and hypothesis evaluation that
are generallv used in the diagnostic
task. o

The approach to defining the
notion of depth of knowledge in
the framework of the task/
methods/knowledge triple generai-
izes the intuitive notion that has
equated structural models with
deep models. Under our definition
depth is a relative notion (i.e.. it is .
relative to a method for a task), and
there is no notion of characterizing
knowledge as deep or shallow in
some absolute way.

Examples of Task Structure
for Design and Dlagnosis

The specification of a task structure
consists of three parts:

. an ‘input-output relation that
denotes the task;

2. the identification of methods
and their subtasks (as in Figure 2);
and

3. knowledge to propose subtasks.
implement subtasks, sequence sub-
tasks (search-control knowledge)
and select methods.

The task-structure diagrams do not
list the kinds of knowledge or the
input-output relations ot the tasks;
this is, however. an important part
of the specification ot the task
structure. The following descrip-

tions ot design and diagnosis Wlus-
trate the main points about specify-
ing the task structure.

Part of the task structure tor de-
sign 1s shown in Figure 4. In the
task structure diagrams. circles rep-
resent tasks and rectangles repre-
sent methods. The top task for the
design task structure is. of course,
design. The .design task can be
solved using a family of methods
called propose-critique-modify (PCM)
[7]. These methods have the sub-
tasks of proposing partial ot com-
plete design solutions. critiquing
the proposals by identifving causes
of failure, if anv. and modifving
proposals to satisfy design goals:
hence the three subtasks shown for
PCM: propose, critique and mod-
ifv. These subtasks can be com-
bined in fairly complex wavs. but
the following method is one
straightforward way in which a
PCM method can organize and
combine the subtasks.

Step 1. Given design goal, propose
solution. If no proposal, exit with
failure.

Step 2. Verify proposal. If verified,
exit with success.

Step 3. If unsuccessful, critique
proposal to identify sources of fail-
ure. If no useful criticism available,
exit with failure.

Step +. Modify proposal; return to 2.

Trevegoy

Part of the task structure
for design (71. Clrcles represent tasks:
rectangies represent methods.

Propose ’

<>

Propose-
critique-
modify

Critique Modify

Do;:omposiﬁon Case-based

Constraint
Satisfaction

131

There can be numerous variants on
the wayv the methods in this class
work. For example, a solution can
be proposed for only a part of the
design problem, a part deemed to
be crucial. This solution can then be
critiqued and modified. This par-

tial solution can generate additional _

constraints, leading to further de-
sign commitments. Thus, subtasks
can be scheduled in a fairlv com-
plex way, with subgoals from dif-
ferent methods alternating. One
could generate all such variations
and identifv them all as distinct
methods, but both the need for de-
scriptive parsimony and the sheer
numerousness of the methods that
would result argue against doing
that

Each of the PCM subtasks can be

achieved using various methods.
Three such families of methods are
shown for the proposal task (see
Figure 4): decomposition, case-
based and constraint satisfaction. In
decomposition methods, domain
knowledge is used to map subsets of
design specifications into a set of
smaller design problems. The use
of design plans is a special case of
the decomposition method. Case-
hased methods are those retrieving
from memory cases with solutions
to design problems similar or close
to the current problem. Constraint-
satisfaction methods use a variety of
quantitative and qualitative optimi-
zation techniques.

Part of the task structure for di-
agnosis is shown in Figure 2. The
diagnosis task can be viewed as an
abductive task, the construction of a
best explanation (one or more dis-
orders) to explain a set of data
tmanifestations). The task structure
shows three typical subclasses of
abductive methods: Bavesian, ab-
ductive assembly [19] and parsimo-
nious covering {30]. Bayetian meth-
ods require knowledge of prior
probabilities of disorders and con-
diuonal probabilities between dis-
orders and manifestations. They
use this knowledge to estimate pos-
terior probabilities of disorders.
Abductive assembly requires
knowledge of disorders and the

