
bens offer a very convincing demonstra t ion of a formal development in their  article using a theorem 

prover as an assistant. A formal development, in this case, is the derivation of an implementat ion from 

a formal specification through a number  of formally proven steps. It  is only practical, as we well know, 

if there is a tool to check that the formal chain is not broken and to provide some guidance. The 

authors consider VDM developments and the corresponding proof obligations for each development 

step, mainly  data 'verification and operation decomposition. The case s tudy is a robot controller and 

the tool used is the B theorem prover. The VDM development was expressed as a set of  B rules; the 

tool was then able to automatical ly generate the proof obligations (and to prove some of them 

automatically).  • What is especially interesting in this case s tudy is that the formalization in B of the 

VDM development is independent  of the case study and can be reused for other  problems. Another  

interesting by-product is the possibility of reusing parts of proven formal developments. It  turned out 

that B alone is not sufficient and that more expertise on VDM development would allow more guidance 

in the development.  However, the authors demonstrate  that supporting formal development is now 

feasible, even if it is not yet as easy as it must  be some day for widespread use. • Wileden, Wolf, 

Rosenblatt and Tarr propose a solution for an old, yet important ,  problem in software development 

and reuse: the interoperabili ty of components developed in different languages and/or running  on dif- 

ferent machines. The i r  article presents a guided tour  of various existing approaches for making  

heterogeneous software components communicate. The authors then present their own approach, which 

is based on the notion of abstract data  types. It  looks quite natural  since the notion of informat ion 

hiding is relevant here. Thus, the proposed method provides a way to allow interoperabil i ty at the 

specification level. A notat ion for describing abstract data types and language bindings of such types 

is provided. A prototype is described which allows type definit ion, language bindings, and provides 

a l ibrary of most common datatypes. It  is clear that this approach will be of high interest for the next 

generation of development environments  since many  different types of objects, manipula ted  via dif- 

ferent languages, must be managed in a convenient  and transparent  way. • The  experience reported 

by Prieto-Dfaz discusses the implementa t ion  of a classification scheme for r e u s e u a  topic of strong 

current  interest. The method he describes is a reuse program based on a l ibrary of reusable software 

assets. In  addit ion to the conclusions the author  draws from this practical application (i.e., the impor- 

tance of domain  analysis), we believe it represents two addit ional  lessons of importance. It  represents 

a strong (yet incomplete) case s tudy of the transfer of  an idea from universi ty research through refine- 

ment  by an industrial  research lab to application in a product ion environment .  The experience also 

points up the ever-present, but  easily overlooked, truth that human  and organizational issues are often 

at least as important  as technical issues in the successful application of new techniques to software 

engineering. • In  conclusion, we hope the articles in this special issue help to continue and expand 

the al l- important  communica t ion  that takes place at conferences like ICSE. By presenting a sample 

of that communicat ion  within  the software-engineering communi ty  to a broader  audience, it is our 

fervent hope that professionals from other disciplines will join in the conversation. Only through broad, 

diverse and substantive communica t ion  can we hope to improve the software-engineering process. 

Peter  A. Freeman,  Dean, College of Computing, Georgia Institute of Technology 

Marle-Claude Gaudel, Professor, LRI- Universltg de Paris-Sud 
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F r a  number  of years we have been investigating a 

family of real-time problems that we call real-time 

disturbance control problems. Operating a complex process 

such as a power plant or a chemical refinery as an inter- 

nal or external disturbance develops is an example of this 

type of real-time problem. Along with our colleagues, we 

have built a series of knowledge-based advisory programs 

for assisting operators of such plants [2, 6, 12]. Our  

experience with the task in these domains suggests to us 

that success in real-time disturbance control arises less 

from complex problem-solving methods specific to the 

real-time problem than from the way the process system 

itself is designed, the task is decomposed, procedures 

are compiled so the subtasks can be readily solved, 

tion over the next hour to be less than R units). "ll- The 

operator has access to a set of action primitives. The state 

of the process system can be changed as a result of the 

application of these actions. The control task for the 

operator is to synthesize a sequence of action primitives 

so that the process system is maintained in or brought to 

states that satisfy the goals. Specifically, the disturbance 

control task arises when events--external or internal to 

the process system--cause changes in its state that are 

great enough to threaten the goals or prevent them from 

being satisfied. -If-In order to generate the action 

sequence, the operator needs to have an action-genera- 

tion scheme by which the observations are mapped into 

actions. T h e s e  schemes  can range from servo-mecha- 

and and goals are judiciously abandoned nisms that adjust control parameters or initi- 

replaced. In this article, we study the ate control actions, to problem-solving 

nature of the task, propose some g e n - ~ ~ ~  systems that work with explicit sym- 

eral architectural principles for this 

class of problems, and describe a 

real-time knowledge-based control 

system called Operator  Advisor 

which is a partial embodiment of 

the principles. "11" Real-Time Distur- 

bance Control Problems Considel 

controller-operator (or just operator) i] 

ring with a dynamic physical process system. A descrip- 

tion, or model, of the process system will be in terms of 

a set of time-varying parameters of interest, which 

together constitute a state vector (e.g., output power level, 

core temperature, valveA opening). These parameters can 

be at differing grain-sizes of time, and will have causal 

relations among them, i.e., some of the parameters can 

be thought of as causes of other parameters. The process  

system model may include an account of these causal 

relations as well. "1I" The values of a subset of the state 

parameters are available to the operator as the set of obser- 

vations. The operator is given certain goals regarding the 

process systems. These  goals are defined as predicates over 

functions of various state variables of the system (e.g., 

power level to be less than 50 MW, total escaped radia- 

bolic models of the process system 

and synthesize suitable plans of 

action. Of  course, a combination 

of action-generation schemes 

can be used as well. ~ The 

state of the process system may change 

rapidly, and the generated action may not 

appropriate unless it is generated and 

executed quickly. Secondly, if actions are generated before 

the goals are actually violated (for example, in response 

to observations that indicate possible future violation of 

goals), the process system may be kept in a satisfactory 

state without any violation of goals. Thus, actions must 

be generated and executed fast enough for goals to be 

achieved. This is what makes the control task real 

time. -g- What is the relation between time available and 

the quality of the action generated? Not all action- 

generation schemes have the property of providing a 

better  solution when increased time is available. For 

example, servo-mechanisms take a fixed time to respond; 

they are not structured to trade off decision quality for 

available time. On  the other hand, for action-generation 

s c h e m e s  that search for a solution in some space ofpossi- 
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bilities, tile likelihood of a satisfactory 
solution increases in proportion to 
greater time availability, assuming, of 
course, the problem space and the 
search strategies are appropriate. 

