
CIS 6333: Notes on Faults and Fault-tolerances

Recall that, in the absence of faults, a program satisfies its safety and liveness specification. We prove
this satisfaction by exhibiting an invariant predicate such that, in the absence of faults, the program is
always at a state where the invariant predicate is true.

Faults. The faults that a distributed/network program is subject to may be categorized in a variety
of ways:

– Type: e.g., the faults are stuck-at, fail-stop, crash, omission, timing, performance, or Byzantine.

– Duration: e.g., the faults are permanent, intermittent, or transient.

– Observability: e.g., the faults are detectable or not.

– Repair: e.g. the faults are correctable or not.

To reason about faults in a simple and uniform manner, we adopt the following thesis:

Faults are systematically represented by actions whose execution perturbs the program state.

Definition (Fault-class). A fault-class for a program p is a set of actions over the variables of p.

Consider, for example, a fault that corrupts the state of a wire. The wire itself is represented by the
following program action over two bit variables in and out:

out 6= in → out := in .

The fault that corrupts the state of the wire is represented by the fault action:

out 6= in → out :=? ,

where ? denotes a nondeterministically chosen binary-value.

For this representation to capture all of the categories mentioned above sometimes requires the use of
auxiliary state. For example, consider the fault by which the wire is stuck-at-low-voltage. In this case,
the correct behavior of the wire is represented by using an auxiliary boolean variable broken and the
program action:

out 6= in ∧ ¬broken → out := in .

If a fault occurs, the incorrect behavior of the wire is represented by the program action that sets out
to 0 provided that the state of the wire is broken:

broken → out := 0 .

The stuck-at-low-voltage fault is represented by the fault action:

¬broken → broken := true .

Continuing along these lines, consider process crashes. The crash of a process is represented by in-
troducing an auxiliary variable up for that process, as follows. Each action of that process is to be
executed only if up is true. The crash itself is modeled as the occurrence of a fault that corrupts up,
by setting it to false.

Similarly, the Byzantine behavior of a process can be captured by introducing an auxiliary variable
good, as follows: If the variable good is true, then the process executes its normal actions. When a fault
action corrupts good to false, the process executes actions whose behavior is nondeterministic.



Tolerances. We are now ready to define what it means for a program p with an invariant S to
tolerate a fault-class F .

Definition (Fault-span). Let S be an invariant of a program p and F be a fault-class.
T is an F -span of p from S

iff

S ⇒ T ,
T is closed in p, and
each action of F preserves T .

Definition(F -tolerant for SPEC from S). p is F -tolerant for SPEC from S iff there exists a state
predicate T that satisfies the following three conditions:

• At any state where S is true, T is also true. (In other words, S ⇒ T .)

• Starting from any state where T is true, if any action in p or F is executed, the resulting state is
also one where T is true. (In other words, T is closed in p and T is closed in F .)

• Starting from any state where T is true, every computation of p alone eventually reaches a state
where S is true. (In other words, T leads to S in p.)

This definition may be understood as follows. The state predicate T is an F -span of p from S— a
boundary in the state space of p up to which (but not beyond which) the state of p may be perturbed
by the occurrence of faults in F . If faults in F continue to occur, the state of p remains within this
boundary. When faults in F stop occurring, p converges from this boundary to the stricter boundary
in the state space where the invariant S is true.

It is important to note that there may be multiple such state predicates T from which p meets the
above three requirements. Each of these multiple T state predicates captures a (potentially different)
type of fault-tolerance of p.

Types of Tolerances. We now proceed to classify three types of fault-tolerances that a program
can exhibit, namely masking, nonmasking, and fail-safe tolerance.

1. In the presence of faults, a masking tolerant program always satisfies its safety specification, and
the execution of p after execution of actions in F yields a computation that is in both the safety and
liveness specification of p, i.e., the computation is in the problem specification of p.

Definition (masking tolerant). p is masking tolerant to F for SPEC from S iff p is F -tolerant for
SPEC from S, and S is closed in F . (In other words, if a fault in F occurs in a state where S is true,
p continues to be in a state where S is true.)

We prove this tolerance by exhibiting an invariant predicate such that even in the presence of faults
the program is always at a state where the invariant predicate is true.

2. Nonmasking tolerance is less strict than masking tolerance: in the presence of faults, the program
need not satisfy its safety specification but, when faults stop occurring, the program eventually satisfies
both its safety and liveness specification; i.e., the computation has a suffix that is in the problem
specification.

Definition (nonmasking tolerant). p is nonmasking tolerant to F for SPEC from S iff p is F -tolerant
for SPEC from S, and S is not closed in F . (In other words, if a fault in F occurs in a state where S



is true, p may be perturbed to a state where S is violated. However, p then recovers to a state where
S is true.)

We prove this tolerance by exhibiting an invariant predicate such that when faults stop occurring
the computation eventually reaches (recovers to) a state where the invariant predicate is true. More
specifically, this would involve calculating a fault-span predicate, and showing that:

T leads-to S in p

We distinguish a special case of nonmasking tolerance: p is stabilizing tolerant to F iff p is nonmasking
tolerant to F , and true converges to S in p. (In other words, stabilizing tolerant programs recover from
any state in the program state space to S.)