manifestations thev explain. This
method works by first generating
plausible hyvpotheses to explain
parts of the data and then using
these hvpotheses to assemble a
complete explanation of the data.
Parsimonious covering works by
stepping through each manifesta-
tion. updating the current set of
parsimonious explanations as each
manifestation is considered. Two
subtasks for abductive assembly are
shown in the diagram, generate-
plausible-hypotheses and select-hypothe-
ses. These tasks can be done using
many kinds of methods. Since
Bavesian and classification methods
have typicallv been used to gener-
ate plausible hypotheses. these are
shown in the task structure.

The task structure for diagnosis
also shows that simulation can be
used to implement many subtasks.
By simulation we mean structure-
to-behavior simulation, that is, de-
termining how some device will
behave under changes to its struc-
ture by simulating its behavior
under those conditions. We have
earlier discussed the role of simuia-
tion for accomplishing subtasks (see
previous subsection “Direct vs. De-
rived Knowledge").

The knowledge required to use
abductive assembly consists of con-
trol knowledge for sequencing sub-
tasks as well as the knowledge re-
quired to accomplish the subtasks.
Control knowledge is specific to an
application or domain, but the
knowledge for accomplishing sub-
tasks can be defined using the
input/output specifications of the
subtasks. Generate-plausible-hvpothe-
ses takes as input one or more mani-

festations and outputs one or more

disorders that could be used to ex-
plain those manifestations. Select-
hypothesis takes as input the set of
manifestations, the set of disorders
currently being used to explain
manifestations, and the set of dis-
orders that could be used to explain
one or more additional manifesta-

‘tions (i.e.. the output of generate-
plaws sle-hypotheses). The output of

select-hypothesis is the disorder it has
determined to use to explain the

manifestations. Hence. by describ-
ing the input output of the subtasks
of abductive assembly we also spec-
ify the knowledge required 10 use
the method. Simulation can be used
to evaluate a hvpothesis because the
simulation can reveal whether the
hvpothesis is possible given the data
about the device. Causal retine-
ments of a categorv can be deter-
mined bv simulating to determine
the possible outcomes of a set of
inputs to a device. Simulation plavs
an important role in many task
structures because it is a fairly gen-
eral method for generating knowl-
edge based on the structure of a
device. We did not show the simula-
tion method in the design task
structure, but there too it can play
an important role, especiallv for
critiquing designs.

These task structures are based
on the methods and subtasks im-
plicit in many expert svstems that
perform the tasks. Neither of the
task structures is meant to be com-
plete; both, however, capture a
wide range of the methods useful
for achieving the respective tasks.
As we discover additional methods.
these can be added to the structure.
Some methods (such as depth-first
search) are so general they can be
used to solve any problem. These
methods are not listed in the task
structure since they would appear
everywhere, cluttering the dia-
gram.

The task structure is meant to be
an analvtical tool. We do not mean
to imply that the implementation of
a system must have a one-to-one
correspondence to the vask struc-
ture, but that a system that per-
forms diagnosis or design can be
viewed as using somne of the methods
and subtasks. In particular. the task
structure does not fix the order of
subtasks or dictate that a single
method must be used to achieve
each task. It is also not meant to
correspond to a procedure-all hi-
erarchy, although that is one wav to
directly implement a task structure.
The task structure simply provides
a vocabulary 1o use in describing
how svstems work. The svstems