A central property of  action- 
generation schemes is they are 
based on explicit or implicit models 
of  the system to be controlled. 
However, models are, at best, only 
partial models of  real physical sys- 
tems. Further, even with respect to 
the given model, observations offer 
only partial information about the 
state w~riables included in the 
model. These two facts mean there 
is no action-generation scheme for 
which there is a guarantee that the 
actions generated will achieve the 
goal, even if time available to solve 
the problem is unbounded.  To the 
extent that the goals must be 
achieved within a time bound, all 
finite-resource agents making plans 
to control real-world environments 
are facing a real-time problem. If  
the task is to generate actions that 
are sure to achieve the goals, the 
achievement of  the task simply can- 
not be ensured, even if we increase 
the speed of  processors involved in 
computing actions, or find better 
models of  the process system. 

Thus in practice, real-time con- 
trol problems must be conceived in 
terms of  accepting deviations from 
ideal goals. Notions of  goal aban- 
donment  and goal substitution are 
important  in this regard. Goals 
which conflict with higher-priority 
goals :may be abandoned. Goals 
which have higher preference but 
are not being achieved can be re- 
placed by goals which are less pre- 
ferred,, but more likely to be 
achiew_~d in return for higher costs. 
Goal abandonment  and substitu- 
tion are important means by which 
graceful degradation of  the behav- 
ior of' real-time systems can be 
achieved. The  control task is now to 
generate actions and adopt goals in 
order  to minimize the costs to the 
extent possible. 

Some Principles for Good 
Real-Time Disturbance Control 
There  are many domains in the 

4"//,.^ ~ q /. I V ~ 2 d r  ,,~t. "~ 
' 6 ' ~ ,  " I ~ " ,  ~%x" 

Z,XOGE.BhStg v' ,  

world in which real-time disturb- 
ance control is being achieved more 
or less successfully by using a com- 
bination of  automated systems and 
well-trained human operators. 
Power plants and chemical refiner- 
ies are operated and airplanes are 
flown on a regular basis. We found 
it instructive to investigate how 
such control is achieved in these 
domains in spite of  the limited pro- 
cessing capabilities o f  human con- 
trollers. The  most explicit and pub- 
lic documentation of  control 
procedures is available in the area 
o f  operation of  nuclear power 
plants, but in our  view the princi- 
ples that underlie these procedures 
are more generic in character, and 
underlie control of  many other 
dynamic processes. 

The general principles we have 
extracted from our  study are: 

Sensor system design. Sensor sys- 
tems should be designed to allow a 
relatively direct mapping from sen- 
sor readings to internal states that 
are related to threats to important 
goals. Actions can now be indexed 
over these internal states, reducing 
the complexity of  the observations- 
to-action mapping. However, not 
all potentially relevant states can be 
detected in this manner  without a 
proliferation of  sensors. 

Action system design. Action primi- 
tives design should have a direct or 
almost-direct relation to achieving 
or maintaining the more important 
goals. For example, since keeping 
the reactor temperature below lim- 
its is a very important goal, the 
action system in nuclear power 
plants is capable of  injecting cooling 
water. As with sensors, accomplish- 
ing all the desired goals directly 
with very few actions will result in 
the proliferation of  action primi- 
tives. 

Compiled goal-ordering knowledge. 

The goals are designed with explicit 
compilation and priority and pref- 
erence relations among them; thus 
if any of  the goals fail, decisions can 
be made immediately about which 
goals should be substituted. 

Compiled corrective procedures. 
There  must be explicit compilation 
o f  procedures (or plans, or se- 
quences of" actions) to follow for 
numerous clearly identifiable inter- 
nal states which can threaten goals. 
That  is, much of  the planning is 
reactive. 

Throughou t  the rest of  this arti- 
cle, we assume the sensor and 
action systems of  the process sys- 
tems to be controlled are well de- 
signed in the sense described here. 

Relations Among Goals 
It is useful to distinguish among the 
following possible relations be- 
tween the goals in the operation of  
a process system. 

Priority relations. Some goals have 
higher priority than other goals. 
For example, in the operation of  
complex equipment with potential 
to cause damage, a clear distinction 
is often made between safety goals 
and operating goals-- the former 
having higher priority over the lat- 
ter. But such priority relations may 
exist between operating goals as 
well. Given two goals with such a 
priority relationship, both goals are 
to be pursued under  normal condi- 
tions, but if the pursuit of  a higher- 
priority goal conflicts with meeting 
a lower priority goal, the latter goal 
is to be abandoned. Consider driv- 
ing an automobile as an everyday 
example of  real-time control. The  
goal of  "keep engine from over- 
heating" generally has higher pri- 
ority than the goal of  "reach desti- 
nation by time T." 

Preference relations. There  may be 
preference ordering among goals 
in subsets of  the set of  goals. At any 
time only one goal from this se t - -  
the one with the highest preference 
that is thought  to be achievable-- 
will be operational, unlike the goals 
with priority relations. If  it appears 
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that this goal cannot be achieved, it 
can be substituted by a less pre- 
ferred but more achievable goal if 
one is available, or it will be aban- 
doned. To continue with the auto- 
mobile example, the goal "reach the 
destination by T + 2 hours" may be 
achievable and thus may be substi- 
tuted for the original goal, even 
though the new goal is less pre- 
ferred. 

Subgoal relations. A goal g may he 
achieved by achieving gl  and g2, 
which are the subgoals of  g. B u t - -  
unlike subgoals in problem solving 
in genera l - -g l  and g2 may not be 
present in the goal set merely as 
means to achieve g, but may be 
important in their own right. How- 
ever, if g l  or g2 is unachievable for 
any reason, it may be abandoned 
and other methods which do not 
involve g l  and g2 as subgoals may 
be adopted to achieve g. Such sub- 
goal relations are often used to or- 
ganize the achievement of  safety 
goals. The safety function hierar- 
chy for the nuclear power plant 
domain is an example of such an 
organization and a part of  it is 
shown in Figure 1. A safety goal at 
any level of  the hierarchy is 
achieved if its successor safety goals 
are achieved. The leaf-level goals 
are maintained as part of  normal 
operating conditions, thus achiev- 
ing all the goals in the safety func- 
tion hierarchy. I f  a disturbance 

develops, specific plans to maintain 
only those safety goals that are di- 
rectly threatened are invoked. I f  
any of  these fail, then alternate 
plans for achieving their parent 
safety goals are adopted (i.e., plans 
that do not depend on the achieve- 
ment o f  the subgoal that failed), 
giving the name "defense-in-depth" 
to this strategy. 

