```
1. (Propositional Calculus - 10 points)
```

Let P, Q, R range over state predicates of some program. Prove or disprove the following:
a) $P \vee(P \wedge Q) \equiv P$
b) $P \wedge(Q \vee R) \equiv(P \vee Q) \wedge(P \vee R)$
c) $\neg(P \equiv Q) \equiv \neg P \equiv \neg Q$
d) $P \equiv Q \equiv(P \vee Q) \equiv(P \wedge Q)$
2. (More Propositional Calculus - 6 points)
a) Prove $\neg \neg P \equiv P$
b) Prove the identity of $\vee, P \vee$ false $\equiv P$, by transforming its more structured side into its simpler side.
c) Prove $P \Rightarrow Q \equiv \neg P \vee \neg Q \equiv \neg P$
3. (Predicate Calculus - 10 points)
a) $\operatorname{Prove}(\forall x: R: P \equiv Q) \Rightarrow((\forall x: R: P) \equiv(\forall x: R: Q))$
b) Prove $-(\exists x: R: P) \equiv(\forall x: R: \neg P)$
c) Translate the following English statements into predicate logic:
(i) Every positive integer is smaller than the absolute value of some negative integer. (Use abs.i for the absolute value of i)
(ii) Real number i is the largest real solution of the equation $f . i=i+1$
(iii) No integer is larger than all others.
d) Translate into English the meaning of :
(i) $(\exists x, y: x \in R \wedge y \in R:(f . x<0 \wedge 0<f . y) \Rightarrow(\exists z: z \in$ Reals $: f . z=$ 0))
(ii) $(\forall z: z \in$ Integers \wedge even. $z:(\forall w: w \in$ Integers \wedge odd. $w: z \neq w))$
4. (Closure) -- 30 points

Let P and Q range over state predicates of a program prog. Recall that the statements of each action of prog are terminating.
Recall that in class we defined:

$$
\text { closed } P \text { iff }\{P\} \operatorname{prog}\{P\}
$$

```
True or False? (Explain your answer.)
```

a) closed false
b) closed true
c) $($ closed P or closed $Q)$ implies $(\operatorname{closed}(P \vee Q))$
d) (closed $\neg P$) implies (closed P)
e) $(\operatorname{closed}(P \vee Q))$ implies $(\forall s::\{P\} s\{Q\})$
f) (exists $s::\{P\} s\{$ false $\}$) implies (closed $\neg P$)
g) closed $(P \vee Q)$
implies $\quad(\forall s::\{P\} \mathrm{s}\{P \vee Q\})$
h) closed P and closed Q and $(R \Rightarrow(P \wedge Q))$ implies \quad closed R
i) closed P and closed Q and closed R
implies $\quad \operatorname{closed}(P \wedge(Q \wedge R))$
5. (Leads-to) -- 24 points

Let P, Q, and R range over state predicates of a program prog.
True or False? (Explain your answer.)
a) false leads-to $P \vee Q$
b) (P leads-to Q) implies $((P \wedge Q)$ leads-to $Q)$
c) $(P$ leads-to $Q)$ implies $((P \wedge R)$ leads-to $Q)$
d) $((P$ leads-to $Q)$ and ($(P$ leads-to $R)$) implies $(P$ leads-to $(Q \wedge R))$
e) $(P$ leads-to $Q)$ and $((Q \vee R)$ leads-to $T)$
implies $\quad((P \vee R)$ leads-to $T)$
f) P leads-to Q and P leads-to R and closed R
implies $\quad(P$ leads-to $(Q \wedge R))$
6. (Variant functions) - 20 points

For each program described below, prove, by exhibiting a variant function, that the desired progress property holds, or show that the progress property does not hold. Assume the semantics of minimal progress: At every step in the computation, if some action is enabled, then some enabled action is executed.
a) Let $x . j$ be an integer for $0 \leq j<N$. For each j in the range $0<j<N$, consider the program action:

$$
x \cdot j<x \cdot(j-1) \quad \rightarrow \quad x \cdot j, x \cdot(j-1):=x \cdot(j-1), x \cdot j
$$

The progress property to be verified is:
true leads-to $(\forall j: 0<j<N: x . j>=x .(j-1))$
b) Given are line segments $L .1, L .2, \ldots, L . N$ in the X-Y plane (assume all $2 N$ endpoints are unique) and a program that consists of one action for each pair (L.j,L.K) of line segments:

```
L.j and L.k intersect --> swap any one endpoint of L.j
with any one endpoint of L.k,
thus making L.j and L.k nonintersecting
```

The progress property to be verified is: "the program eventually terminates"
7. (Verifying closure and leads-to)

Consider the program $T R A N S$ over the boolean variables b, c, and d :

Are the following properties true in TRANS ? (Explain your answer carefully. A formal proof is not necessary.)
(i) closed $(\neg b \wedge c)$
(ii) closed $(\neg c \wedge d)$
(iii) c leads-to d
(iv) b leads-to d

Does the variant function

$$
\text { (3 - number of variables of } T R A N S \text { that are true) }
$$

suffice to verify the leads-to predicate in part (iii)? in part (iv)?

Prove either that the desired liveness specification holds by exhibiting a variant function, or show that it does not hold.

Let $x . j$ be an integer for each node j in an undirected graph. For each pair of neighboring nodes j and k in the graph, consider the program action:

$$
(x \cdot j-x \cdot k)>1 \quad-->\quad x \cdot j, x \cdot k:=x \cdot j-1, x \cdot k+1
$$

The liveness specification to be verified for this set of actions is:
true leads-to (forall j, k: j and k are neighboring nodes:
$|x \cdot j-x . k|<=1)$

9. (Verifying Hoare-triples)

Let m, n, and l be integers, and M and N be integer constants. Carefully prove or disprove the following Hoare-triples. (Formal proofs are not necessary, but are encouraged).
(a) $\quad\{m=M\}$
$m<0 \longrightarrow m:=-m$
$\{m=|M|\}$
(b) $\{m>M\}$

$$
\begin{aligned}
& \quad m>n \longrightarrow m, n:=n, m \\
& \{m \leq n\}
\end{aligned}
$$

Here are two new rules about Hoare-triples:

Rule of Sequential Assignment:

Let x and y be variables and E and F be expressions whose value are in the domain of x and y, respectively,a and let P be a state predicate.

$$
\{(P[y:=F])[x:=E]\} \quad \text { true } \longrightarrow x:=E ; y:=F \quad\{P\}
$$

Rule of Guards:

Let prog be a program with two actions $g 1 \longrightarrow s t 1$ and $g 2 \longrightarrow s t 2$, and let Q and R be state predicates of prog.

$$
\begin{aligned}
& Q \Rightarrow g 1 \vee g 2, \\
& \{Q\} g 1 \longrightarrow s t 1\{R\}, \\
& \{Q\} g 2 \longrightarrow s t 2\{R\} \\
& \{Q\} \operatorname{prog}\{R\}
\end{aligned}
$$

implies

Prove or disprove the following Hoare-triples:
(c) $\quad\{m=M \wedge n=N\}$
true $\longrightarrow n:=n+m ; m:=n-m ; n:=n-m$ $\{m=N \wedge n=M\}$
(d) $\quad\{$ true $\} \quad l \leq m \longrightarrow n:=m \quad \| \quad m \leq l \longrightarrow n:=l \quad\{n=\max (l, m)\}$