Scptember 1992 Vol 35, No 4 COMMUNGCATIONS OF TV ACM

being described might be based on
neural networks, production rules,
frames. or a task-specific language:

this is unimportant for the use and -
construction of the task structure.-

To further emphasize the impor-
tance and role of the task structure
for describing systems, let us con-
sider three descriptions of Red-
Soar. a complex abductive system
that interprets immunohematologic
tests in order to identify antibodies
present in a patient’s blood [17]. In

describing a complex knowledge

system such as RedSoar, we can use
three levels: 1) the task structure; 2)

a computational level (such as prob- -

lem spaces); and 3) a symbol level.
Figure 5 shows each of these levels
for RedSoar. RedSoar uses abduc-
tive assembly of antibody hypothe-
ses 1o construct a best explanation
of the test data. In the task, the test
data are the manifestations; anti-
"bodies are the “disorders” or expla-
- nations. RedSoar is directly imple-
mented in Soar’s production-rule
language and can be described by
listing all the rules in the knowledge
base. such as those in Figure 3c.
About 1,000 of these rules consti-
tute the symbol-level view of Red-
Soar. However, this description
fails to capture the task-level con-
trol and knowledge in the system.
To do this, RedSoar can be de-
scribed at a computational level by
listing the problem spaces defined
by the Soar production rules, as in
Figure 5b. That is, we can abstract
away from the symbol-level pro-

duction rules to focus on the prob- -

lem spaces, their initial and desired
states and their operators. This
level of description is much closer
to the task level, but would still con-
tain too many details present as ar-
tifacts of .the implementation (e.g.,
extra operators that must be used
for low-level manipulation of rep-
resentations). At the task-structure
level (see Figure 3a), we can simply
describe the system as using abduc.
tive assembly and then point out

how it generates and selects hy-
the methods and
-knowledge that it uses. RedSoar:
uses conditional and a proni proba-

potheses: i.e.,

COMMUMICATIONS OF THE ACM . (. ~ia s ol A,

bilities to generate plausible hy-

potheses and a scoring function
based on explanatory coverage and
plausibility ratings to select a hy-
pothesis. As shown in the figure,
RedSoar. also uses two additional
subtasks, rule-out and confirm hypoth-
eses. These are domain-specific sub-
tasks. The first allows the system to
quickly rule out clearlv absent anti-
bodies. The second lets the system

present. Bv describing RedSoar at
this level, a comparison can be
made between it and other abduc-
tive assembly systems by comparing
the methods and knowledge used
to generate and select hypotheses.

. Redsoar describeq at tnree
levels: a) the task structure; b the
probiem-space level (a computational
levei); and ¢) production rules (the
symbpoi ievel).

focus on antibodies that are likely

Identify.
Antibodies

(a)

Abductive
Assambly

Generate
Plausible
Hypotheses

Select
Hypotheses

Confim
Hypotheses

Rule-out
Hypothases

Problem Space: Identify

Qperators: Make-abstract-hypotheses
Rule-out
Match-hypothesis-to-antigram
Determine-final-results
Determine-cartainty
Refine
Cover
Rasoive-redundancy
Resolve-inconsistency
Datermine-accounts-for
Mark-redundancies .
Mark-inconsistencies

(b)

:; Propose rule-out

"(sp identify*propose‘operator*rule-out
(goal <g> “problem-space <p> “state <s>)
(problem-space <p> “name identify)
(state <s> “object <model>)

-"antibody-list -"rule-ocut-parformed)

ae> .
(goal <g>
(cperator <o>

“operator <o>)
(c) “name rule-out))
i ; Refine is becter than rule-out
(sp identify*compare’cperator*refine*rule-out
(goal <g> “problem-space <p> “state <s>
“operator + { <> <0l> <02> } +)
(problem-space <p> “name ldencify)

- (object <model> “isa model “master-panal-read yes

(operator

(operacor <o2>
-=> '

(goal <g>

“name refine)
“name rule-out)

“operator > <02>))

TN s

Knowledge Modeling and the
Task Sstructure :
The task structure described in the
previous section facilitates knowl-
edge modeling in sevéral wavs.
First. it associates tasks with meth-
ods that accomplish them and the
knowledge Trequired to use the
methods. The multiple levels of the
task structure show how knowledge
can be decomposed into bodies of
knowledge that are associated with
specific tasks. The task structure
also highlights the generality and
specificity of the knowledge needed
for a' problem-solving method.
That is. it allows methods to be
compared- based on the required
knowledge. Hence, we can see how
some methods require little domain
knowledge (such as depth-first
search, which onlv requires knowl-
edge to recognize a goal state),
while others require considerable
domain knowledge (such as hier-
archical classification, which needs
a domain-specific hierarchy of cate-
gories).