Normally, systems are designed 
so the safety goals are maintained 
as part of  normal operation (i.e., as 
operating goals are met, the safety 
goals are met automatically). When 
a safety goal is threatened, the 
plans associated with it typically 
maintain the safety goal at the cost 
of some operational goals. As one 
goes higher in the safety hierarchy, 
the corresponding plans sacrifice 
more and more operating goals. 
This is because the plan is invoked 
only when the plans for one-or- 
more children safety goals have al- 
ready [ailed, calling for more dras- 
tic ways of  maintaining the deeper- 
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A Partial Safety Function Hlerar- 
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level safety goal. This generally 
calls for further sacrifices in operat- 
ing goals. In this sense, a safety goal 
is easier to achieve than its child, 
but at increasing costs in opera- 
tional goals. 

Design-Time vs. Run-Time 
Aspects of  Control 
The goals and their ordering, as 
well as the procedures to be 
adopted for achieving the goals, 
are, as indicated, determined at 
design time. What aspects of  the 
control behavior are then deter- 
mined dynamically? To see this, it is 
useful to note that there are three 
aspects to the trade-offs that lie at 
the heart of  real-time control: 

1. The amount  of  compute time 
taken to generate and imple- 
ment actions. 

2. As the time in 1 increases, the 
undesirability of  the control goal 
that can in fact be achieved de- 
creases. That  is, it is likely that 
we will be able to achieve goals 
closer to the ideal ones. 

3. As the time in 1 increases, the 
undesirability of  the plant state 
that is likely to be reached in- 
creases. 

Ideally, one would like to allocate 
just enough computing time that an 
optimal balance is struck between 
the undesirabilities in 2 and 3 (intu- 
itively, where the curves in 2 and 3 
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cross). A main point  is that this 
t rade-off  assessment need not (and 
often in this domain should not) be 
pe r fo rmed  at run-t ime,  but  that the 
compiled goal-order ing and proce- 
dures  should reflect design-time 
optimization of  the trade-off.  What  
is de te rmined  dynamically is the 
choice of  the actual goal. For  exam- 
ple, once a p rocedure  for a goal has 
been put  into effect, if the process 
system does not respond  as ex- 
pected within a certain time (both 
the time limit and the expectation 
are to be specified in the proce- 
dure),  that  goal 'will need to be 
abandoned  and replaced with a less 
desirable, and presumably more 
achievable, goal. 

Task Decomposition 
The  complexity of  directly map- 
ping fi 'om observations to actions 
can be high: for even a moderate-  
sized set of  observations, the num- 
ber  of  combinations to provide 
good coverage can be prohibitive. 
The  task is generally decomposed 
into stages to reduce the complex- 
ity. I f  1:he problem is not real time, 
the ideal strategy is to decompose 
the task into two stages: diagnose 
the cause of  the disturbance; and 
generrtte actions to remove,  or  com- 
pensate for the effects of, the 
causes. But diagnosis can take an 
open-ended  amount  of  time, and 
hence is not always possible for 
real-time control.  The  strategy that 
has evolved in a number  of  do- 
mains is to decompose the task as 
follows: 

1. Map from observations to viola- 
tions of, or  threats to goals, 

2. Map from threats/violations to 
action plans, 

3. Monitor  plan execution, and 
4. Modify plan and goals as appro-  

priate. 

In subtask 1, if the goals are 
p reenumera ted ,  the process system 
can be equipped  with sensors to 
detect  goal violations in a relatively 
direct way. However,  detecting 
threat~ to goals is more  open-ended,  
since it involves p r ed i c t i on - - a  com- 
plex problem-solving task in gen- 

I 
_ .  

eral. In  practice, the more immedi-  
ate threats can be detected directly. 
As ment ioned earlier, the design of  
sensors for a process system often 
evolves over time to achieve better  
detection of  goal violations and 
threats. For example,  one of  the 
consequences of  the Three-Mile  
Island accident was the introduc- 
tion of  a new sensor subsystem that 
could detect  the reactor being in a 
potentially unsafe operat ing re- 
gion. This information can be used 
to predict  (much earl ier  than was 
previously possible) a threat  to the 
goal relat ing to reactor  tempera-  
ture. 

Subtasks 2, 3, 4 can also be quite 
complex to solve in an optimal way. 
The  normal  strategy is to precom- 
pile procedures  for counter ing 
each threat  to goals. Much thought  
is given offline to the development  
of  procedures  having a high likeli- 
hood of  success. Since availability of  
diagnostic informat ion cannot be 
ensured at the time actions are 
being generated,  the procedures  
and action primitives are generally 
designed to compensate  for the ef- 
fects of  the disturbance ra ther  than 
to remove the cause. For  example,  
consider a threat  to the (safety) goal 
of  keeping the reactor t empera ture  
below safe limits. Perhaps the real 
reason for the disturbance is a stuck 
valve. Ident i fying this is a complex 
diagnostic task; and even if the rea- 
son for the disturbance can be iden- 
tified, the action required is to open 
the valve, which may be located in a 
relatively inaccessible place. This 
disturbance will be handled  by 
turning on pumps to supply addi- 
tional cooling water, an action that 
does not require diagnosis. 

It should be noted that all the 
subtasks, even with a good process 
system design and compiled proce- 
dures,  are still open-ended  (i.e., 
there  is no guarantee that  the sub- 

task can be accomplished optimally 
within a given time). We already 
indicated how the task of  detecting 
potential  violations can involve ex- 
tensive amounts  of  predictive prob- 
lem solving. Generat ing an action 
plan to ensure satisfactory control  
can be equally complex even with 
compiled procedures .  Perhaps a 
compiled p rocedure  that is recom- 
mended  will fail because of  an addi-  
tional malfunction that is present  
but  that was not taken into account 
dur ing  the compilat ion of  the pro-  
cedure.  I f  more  than one disturb- 
ance is present,  perhaps  the com- 
piled procedures  for them interfere 
with each others '  effectiveness. And  
so on. Thus  the subtasks, and hence 
the goal, may fail. This  is precisely 
why the abandonment  and substi- 
tution of  goals are essential compo- 
nents of  this approach  to real-time 
control. Identif ication of  what goals 
to substitute may itself be the sub- 
ject  of  run- t ime problem solving; 
but  there  are considerable advan- 
tages to precompi l ing  the prefer-  
ence and priori ty relations among 
goals. 

