
CIS6333

Homework 1 (due Friday, February 1)

1. (Propositional Calculus - 10 points)

Let P, Q, R range over state predicates of some program.

Prove or disprove the following:

a) P ∨ (P ∧Q) ≡ P
b) P ∧ (Q ∨R) ≡ (P ∨Q) ∧ (P ∨R)
c) ¬(P ≡ Q) ≡ ¬P ≡ ¬Q
d) P ≡ Q ≡ (P ∨Q) ≡ (P ∧Q)

2. (More Propositional Calculus - 6 points)

--

a) Prove ¬¬P ≡ P
b) Prove the identity of ∨, P∨false ≡ P , by transforming its more structured
side into its simpler side.
c) Prove P ⇒ Q ≡ ¬P ∨ ¬Q ≡ ¬P

3. (Predicate Calculus - 10 points)

a) Prove (∀x : R : P ≡ Q)⇒ ((∀x : R : P) ≡ (∀x : R : Q))
b) Prove ¬(∃x : R : P) ≡ (∀x : R : ¬P)
c) Translate the following English statements into predicate logic:

(i) Every positive integer is smaller than the absolute value of some neg-
ative integer. (Use abs.i for the absolute value of i)

(ii) Real number i is the largest real solution of the equation f.i = i + 1
(iii) No integer is larger than all others.

d) Translate into English the meaning of :
(i) (∃x, y : x ∈ R ∧ y ∈ R : (f.x < 0 ∧ 0 < f.y)⇒ (∃z : z ∈ Reals : f.z =

0))
(ii) (∀z : z ∈ Integers ∧ even.z : (∀w : w ∈ Integers ∧ odd.w : z 6= w))

4. (Closure) -- 30 points

Let P and Q range over state predicates of a program prog. Recall that the
statements of each action of prog are terminating.
Recall that in class we defined:

closed P iff {P} prog {P}

1

True or False? (Explain your answer.)

a) closed false
b) closed true
c) (closed P or closed Q) implies (closed (P ∨ Q))
d) (closed ¬P) implies (closed P)
e) (closed (P ∨ Q)) implies (∀ s :: {P} s {Q})
f) (exists s :: {P} s {false}) implies (closed ¬P)
g) closed (P ∨ Q)

implies (∀ s :: {P} s {P ∨ Q})
h) closed P and closed Q and (R ⇒ (P ∧ Q))

implies closed R
i) closed P and closed Q and closed R

implies closed (P ∧ (Q ∧ R))

5. (Leads-to) -- 24 points

Let P , Q, and R range over state predicates of a program prog.

True or False? (Explain your answer.)

a) false leads-to P ∨ Q
b) (P leads-to Q) implies ((P ∧ Q) leads-to Q)
c) (P leads-to Q) implies ((P ∧ R) leads-to Q)
d) ((P leads-to Q) and (P leads-to R)) implies (P leads-to (Q ∧ R))
e) (P leads-to Q) and ((Q ∨R) leads-to T)

implies ((P ∨R) leads-to T)
f) P leads-to Q and P leads-to R and closed R

implies (P leads-to (Q ∧ R))

6. (Variant functions) - 20 points

For each program described below, prove, by exhibiting a variant function,
that the desired progress property holds, or show that the progress property
does not hold. Assume the semantics of minimal progress: At every step
in the computation, if some action is enabled, then some enabled action is
executed.

2

a) Let x.j be an integer for 0 ≤ j < N . For each j in the range 0 < j < N ,
consider the program action:

x.j < x.(j − 1) → x.j, x.(j − 1) := x.(j − 1), x.j
The progress property to be verified is:

true leads-to (∀j : 0 < j < N : x.j >= x.(j − 1))

b) Given are line segments L.1, L.2, ..., L.N in the X-Y plane (assume all
2N endpoints are unique) and a program that consists of one action for each
pair (L.j, L.K) of line segments:

L.j and L.k intersect --> swap any one endpoint of L.j

with any one endpoint of L.k,

thus making L.j and L.k nonintersecting

The progress property to be verified is: “the program eventually termi-
nates”

7. (Verifying closure and leads-to)

Consider the program TRANS over the boolean variables b, c, and d :

b −→ c := true
[]
b ∧ c −→ d := true

Are the following properties true in TRANS ? (Explain your answer care-
fully. A formal proof is not necessary.)

(i) closed (¬b ∧ c)
(ii) closed (¬c ∧ d)
(iii) c leads-to d
(iv) b leads-to d

Does the variant function

(3 − number of variables of TRANS that are true)

suffice to verify the leads-to predicate in part (iii)? in part (iv)?

3

8. (Distributed load balancing)

Prove either that the desired liveness specification holds

by exhibiting a variant function, or show that it does not hold.

Let x.j be an integer for each node j in an undirected graph.

For each pair of neighboring nodes j and k in the graph,

consider the program action:

(x.j - x.k) > 1 --> x.j, x.k := x.j - 1, x.k + 1

The liveness specification to be verified for this set of actions is:

true leads-to (forall j, k: j and k are neighboring nodes:

|x.j-x.k| <= 1)

4

9. (Verifying Hoare-triples)

Let m , n, and l be integers, and M and N be integer constants. Care-
fully prove or disprove the following Hoare-triples. (Formal proofs are not
necessary, but are encouraged).

(a) {m = M}
m < 0 −→ m := −m

{m = |M |}

(b) {m > M}
m > n −→ m,n := n,m

{m ≤ n}

Here are two new rules about Hoare-triples:
Rule of Sequential Assignment:
Let x and y be variables and E and F be expressions whose value are in the
domain of x and y, respectively,a and let P be a state predicate.

{(P [y := F]) [x := E]} true −→ x := E ; y := F {P}

Rule of Guards:
Let prog be a program with two actions g1 −→ st1 and g2 −→ st2, and let
Q and R be state predicates of prog.

Q ⇒ g1 ∨ g2 ,
{Q} g1 −→ st1 {R} ,
{Q} g2 −→ st2 {R}

implies
{Q} prog {R}

Prove or disprove the following Hoare-triples:

(c) {m=M ∧ n=N}
true −→ n := n+m ; m := n−m ; n := n−m

{m=N ∧ n=M}

(d) {true} l ≤ m −→ n := m [] m ≤ l −→ n := l {n = max(l,m)}

5