Second, since methods are char-
acterized by the knowledge they
require, domains can be modeled
by tools appropriate for the knowi-
edge that is available in the domain.
High-level tools based on this con-
cept, such as CSRL [3], DSPL (2],
MUM [16], and MOLE [13], illus-

- trate how this approach facilitates
knowledge modeling, knowledge
acquisition, explanation, and learn-
mng.

Third. ‘the task structure view .

should be contrasted with what one
might call a “uniform normative
algorithm™ view of how to solve
complex problems such as diagno-
sis or design. For example, there
have been proposals for a general
algorithm for diagnosis: “diagnosis
from first principles” (32], and
Bavesian networks {29] are two ex-
amples. The general algorithms,
while guaranteeing an optimal so-
“lution within their respective
frameworks. are typically intracta.
ble. In these cases the engineering
of systems to solve the tasks is done
bv various forms.of heuristic ap-
proximations, which of course no

" having a

longer have the normative proper-
ties associated with the original al-
gorithm. The -general algorithms
also do not alwavs make contact
with the form in which knowledge
is actuallv available in various real-
world domains. Thus, the Bavesian
framework mav be fine for a do-

- main in which the needed prior and

conditional probabilities for good
approximations to them) are avail-
able. but in other domains in which
the domain knowledge takes other
forms, there is often a need for
translating from these forms to the
probabilistic forms in which knowl-
edge is needed.

The task structure view, on the
other hand, views the solution of
complex problems as arising from
the interaction of many local meth-
ods for local tasks. In any domain
record of successful

human problem-soiving, the

. knowledge in the domain helps to

decompose the task into manage-
able chunks, so each of the prob-
lems can be solved to the degree of
precision and accuracy needed for
the domain. It then becomes the
task of the Al theorist to develop
vocabularies of generic tasks, meth-
ods and knowledge. Thus the at-
tention is shifted from the search
for uniform algorithms to model-
ing knowledge and methods by
which tasks are decomposed and
subtasks are accomplished.

We can also see how such task
structures evolve in real-world
domains. If classification is a gener-
ally effective method for the gen-
erate-hypotheses subtask of - diag-
nosis, then over time, the
problem-solving community devel-
ops the knowledge needed to apply
it. Thus the medical community has
devoted hundreds of years to the
development of disease taxono-
mies, which is the form in which the
classification method needs knowl-
edge. The knowledge compilation
techniques (see subsection “Deep
vs. Derived Knowledge™) are also a
means by which knowledge in a less
direct form is converted into
knowledge in a form that is more
directlv usable by a computationally

attractive method. Thus we see that
in domains and tasks of impor-
tance. the domain knowledge tends
to evolve over time so that methods
with good computational proper-
ties can be supported.

The fact that we do not start with
a uniform normative algorithm
does not mean we cannot be precise
about the behavior of svstems built
in the task-structure framework.
Bvlander {3} and Goel [14] are ex-
amples of analvses in which the role
of specific types of knowledge in
producing good computational
properties can be studied within the
general framework of the task-
structure view. For example. Goel
et al. show why classification is an
attractive method. if knowledge in
the form of classification hierar-
chies is available, and Bvlander
et al. show how knowledge about
the existence of certain tvpes of
causal links (and nonexistence of
other types) makes the abductive
assembly method tractable.

Fourth, the task structure em-
phasizes that different kinds of
methods can be combined: quanti-
tative and qualitative knowledge.
heuristic and algorithmic knowl-
cdge can be appropriately com-
bined for the accomplishment of a
task. For example. if a subtask can
be achieved using a known tech-
nique, for instance by solving a set
of differential equations, that
method can be used instead of
more traditional Al methods. Since
the method that set up this subtask
is concerned with the solution,
rather than how it was determined.
the original task can be imple-
mented using a different kind of
method or even a different compu-
tational architecture.