The  fact that so much of  the 
knowledge needed is precompi led  
in many domains  is another  in- 
stance of  the dictum "In the knowl- 
edge lies the power." However,  a 
task analysis such as the one we 
have pe r fo rmed  is needed  to un- 
ders tand what knowledge plays 
what role and hence what knowl- 
edge ought  to be compiled. 

Knowledge-Based Systems 
for Assisting Operators 
Some of  the principles just  out l ined 
(even though they arose in the con- 
text of  human  opera tors  with lim- 
ited processing power) are valid for 
providing computat ional  assistance 
in generat ing control  actions as 
well. For  example,  well-designed 
sensor and action systems that help 
do the mappings  as directly as pos- 
sible will be jus t  as valuable for 
computer-based planning systems. 
The  fact that even with vast compu- 
tational resources the actions may 
still fail to achieve the goals means 
that goal substitution will still be 
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essential. But how about compiled 
procedures for threat identification 
and plan generation? Would it not 
be better to use additional comput- 
ing power to perform a more thor- 
ough analysis of  the problem and to 
explore the plan space? 

Certainly additional computa- 
tional power can be devoted to im- 
plementing the compiled mappings 
(from sensors to threats and from 
threats to plans) more effectively. 
Even with well-designed sensor and 
action systems and well-defined 
procedures and goal hierarchies, 
the human operator's short-term 
memory is severely stressed, and 
the procedures are often executed 
suboptimally. The  likelihood that 
the goal is achieved is decreased, 
leading to premature resort to less 
preferred goals. A knowledge- 
based assistant can implement more 
complex compiled procedures than 
a human operator and can keep 
track of  a larger number  of  param- 
eters at one time and their interre- 
lations. For example, such a system 
can perform a more reliable detec- 

¢ 

tion of  conflicts among plans in case 
of  a multiple disturbance. Thus 
there is an increased likelihood that 
an advisory system can help achieve 
a given goal. 

Additional problem solving can 
also be performed in parallel for a 
"deeper" analysis of  the disturb- 
ance and more sophisticated plan- 
ning, without these capabilities 
being on the critical path to the per- 
formance to any of  the subtasks. 
Success in these parallel problem- 
solving activities can improve the 
performance on the subtasks--that 
is, increase the likelihood that the 
current goal is met and an impor- 
tant goal is not abandoned or a less 

= I G U R E  2 

The Overall ArChitecture of a Dis- 
turbance Control System 

preferred goal substituted. Specifi- 
cally, the following open-ended 
problem-solving activities can be 
undertaken in parallel: 

Diagnosis of the disturbance. This 
information, when available, may 
be used by the plan evaluation sub- 
task. I f  the plan assumes the avail- 
ability o f  certain subsystems, and i t  
is known by diagnostic analysis that 
these subsystems are malfunction- 
ing, that plan can be abandoned, 
and an alternate one may be in- 
voked. Diagnosis may also help in 
the detection, at an earlier stage, of  
additional threats to goals. Finally, 
the results of  a diagnosis effort can 
be used for fixing the problem off  
line. For example, if a loss-of-cool- 
ing event is due to an open valve, 
even though the immediate control 
action may be to inject cooling 
water, having the diagnostic result 
makes it possible to take actions to 
fix the valve. 

Prediction of system state. Using 
observations and any diagnostic 
information, simulations can go on 
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in parallel to detect additional 
threats to goals beyond those that 
can be detected by direct mapping 
from observations. 

Plan evaluation and conflict detec- 
tion. The compiled knowledge ap- 
proach can, at best, do minimal 
checking for conflicts. The  task 
really involves complex simulation. 
The results of  this task done in par- 
allel can be used to abort plans and 
to start other plans, and for goal 
abandonment/substitution deci- 
sions. 

Figure 2 illustrates the architec- 
ture that is proposed as a way of  
using knowledge-based reasoning 
to significantly enhance the quality 
of  real-time control. We will now 
present the design and perfor- 
mance of  a system called the Oper- 
ator Advisor that has been con- 
structed using these principles and 
the architecture. We describe 
mostly those aspects of  the Opera- 
tor Advisor that use compiled 
knowledge in the performance of  
its various subtasks. A minimal di- 
agnostic: capability has been imple- 
mented and will be described 
briefly. 

Action generation by relating 
actions I~o states of  the world (rather 
than plan generation by abstract 
problem solving with complex 
world models) is an important 
emerging area of  study in AI. Agre 
and Chapman [1], Rosenschein and 
Kaelbling [11], Schoppers [12] and 
Hayes-Roth [8] provide distinct 
approaches and perspectives on 
this subject. The  use of  compiled 
procedures for real-time disturb- 
ance control is related to the ideas 
on reaction (or universal) plans 
[11]. However, a number  of  distinc- 
tions ought to be noted as well. 
Hayes-Roth describes a complex 
architecture in which perception 
and deliberative planning are inte- 
g ra ted  Agre and Chapman use 
perceptual markings in the world 
by the agent as a way of  reducing 
plan complexity. Rosenschein and 
Kaelbling describe automatic com- 
pilation of  reactive or situated ma- 
chines from a set of  formal specifi- 

cations of  behavior in such a 
manner  that the machine's behav- 
ior can be proved to be correct. The  
use of  compiled procedures here 
can no doubt  be improved consid- 
erably by incorporating the insights 
that are developing as a result of  
this family of  investigations. 

Kim and Modarres [10] describe 
the use of  a type of  goal tree in con- 
trolling process systems. The  goal 
tree in this work captures the tradi- 
tional goal-subgoal relations (i.e., 
the subgoals have to be achieved in 
order  to achieve the goals). In our 
work on the other hand, the safety 
goal hierarchy represents the goal- 
subgoal relations under  normal 
operating conditions, but is also 
used to represent the ordering of  
goals so decisions about goal aban- 
donment  can be made as well, in 
case goals in the lower levels of  the 
hierarchy cannot be achieved for 
any reason. 