Fifth, the generation of new
knowledge can itself be viewed as a
reasoning task. Hence during
knowledge modeling appropriate
questions can identify sources of
deep knowledge for various meth-
ods in the task structure.

Sixth, the task structure outlined
can be used to understand the dif-
ferent task-level knowledge-modet-
ing schemes that have heen pro-

September 1992/ Vol 13, Na 4/ COMMUARCATIONS OF THE ACH

posed. which were reviewed earlier
(see subsection “Background Work
in Knowledge Modeling™. KADS.
as well as Clancev's heuristic classi-
fication have identified extremely
general terms or tasks. These tasks
can be used to describe almost any
method. Hence thev can be consid-
ered a set of primitive knowledge-
modeling terms. Generic task terms
are at a higher level of abstraction
in the task structure. They are not
general enough to be used to de-
scribe all methods, but can be used
to describe how higher-level tasks
such as diagnosis and design can be
performed. Generic tasks can, in
turn, be described using more
primitive terms. This is in fact what
has been done throughout the
vears of research on generic tasks—
the large-grained tasks have been
repeatedly decomposed into finer-
grained tasks.

Finally, the task structure clears
up the confusions discussed earlier
(see section “Need for Uniform
Framework™. These can be ad-
dressed as follows:

l. The relation between complex
and more primitive generic tasks is,
in one sense, relative to the system
being described. For exampie. if a
task is implemented by a method
that spawns subtasks, we say the
subtasks are more primitive, while
the higher task is more complex.
The concepts are relative because
anv task, even those lower in the
task structure. can potentially be
implemented using a complex set
of subtasks. In another sense, we
can identify tasks appearing as sub-

tasks in a large number of methods

as being more primitive or general
than -tasks appearing in fewer
methods. Hence we can say that
diagnosis is a less general and more
_ complex task than data abstraction.

. The variety of knowledge-
modehng terms that have been pro-
posed is due to researchers looking
at different parts of task structures
and having different goals in mind.
Some have looked for extremely.
primitive terms (e.g., Clancev and
KADS), while others have med to

COMMMMNCATIONS OF THE ACK St mitwe 1'%1) \ L

1Y

N

identify higher-level terms (e.g.,
Steels and Generic Tasks). The task
structure shows how these terms
can be related through tasks, meth-
ods and subtasks. There is still a
problem with mapping between
terms at the same level: however,
Clancey's system model-construc-
tion perspective (i.e.. the view that
what KBSs reallv do is construct
models of systems they are reason-
ing abcut) provides a scheme to
compare these terms by represent-
ing each term in a uniform set/
graph/operator language {12].

3. Overdetermination and rigidity
in methods are avoided by using
the task structure because a com-
plete method does not need to be
specified (only the subtasks are
given and not all of these have to be
used to accomplish a task). Further-
more,” multiple methods can be
used to model domains that do not
warrant the selection of a single
method for accomplishing a task.
Overdetermination and rigidity of
implementation can be avoided by
dynamically determining methods
and subtask sequencing at run-
time. Details of how this can be
done in the context of generic tasks
are given in [18]; but the basic idea
is to dynamically determine what to
do at each problem-solving step.
That is, after each operation is per-
formed the situation is reassessed to
determine what can be done next.
Knowledge is then brought to bear
to select one of these operations.