Operator Advisor: 
A Disturbance Control System 
for the NPP Domain 
Here we describe the knowledge, 
design, and implementation of  an 
Integrated Operator  Advisor (OA) 
system. The  OA is the latest in the 
series of  prototype knowledge- 
based systems we have built [2, 7, 
13] for the operation and safety 
maintenance of  the Nuclear Power 
Plant (NPP) domain. The  NPP 
domain is a highly regulated do- 
main with a considerable body of  
compiled prescriptive procedures, 
and OA exploits the established 
structures of  knowledge in the in- 
dustry. The  distinctions that have 
been made by the industry make 
considerable sense from the view- 
point of  real-time problem solving, 
even though they were developed 
independently of  any possible ap- 
plication in an automated advisory 
system. 

Task of Mapping from Sensor 
Values to Threats to Goals 
In the nuclear industry the direct 
threats to safety goals are called 
safety threats and threats to opera- 
tional goals are called abnormal 
events or, simply, events. The selec- 
tion and deployment of  sensors for 
the process system itself are driven 
by the need to identify events and 
safety threats simply and directly. 

In theory, plant safety can be 
achieved through the maintenance 
of  certain plant conditions, quite 
independent  of  the plant opera- 
tion. For example, consider the 
safety goal of  keeping the radiation 
level at less than a certain value. In 
an abnormal situation the radiation 
level can be maintained below this 
value by lowering the power level, 
or in the extreme case by shutting 
down the plant, without expending 
any effort in identifying the cause 
of  the increased radiation level. 

The safety threats are organized 
in the Safety Function Hierarchy 
(Figure 1). Each node in the Safety 
Function Hierarchy represents a 
safety goal that would be lost if the 
corresponding safety function (or 
goal) cannot be maintained. Each 
node in the hierarchy contains the 
sensor conditions that identify the 
threat to that particular safety goal. 

While in principle not all possible 
events can be precompiled or de- 
tected by simple pattern matching 
on sensors, a set of  events have 
been chosen by the regulatory 
agencies either on the basis of  their 
potential seriousness or the fre- 
quency of  their occurrence. For 
example, the so-called Loss-of- 
Coolant Accident (LOCA) is one 
such event. The  occurrence of  the 
event indicates a threat to the oper- 
ational goal of  maintaining power 
because of  lack of  sufficient coolant 
for normal power generation. I f  
not controlled, the event can de- 
velop into a threat to the safety goal 
of  maintaining water level within 
safety limits. During a LOCA, it is 
required from the operational per- 
spective that some immediate ac- 
tions be taken to restore the loss of  
coolant to maintain power. In the 
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NPP domain there are more than 
20 such events. 

The  main difference between 
safety threats and events is that in 
the case of  events the concern is 
about restoring as many of  the op- 
erational goals as possible while 
maintaining safety goals. 

Detection of Events and 
Threats to Safety Goals 
In the OA safety threats are de- 
tected by monitoring their identify- 
ing conditions stored in the nodes 
of  the Safety Function Hierarchy. A 
top-down Establish-Reject strategy 
is used to go through the hierarchy. 

The Establish-Reject strategy 
consists o f  pattern matching identi- 
fying conditions in a parent node, 
representing a safety threat, with 
the current sensor values. I f  there is 
a match, the corresponding threat 
is established. After establishing the 
node, the monitoring process 
moves to the sibling node, rather 
than going down the established 
node. This is both possible and re- 
quired because of  the relationship 
among the plans for safety threats. 
It is possible because ifa parent and 
its child threats are established, 
then only the plan for the parent 
threats needs to be executed, since 
the plan for an established parent 

F I G U R E  3 
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node is designed to take care of  all 
the safety goals below it. It is re- 
quired because once a parent-level 
threat is established, attention 
should be given to threats at the 
same level, rather than trying to 
identify less important threats. 

The Establish-Reject strategy of  
going through the Safety Function 
Hierarchy is a conservative (priority 
is given to major threats) and effi- 
cient way of  detecting threats to 
safety goals. Detection of  the events 
is done by a pattern matching of  the 
conditions identifying the events, 
with the current sensor values. The 
events are monitored according to 
the total ordering given in the list of  
e v e n t s .  

Procedure Execution to 
Control Threats 
In the nuclear industry, what we 
have been calling plans are called 
procedures- -a  term we will adopt 

Example of a Part of the Inte- 
grated Procedure Hierarchy 

m • 

m • 

m • 

Inventory 
ControlSG 

in the remainder of  the discussion 
on OA. The procedure execution 
task has the following components:  

(a) Retrieve procedures for all the 
threats and detect conflicts 

(b) Select achievable, nonconflict- 
ing procedures 

(c) Initiate and monitor proce- 
dures and go to (a) as needed 

(d) I f  a chosen procedure fails, 
abandon/substitute goal and 
modify procedure or go to (a) 
for retrieving new procedure. 

The event procedures, while re- 
storing the operational goals, are 
also designed to prevent the devel- 
opment  of  safety threats. However, 
the procedures for safety threats 
may involve loss of  operational 
goals. 

Relations Among Procedures 
As discussed in the section on rela- 
tions among goals, the goals can 
have priority, preference and sub- 
goal relations among them. In OA, 
the representation and organiza- 
tion of  procedures reflect the rela- 
tionship of  the associated goals. Pri- 
ority of  safety over operational 
goals means that when both a safety 
and an event procedure are re- 
trieved, OA will choose a safety 
procedure first. Similarly, associ- 

Feedwater 
SystemSG 

MaintainHPCS 
SystemSG 

Maintain RCI C 
SystemSG 

MaintainRHR-LPCI 
ModeSG 

Feedwater Pump Trip AE 

Feedwater Controller 
Malfunction AE 
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ated with each event procedure in 
OA are pointers to safety goals that 
would be threatened if the event 
procedure fails. This enables OA to 
abandon the event procedure (i.e., 
the operational goal) and initiate 
the safety procedures (after addi- 
tional conflict resolution among 
them, as appropriate). The subgoal 
relation between safety goals means 
that OA will abandon a safety goal 
if it cannot be achieved; this means 
that its parent goal will be threat- 
ened, art OA will retrieve and at- 
tempt to execute the independent 

g i:,l  IgW;- 

the Integrated Procedures Hierar- 
chy, which is an elaboration of  a 
fragment of  Figure 1, the safety 
function hierarchy. Each node in 
the IPH is named after a safety goal 
or an event, and it stands for the 
corresponding procedure. The in- 
terpretation of  the link from a child 

Knowledge Representation of the Control Procedure 

(Control-Procedure-For FeedwaterPumpTripAE) 
(Procedure-Name FeedwaterPumpTripAl:-Planner) 
(Procedure-For-Safety-Goal InventoryControlSG-Planner) 

(Procedure-Name-FeedwaterPumpTripAE-Planner) 
(Prerequisites None) 
(criteria (AND(Is the RPVLevel < 197 inches) 

(IS The RPVLeVel > 2 inches) 
(IsTheNumericalValueOf ReactorPower < 4 percent)) 

(Sub-Procedures ONI-N27) 
(Relation-Among-Sub-Procedure Sequential) 

safety procedure for the parent 
goal. Similarly, if two safety goals, 
one a descendant of  another ((~ la 
the satiety function hierarchy, Fig- 
ure 1), ',are both threatened, OA will 
first execute the safety procedure 
for the "deeper" safety threat (i.e., 
the one closer to the root), and the 
shallower safety procedure will be 
considered later. 

In OA, there is no separate rep- 
resentation of  goals and their rela- 
tions. The event and safety proce- 
dures are organized into a single 
hierarchy which fully compiles the 
partial order  among the goals, and 
hence the procedures, into an inte- 
grated procedure hierarchy (IPH). 

Figure 3 illustrates a portion ot 

to the parent is as follows: If  the 
procedure for the child fails, invoke 
the procedure for the parent. We 
see that two events have been 
added as children of  the In- 
ventoryControl SG node. The pro- 
cedures for these events have the 
property that if they fail, the In- 
ventoryControl safety goal will be 
threatened. The  integrated proce- 
dure hierarchy explicitly records 
this relationship between an event 
procedure and the safety goal that 
the procedure's failure endangers. 
Thus  if the children safety goal 
procedures or event procedures 
fail, the integrated procedure hier- 
archy directly points to the proce- 
dures to be invoked, without any 

additional reasoning. 

Knowledge Representation 
of Procedures 
A task-specific language was devel- 
oped for procedure representation 
[3]. (For the advantages of  task- 
specific languages, see [5]). The 
procedures in OA are based on the 
corresponding ones compiled in 
the domain. The  procedure con- 
tains several types o f  information. 
At the top level, the following in- 
formation is represented: the event 
or safety threat for which the pro- 
cedure is meant, and any safety 
procedures that should be invoked 
if the procedure fails (implicitly 
representing the safety goal that 
will be threatened by the failure). 
Table 1 gives an example of  this. 

At the next level the contents of  
the procedure are represented as 
prerequisites for its execution; cri- 
teria for its success; subprocedures 
and relations among them. 

Table 2 is an example of  this. 
Most of  the information in this ex- 
ample is self-explanatory, but the 
representation of  relations among 
subprocedures may need some 
explanation. Possible relations are 
Sequential (the subprocedures 
must be executed in sequence and 
all must succeed); BackUP (the 
subprocedures are ordered alterna- 
tives, an alternative is executed only 
if the main subprocedure fails); 
Parallel (subprocedures are to be 
executed concurrently, this feature 
is currently under  implementa- 
tion); ManyOf (as many of  the 
subprocedures as possible need to 
be executed to increase chances o f  
success); Monitor (all the 
subprocedures must be executed 
within a specified amount  of  time 
or within a specified number  of  
repetitions). While we have been 
able to implement the procedures 
of  interest using these, no claim of  
completeness is made for them. 
Additional representational primi- 
tives for procedures include actual 
procedure steps. Since representa- 
tion of  these steps is fairly straight- 
forward, we omit a discussion of  
them. 
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Temporal Information in 
Procedures 
Genera l -purpose  planning systems 
need to have a fairly sophisticated 
temporal  reasoning capability (e.g., 
for reasoning about plan conflicts 
and interactions). There  is no gen- 
eral -purpose temporal  representa-  
tion in the procedures  that we just  
presented.  Instead, the needed in- 
formation is explicitly compiled in 
the procedures.  For example,  the 
procedures  explicitly contain infor- 
mation about how soon after the 
initiation of  the procedure  the 
monitor ing should be done for evi- 
dence of  success or failure, and 
about potential plan conflicts. I f  the 
information is incomplete, as is 
likely to be the case in compiled 
procedures,  there is a strong 
chance the procedure  will fail. A 
more achievable goal will then be 
chosen. 

Execution of Procedures 
Conflict resolution is the first step, 
after all the procedures  corre- 
sponding to events and safety 
threats are retrieved. I f  P1 and P2 
are a pair of  procedures  in a 
parent-child relationship in the in- 
tegrated procedure  hierarchy (see 
Figure 3), OA makes the following 
conflict resolution choices: 

• I f  P1 and P2 are both retrieved, 
only P1 needs to be executed. 

• I f  dur ing  execution of  P2, a situa- 
tion arises in which P1 is needed,  
P2 is suspended to initiate PI.  

• I f  P2 is not successful, P1 is initi- 
ated. 

The  conflict resolution per- 
formed in this step is actually only a 
part  of  reasoning about plan con- 
flicts. Other  kinds of  conflicts may 
exist, being more or less difficult to 
detect. For example,  a step in Plan 
A might turn a valve on, while a 
step for Plan B might turn the same 
valve off. Detecting this would re- 
quire running  through the plan 
steps to make sure they do not have 
undesirable interactions. A more 
complicated example is one in 
which the future effects of  a step in 
Plan A undo the conditions for suc- 
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cess of  Plan B. Arbitrari ly complex 
simulation capabilities will be 
needed to ensure that no plan con- 
flicts or  deadlocks remain. While 
OA's conflict detection capabilities 
can be improved,  solving this sub- 
task in a guaranteed way within a 
fixed time is in principle not possi- 
ble. 

Plan Execution, Monitoring 
and Modification 
As the name of  the task suggests, 
this task itself consists of  three sub- 
tasks. The  first subtask is Plan Exe- 
cution and its objective is to guide 
the opera tor  through the steps of  
the identified plan. The  second 
subtask is Plan Monitoring, and its 
objective is to continuously moni tor  
the success of  the executed steps. 
The  third subtask is Plan Modifica- 
tion, and its objective is to provide 
safety maintenance when the exe- 
cuting procedure  fails completely 
(i.e., the pr imary and the alterna- 
tive actions are not successful). The  
objective of  the overall task is to 
recover from the abnormal  situa- 
tion by maintaining plant operat ion 
and safety, with the priority being 
on safety. Tha t  is, maintain safety 
even if normal  operat ion is not pos- 
sible. Plan Execution is pe r formed  
by displaying the actions given in 
the procedures  and Plan Monitor- 
ing is pe r formed  by verifying the 
expected effects' executed actions. 
The  expected effects are also avail- 
able in the procedures.  