Knowledge Modeling Is a Task-
Specific Enterprise

There have been some attempts t0
develop a small number of basic
terms in which to formulate all the
knowledge to be represented
KBSs. We think it premature to dis-
cuss representing knowledge in
general at this point in our under-
standing. We can, however, for var-
ious types of tasks, develop detailed
theories of the methods and knowi-
edge required to implement them

and the terms in which such knowl-

edge can be represented. Thus the
knowledge-modeling methodology
is a cumulative enterprise by re-

5

searchers around the world: as re-
search in some task (say diagnosis’
or design) is carried on in various
domains around the world. differ-
ent methods are identified. their
knowledge requirements under-
stood, generalizations and com-
monalities recognized, perfor-
mance characteristics of the
methods are analvtically under-
stood, and a task structure which
incorporates this collective product
of research emerges. Knowledge-
modeling for that particular task is
then facilitated by ‘this task struc-
ture: we know what kinds of knowl-
edge and strategies are needed for
the methods and can use the terms
of analysis to model the knowledge
in the domain.

In this sense. over the last several
years significant knowledge has
been accumulated for the following
tasks: diagnosis, hierarchical de-

“sign, configuration tasks and some

classes of device simulation tasks.
We have outlined the task structure
for some of these tasks. and shown
how the modeling of knowledge is
facilitated by this framework.

The usefulness of the task analy-
sis in the form proposed in this arti-
cle (and the resulting task struc-
ture) is not limited to automation of
problem-solving. The analysis itself
is merely a description of how the
task might be decomposed and
what kinds of knowledge are
needed. It is possible that for one
reason or another some of the
methods may not be automatable:
the needed knowledge may not be
available in a computer-processable
form. or the method might itself
not be sufficiendy operationalized.
The task analysis still provides the
tool for decomposing a task and
identifving which subparts of an
overall task can be automated. The
subtasks for which automatable
methods do not exist at a givén
stage of Al theory-making can be
simply directed to a human prob-
lem solver with expertise in the sub-
task. Thus the task structure pro-
vides the framework for natural
human-machine cooperation. As
we understand how to operational-

138

ize a previously unautomated
method and we acquire the knowl-
edge needed for it. that subtask can
be given over to the machine. The
task structure thus provides a mo-
bile boundary between human and
machine in problem-solving.

;-tcknnwlet':lgmenu -
We thank the members of the LAIR
and the Division of Medical Infor-

matics for their comments and dis-

cussion on this article. B.
Chandrasekaran's work is currently
supported by DARPA under
AFOSR contract F-49620-89-C-
0110. Todd R. Johnson and Jack W.
Smith's research is supported by
National Heart Lung and Blood
Institute grant HL-38776 and Na-
tional Library of Medicine grant
LM-04293.3

References

1. Breuker, J. and Wielinga. B. Mod-
els of expertise in knowledge acqui-
sition. [n Topics in Expert Svstem De-
sign, G, Guida, C. Tasso. Eds.
Elsevier Science B. V. North-
Holland. 1989, pp. 265-295.

2. Brown. D.C. and Chandrasekaran,
B. Design Problem Solving: Knowledge
Structures and Control Strategres. Mor-
gan Kaufmann, San Mateo, Calif..
1989, .

3. Bvlander, T.. Allemang, D.. Tan-
ner. M.C. and [osephson. |.R. The
computational complexity of ab-
duction. Araf. [ntell. 49, (1991), 25~
60. .

4. Bvlander. T. and Chandrasekaran.
B. Generic Tasks for knowledge-
based reasoning: The “right" levei
of abstraction for knowledge acqui-
siion. Int.]. Man-Machine Studies
26, (1987), 231243,

5. Bvlander, T. and Mital, S. CSRL: A

language for classificatory problem

solving. A VII, 3 (1986), 66~77.

Chandrasekaran, B. Generic tasks

in knowledge-based - reasoning:

High-level building blocks for ex.

pert svstem design. [EEE Expert 1, 3

(1986), 23-30.

Chandrasekaran, B. Design prob-

lem solving: A task analysis. A/

Magaune 11, 4 (1990). 59-71.

8. Chandrasekaran, B. Models versus
rules. deep versus compiled concent
versus form: Some distinctions in-
knowledge svstems research. /EEE
Expert (Apr. 1991), 75-79,

9. Chandrasekaran, B. and Mital, S.

6

-~
.

138

13.

14.

15.

16.

17.

18

19.

20.

21.

Coneeptual representation ot medi-
cal knowledye for diagnosis bv com-
puter: MDX and related svstems. [n
Advances i Computers, M. Yovits,
Ed.. Academic Press. 1983. 217~
203,

. Chandrasekaran. B.. Tanner. M.

and Josephson. J. Explaimng con-
trol strategies in problem solving.
{EEE Expert (1989). 9-24.

. Clancev. W.J. Heuristic classifica-

ton. Aruf. [ntell. 27, 3 (19853, 284-
3350. .

. Clancev, W.]. Model Construction

Operators. Arnf. [ntell. 53 (1992
1-115. '

Eshelman. L. MOLE: A knowledge-
acquisition tool for cover-and-
differentiate svstems. {n Automating
Knowledge Acquisitton for Expert Sys-
tems. S. Marcus, Ed.. Kluwer Aca-
demic. 1983, pp. 37-30.

Goel, A.. Soundararajan. N. and
Chandrasekaran, B. Complexity in
classificatorv reasoning. In Proceed-
ings of AAAl (Seartle. Washington,
Julv 13-18, 1987) pp. 421-425.
Gomez. F. and Chandrasekaran. B.
Knowledge organization and distri-
bution for medical diagnosis. [EEE
Trans. Syst.. Mlan and Cvberneties 11, |
(1981), 34-42.

Gruber, T. and Cohen, P. Design
for acquisition: Principles of knowl-
edge svstem design to facilitate
knowledge acquisition. /nt. /. Man-
Machine Studies 26, 2 (1987), 143—
159.

Johnson. K.A.. Johnson. T.R.
Smith. J.W.. Jr. Dejongh. M.
Fischer, O.. Amra. N.K. and
Bavazitoglu, A. RedSoar—A svstem
for red blood cell antibody identification.
In Procredings of SCAMC 91,
McGraw Hiil. Washington D.C..
1991, 664~668.

Johnson, T.R. Generic tasks in the
problem-space paradigm: Building
flexible knowledge svstems while
using task-level constraints. Ph.D.
dissertation, Ohio State University.
1991.

Josephson, }., Chandrasekaran. B..
Smith, |. and Tanner. M. A mecha-
nism for forming composite ex-
planatorv hvpotheses. [EEE Trans.
Syst.. Man, and Cybernetcs {7, 3
(1987), 445-454.

Krishnan. R.. Li. X. and Steier. D.
Development of a knowledge-bascd
mathematical model formulauon
svstem. Commun. ACM (Sept. 1U92).
Laird, J.E, Newelll A. and
Rosenbioom. P.S. SOAR: An archi-
tecture for yeneral intelligence.

Artef. Intetl, 33 V1087 L-B4
22. Marr, D. Viwon. W.H. Freemun,
~ New York, N.Y., 1982,

23. McDermouw. J. Rl: A rule-hased
configurer of computer sistems.
Artyf Intedl, 19,1 (1982), 39-xx

24, McDermott., J. Preliminarv steps
toward a taxonomv of problem-
solving methods. [n Awomating
Knowledge Acquisition for Expert Nve-
tems. S. Marcus. Ed.. Kluwer Aca-
demic 19383, pp. 225-236.

25. Miual, S. and Chandrasekaran. B.
Patrec: A knowledge-directed dita-
base for-a diagnostic expert svstem.
Computer 17,9 (1984), 51-33.

26. Musen, M.A. Automated Generatiun o
Model-Based Knowledge-Acquisition
Tools. Morgan Kaufmann, (nc.. San
Mateo. Calif.. 1989.