Plan Modification is required 
only when a procedure  fails com- 
pletely (i.e., the pr imary and alter- 
native actions are not available or  
successful). In this situation, the 
executing procedure  is modif ied to 
maintain safety by initiating the 
procedure  for the safety goal asso- 
ciated with the failed procedure.  
Modification of  the unsuccessful 
procedures  essentially provides 

graceful degradat ion  by giving up 
on the more preferable  goals that 
cannot be pursued because of  time 
limitations, and pursuing goals that 
can be achieved within the time 
constraints. 

While we have not discussed pro- 
cedure abandonment ,  it is a subtask 
that requires at least some mention. 
When procedures  are abandoned,  
clearly a number  of  activities are 
called for to shut down the proce- 
dure  as gracefully as possible; that 
is, the effects of  actions already 
taken are noted, any changes that 
are no longer useful are reversed if 
possible, and so on. Again, this is a 
task that could use substantial prob- 
lem solving in its own right, but OA 
merely uses whatever explicit steps 
are suggested by the domain proce- 
dures for this. In this task, as in all 
others, OA tries to use compiled 
knowledge if it is explicitly avail- 
a b l e - - b u t  simply depends  on the 
fact that goal substitution and aban- 
donment  will help to reduce func- 
tionality gracefully ra ther  than rad- 
ically, in case of  failure to per form 
the subtask. 

Optional TaSks 
We discussed the possible roles that 
can be played by addit ional prob- 
lem solving in parallel. The  current  
implementat ion of  OA includes 
only a simple diagnostic component  
that works in parallel. The  diagnos- 
tic task is initiated only after a 
threat  has been identified. 

The  diagnostic task, after f inding 
the cause(s) of  the detected event or  
safety threat,  can in ter rupt  the task 
of  Plan Execution to Control 
Threats .  The  information provided 
by the diagnostic task can help in 
recovering some of  the operat ion 
goals earlier, while executing the 
control actions. 

As an example of  how the infor- 
mation from the diagnosis module  
can be useful, consider the follow- 
ing: 

The  event FeedwaterPumpTr ip  
is identif ied and the procedure  to 
control it is initiated. The  diagnos- 
tic task also is initiated, in parallel, 
to de termine  the cause of  Feed- 
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waterPumpTrip .  The  diagnosis 
determines  the cause of  the Feed- 
wate rPumpTr ip  to be Low Net Pos- 
itive Suction Head (NPSH). Once 
the cause Low NPSH is known, the 
pump  suction head can be in- 
creased by adjust ing the pump  
speed. With this action the t r ipped 
pump will start functioning again. 
This wi]l lead to earl ier  recovery of  
feedwater  flow and may not require  
the adjustment  of  recirculation 
flow, which is the independen t  and 
alternate way of  increasing the flow 
without knowing the cause, but  this 
also affects the power generation.  

: I G U R E  4 

After  the correction of  the cause, 
some actions may, in fact, have to 
be undone,  and certain other  ac- 
tions may not be required.  The  
procedures  contain knowledge that 
call for certain conditions (given in 
the slot Prerequisites) to be checked 
before a procedure  or  an action is 
initiated. These  conditions, in case 
the faults are corrected,  will pre- 
vent the execution of  some unnec- 
essary and less efficient actions. 

The  diagnostic task is imple- 
mented in the language Conceptual 
Structures Representation Language 
(CSRL) developed for the task of  
hierarchical classification [4, 5] and 
is repor ted  in detail in [7]. 
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Present Implementation of 
the Integrated Operator 
Advisor System 
The  present  implementat ion of  the 
In tegra ted  Opera to r  Advisor Sys- 

The Overall Architecture of the 
Operator Advisor System 

tem [2] consists of  the following 
four modules:  an "Intell igent" 
(Knowledge-Based) Database; a 
Plant Status Monitoring System; a 
Dynamic Procedure  Management  
System; and a Diagnostic and Data 
Validation System. 

The  Intell igent Database con- 
tains the real-time plant  data and 
the knowledge to in terpre t  it. Inter-  
pretat ion mainly consists of  data 
abstraction (raising the abstraction 
level from that  of  the raw sensors to 
one that can be directly used by the 
various procedures) .  This is a 
knowledge-based system, based on 
the architecture proposed  in [9] 
and is described in detail in [2]. The  

database is upda ted  continuously to 
reflect the current  plant  conditions. 
The  other  three modules address 
the database to moni tor  plant  con- 
ditions and evaluate the success of  
the action. 

The  Plant Status Monitor ing Sys- 
tem (PSMS) per forms the task of  
detect ing threats to goals in terms 
of  events and safety threats. The  
Dynamic Procedure  Management  
System (DPMS) per forms the task 
of  plan execution to control  threats 
(i.e., both the subtasks of  Conflict 
Resolution and Plan Execution, 
Monitoring,  and Modification). 
Finally, the Diagnosis and Data Val- 
idation System (DVS) per forms the 
optional  task of  diagnosis to deter-  
mine the cause of  the detected 
threats to goals (i.e., events and 
safety threats). DVS performs its 
task in parallel  with the task of  
DPMS. The  overall architecture of  
the current  implementat ion is 
shown in Figure 4. 

Following are some of  the details 
required to relate the terminology 
in Figure 4 to the general  terminol-  
ogy used in the earl ier  sections: 

• EOP refers to Emergency Oper- 
ating Procedures  cor responding  
to the procedures  for safety 
threats 

• Entry conditions refer  to the con- 
ditions identifying the events and 
safety threats 

• Certain alarms also indicate 
threats to safety goals 

• Abnormal  Events refer  to what 
have been called events 

• Causes in the Diagnosis and Data 
Validation module  refer  to the 
causes detected by the optional  
activity of  diagnosis. 

• EOP dominant  refers to the pri- 
ority given to the procedures  for 
removing safety threats. 

The  OA has been tested on a set 
of  realistic simulated scenarios 
from the subdomain  that has been 
represented  in its knowledge base. 
Initial success in simulations has led 
to a more  detailed evaluation and 
test under  a U.S. Depar tment  of  
Energy project  in conjunction with 
a full-scale nuclear  power plant  
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simulator which is typically used for 
training and certifying nuclear 
power plant operators. 