27. Newell, A. The Knowledge Level.
A/ (Summer 1981), 1-19.

28. Newell, A, Yost. G.. Laird. [E.
Rosenbioom. P.S. and Altmann, E.
Formulating the problem space
computational model. In Carnege-
Mellon Computer Science: A 253-Year
Commemorative, R.F., Rashid. Ed..
ACM Press: Addison-Weslev.
Reading, Mass.. 1991.

29. Pearl. J. Probabiistic Reasoming
Intelligent Systems: Networks uf Plausi-
ble Inference. Morgan Kaufman.
1988.

30. Peng, Y. and Reggia, J.A. Abducuve
Inference Models for Diagnosuc
Problem-Soluing Springer-Verlay,
New York. N.Y., 1990.

31. Punch. W.F. A Diagnosis Svstem Using
a Task [ntegrated Problem Solver Ar-
chutecture (TIPS), Including Causal
Reasoming, Ph.D. dissertation. The
Obhio State University, 1989

32. Reiter. R.A. A theorv of diagnosis
from first principles. Aruf. Ineeil. 32
11987y, 37-95.

33. Shordiffe, E.H. Computer-Based
Medical Consultattons: MYCIN El-
sevier, New York, N.Y. 1976.

34. Steels. L. Components of experuse.
Al 11,2 (1990), 28-49,

35. Wiclinga, B.].. Schreiber. A.T. and
Breuker, J.A. KADS: A modeiling
approach to knowledge engineer-
ing. Knowledge Acquisiion + (1992),
5-33.

CR Categories and Subject Descrip-
tors: D.2.1 (Software}: Software Enyi-
neering— requirements/specificattons;)
D2.10 (Software|: Software Engi-
neering—design: 1.6.0 {Computing
Methodologies|: Simulation and Mod-
eling—general; [.6.3 [Computing Meth-
odologies|: Simulation and Modeling—

COMMUMICATIONS OF THE ACM

ipplications; K.6.3 {Computing
dilieux|: Management of Computing
and [nformation Systems—softuare
management; K.6.4 {Computing
Milieux}: Management of Gomputing
and’ Information Svstems—ivstem man-.
ngement '

General Terms: Design. Methodology

Additional Key Words and Phrases:
Analysis, Modeling)

About the Authors:)
B. CHANDRASEKARAN is professor
of computer and information science
and director of the Laboratory for Al
Research at The Ohio State University.
Current research interests include cog-
nitive architectures, knowiedge-based
reasoning in diagnosis and design, de-
vice understanding, and visual reason-
ing. Author’s Present Address: Labora-
tory for Al Research, Department of
Computer and . Information Science,
Ohio State University, Columbus, OH
43210: email: chandra@cis.ohio-state.
edu. ‘

TODD R. JOHNSON is an assistant
professor with the Department of Pa-
thology, Laboratary for Knowledge-
Based Medical Systems at The Ohio
State University. Current research in-
terests include flexible problem-solving,
modeling the acquisition of expertise,
and reasoning with external informa-
uon.

JACK W. SMITH is associate professor
of ‘pathology and computer and infor-
‘mation science and director of the Divi-
sion of Medical Informatics at The Ohio
State University. Current research in-
terests include task-specific and cogni-
tive architectures in knowledge inten-
sive domains. abductive problem.
solving, and decision support systems
in medicine. Authors’ Present Address:
Laboratory for Knowledge-Based Medi-
cal Systems, 376 W. 10th Room 571,
Columbus, Oh. 43210: email: y@
cis.ohio-state.edu; smith.30@ osu.edu

Permission to copy without tee all ue pant of
this matertal 1s ¢ranted provided that the
cupes are not made or distributed for direct
commercial advantage. the ACM copvright
‘notice and the ude of the publication and s
date uppear. and notice is qiven that copying
ts by permission of the Association for
Cumputing Machinery. To copy otherwise., of
to republish. requires a fee and/or speafic
pernssion,

2 ACM 0002-0782/92/0900-124 $1.50

COMMUMICATIONS OF THE AL . ntar 0\,