A DisturDance Scenario and 
the Response of Operator Advisor 

The OA is implemented on two 
machines. The first machine hosts 
PSMS and DVS (namely, monitor- 
ing and diagnosis systems), and the 
second machine hosts DPMS 
(namely, the plan execution and 
monitoring system). Both the ma- 
chines can receive updated plant 
data either interactively or through 
the database. A disturbance sce- 
nario was simulated by providing 
plant data interactively to the OA. 
The hardcopy output (see Appen- 
dix and Figure 5) shows how the 
OA responded to the scenario. The 

g 
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scenario illustrates the activities 
performed by the OA. Some of the 
significant activities include the fol- 
lowing: 

1. Detection of safety threats 
(Steps D2-D9) and events 
(Steps D4-D9) through persis- 
tent monitoring. The event FW 
Pump Trip is detected in the 
first cycle (Step D10). 

: I G U R E  5 

Simulated Disturbance Scenario 

2. Communication of the de- 
tected event to DPMS (Steps 
Dl l -D13) .  Initiation of the 
procedure to control the FW 
Pump Trip event (Steps C1, 
C2). 

3. Execution and monitoring of 
control procedure (Steps C3-  
C14). In this case the proce- 
dure consists of only one 
subprocedure, i.e., ONI-N27 
(refer to Figure 5). 

4. Initiation of the optional diag- 
nosis (Steps D14-D17), con- 
current with the previous steps 
2 and 3, to find the causes of 
the event. Cause of the event 
(Low NPSH) detected in Step 
D17. 

5. Interruption of the ongoing 
actions (C3-C14) to inform the 

Persistent Monitorina 

Plan Modification 

Procedure 
Refinement 

/ / /D iagnost ic  
,~  Information 

• Arrows show flow sequence of OA's Activities • Step numbers refer to Appendix 

COMMUNICATIONS OF THE ACM/August 1991/Vo1.34, No.8 4 3  



operator about the diagnosed 
cause (Steps D18 and C8). 

6. Detection of  higher-level 
(safety) threat, in the second 
momtoring cycle (Step D24), to 
Inventory Control, while exe- 
cuting and verifying the con- 
trol actions of  ONI-N27. This 
information is communicated 
to DPMS (Steps D25 and C15-  
C16). 

7. Suspension of  ongoing actions 
(i.e., abandonment  of  subpro- 
cedure ONI-N27) to attend to 
the higher-level threat (C16). 

8. Modification of  the executing 
procedure to maintain the 
threatened safety goal, Inven- 
tory Control (steps C16-C19).  

9. Safety goal Inventory Control 
abandoned, as it cannot be 
maintained because a step of  
the 'procedure (Step 20) failed 
to achieve the desired results. 
The  procedure to maintain the 
next safety goal, RPV Control, 
initiated, to maintain safety at a 
deeper level. 

10. Plant safety maintained by suc- 
cessfully completing the proce- 
dure for RPV Control (Steps 
C36-C42). 

This scenario shows how the OA 
can help maintain plant safety at a 
deeper level, in unexpected situa- 
tions. For example, while the event 
was being controlled, and another 
threat developed unexpectedly, the 
OA shil~ted its attention to attend to 
the detected threat. Further, again 
unexpectedly, the procedure to 
control the threat was not success- 
ful. The  OA responded to this by 
giving up on the current goal to 
pursue the next goal to maintain 
safety at a deeper level. 

Concluding Remarks 
In this article we have analyzed the 
structure o f  the class of  real-time 
disturbance control problems. We 
noted that the two major subtask~, 
needed for an optimal resolution-- 
namely diagnosis and plan syn- 
t he s i s - a r e  intrinsically open. 
ended, and the completeness o] 
correctness of  solutions could nevel 

be guaranteed, least of  all within a 
fixed time available for a solution. 
Generally, this means there is no 
control procedure that can be guar- 
anteed to achieve arbitrary goals of  
interest. We showed how this fact 

makes it imperative to abandon and 
substitute goals, and has resulted, 
in domains such as the control of  
nuclear power plants, in the devel- 
opment  of  the distinction between 
operational and safety goals, and 
the notion of  depth in safety goals. 

We proposed that real-time con- 
siderations place a great premium 
on using compiled knowledge to 
solve rapidly, when it can, the many 
subtasks in procedure selection and 
execution. Some protection against 
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the fact that this leads to a de- 
creased likelihood of  satisfactorily 
meeting a goal is provided by goal 
abandonment  and substitution, 
since a more graceful loss of  func- 
tionality can be achieved in this 
way. We also proposed an architec- 
ture which can additionally make 
use of  more intensive, but more 
open-ended, problem solving, but 
which is not in the critical path of  
executing the more rapid, compiled 
procedure. I f  the procedures can 

be designed to accept any solutions 
by these parallel modules, in princi- 
ple we can have the best of  both 
worlds. Of  course, achieving this in 
practice requires careful knowledge 
engineering of  procedures. The 

approach proposed here is in the 
spirit of  any-time algorithms [6]. 

Real-time control involves mak- 
ing trade-offs between different 
goals in a reasoned manner. In the 
approach outlined here, most of  
the trade-off decisions are made at 
design time in the way the control 
system sensors and actions are con- 
figured, and the way knowledge is 
precompiled about response proce- 
dures and the goal structure. How- 
ever, there remains a dynamic as- 
pect to control. The goals that are 
pursued are determined by the 
real-time behavior of  the process 
system: how well and within what 
time the process system responds to 
the control actions determines if a 
goal will be abandoned and re- 
placed with a weaker goal. 

We discussed a specific imple- 
mentation of  a prototype knowl- 
edge-based system for advising 
operators of  a nuclear power plant. 
OA, the implemented system, uses 
the general approach outlined 
here, but also uses a number  of  fea- 
tures specific to the domain. Most 
importantly, the NPP domain has a 
strong tradition of  making all as- 
pects of  control explicit: the events 
and threats to be concerned about, 
the goal hierarchy, the procedures, 
etc. In domains where such knowl- 
edge is not explicitly available, sub- 
stantial domain analysis will be 
called for to implement the ap- 
proach. 

Where the trade-offs involved in 
goal substitution may not be very 
attractive, "metareasoning" (i.e., 
reasoning about problem solving 
resources and how to allocate them) 
may make sense. Our  architecture 
occupies a niche in the space of  pos- 
sible architectures--a niche where 
any available computational re- 
source is thrown into the constitu- 
ent problem-solving tasks (diagno- 
sis and plan synthesis) rather than 
in metareasoning. Further explora- 
tion of  this space is clearly called 
for. Similarly, additional research is 
needed in how to gracefully abort 
procedures, and how to integrate 
parallel tasks into a smoothly func- 
tioning control system. 
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