3. Fail-safe tolerance is also less strict than masking: in the presence of faults, the program satis-
fies its safety specification but, when faults stop occurring, the program need not satisfy its liveness
specification; i.e., the computation is in the safety specification –but not necessarily in the liveness
specification.

Definition (fail-safe tolerant). Let SSPEC be the minimal safety specification that contains SPEC.

p is fail-safe tolerant to F for SPEC from S iff there exists a state predicate R such that p is F -tolerant
for SSPEC from S ∨ R, S ∨ R is closed in p and in F . (In other words, if a fault in F occurs in
a state where S is true, p may be perturbed to a state where S or R is true. In the latter case, the
subsequent execution of p yields a computation that is in SSPEC but not necessarily in SPEC.)

We prove this satisfaction by exhibiting an invariant predicate and a safe predicate such that when
faults occur the program is always at a state where the invariant predicate is true or at least the safe
predicate is true.

Examples of Types of Tolerances. Consider the critical section problem: Its safety specifi-
cation is mutual exclusion —multiple processes cannot simultaneously be in the critical section— and
its liveness specification is freedom from deadlock —if some process requests critical section access then
eventually some process accesses its critical section.

For the critical section problem, a masking fault-tolerant solution would preserve both mutual exclusion
in the presence of the faults and satisfy freedom from deadlock if only finitely many faults occurred. A
nonmasking fault-tolerant solution would eventually satisfy both mutual exclusion and freedom from
deadlock if only finitely many faults occurred. Observe that this is equivalent to saying that the solution
would satisfy freedom from deadlock and eventually satisfy mutual exclution if only finitely many faults
occurred. A failsafe fault-tolerant solution would satisfy mutual exclusion in the presence of faults,
but not necessarily freedom from deadlock.

Next, we give an example in the use of double/triple modular redundancy: The problem is to assign
the value of an input variable into the variable out. Sensors named x, y, z contain the value of the input
variable. Faults may corrupt the sensor values values of at most one of the sensors.

Fault-intolerant program IR. Program IR consists of a single action that copies the value of x into
out. The value ⊥ of out denotes that out has not been assigned. Thus, the action of IR is as follows:

IR :: out=⊥ −→ out := x

IR satisfies the specification in the absence of one sensor corruption but not in its presence.



Fail-safe fault-tolerant program SR. To preserve safety in the presence of one corrupted sensor, we use
another sensor y thus obtaining double modular redundancy:

SR :: out=⊥ ∧ x=y −→ out := x

SR does not satisfy its liveness specification in the presence of one sensor corruption.

Nonmasking fault-tolerant program NR. To restore safety in the presence of one corrupted sensor,
while preserving liveness, we use yet another sensor z thus obtaining triple modular redundancy:

NR1 :: out=⊥ −→ out := x
NR2 :: out=x ∧ (x 6=y ∧ x 6=z) −→ out := y or out := z

MR satisfies the livenss specification and eventually satisfies the safety specification in the presence of
one sensor corruption.

Masking fault-tolerant program MR. In fact, triple modular redundancy suffices to preserve both safety
and liveness in the presence of a sensor corruption:

MR1 :: out=⊥ ∧ (x=y ∨ x=z) −→ out := x
MR2 :: out=⊥ ∧ (y=x ∨ y=z) −→ out := y
MR3 :: out=⊥ ∧ (z=y ∨ z=x) −→ out := z

MR satisfies the specification in the presence of one sensor corruption.

Remarks.

“In the absence of faults” means that each computation consists of program actions only.

“In the presence of faults” means that each computation is an interleaving of program and fault actions.

“When faults stop occurring” means that the computation has only finitely many occurrences of fault
actions.

A computation “eventually satisfies” a property means that the computation has a suffix that satisfies
the property.

For design and engineering purposes, it is important to characterize the classes of faults that the pro-
gram is subject to. This characterization involves analyzing the environment of the program — the
environment includes other program with which this interacts. In some cases, exhaustively characteriz-
ing the fault classes is difficult. In such cases, one should choose some fault-class that is large enough to
accommodate all possible faults. It is often for this reason that designers choose weak fault-models such
as transient state failures (where the state may be perturbed arbitrarily) or Byzantine failure (where
the program may behave arbitrarily).

We have made an assumption in this discussion: execution of any fault action in F always maintains
the problem specification, i.e., if a prefix σ maintains a problem specification and σs is the extended
prefix obtained by execution of a fault action in F (where s is a state and σs is the concatenation of
σ and s), then σs also maintains the problem specification.



Fail-Safe/Masking: Atomic Commitment Protocol

Specification

Each process casts one of two votes, Yes or No, then reaches one of two decisions, Commit or Abort,
such that a process reaches a Commit decision iff all processes voted Yes.
Faults may stop or restart processes.

Two-Phase Commit Protocol

As its name suggests, this protocol consists of two phases. In the first phase, each process casts its vote
and sends the vote to a distinguished “coordinator” process c. In the second phase, the coordinator
reaches a decision based on the votes received, and broadcasts the decision to all processes.

Process c has three actions. In the first action, c casts its vote, enters the second phase, and starts
waiting for the votes of other processes. In the second action, c detects that all processes have voted
Yes, and reaches a Commit decision. In the third action, c detects that some process has voted No or
has stopped, and reaches an Abort decision.

Each process j other than the coordinator has three actions. In the first action, j detects that c has
voted and casts its vote. In the second action, j detects that c has stopped and reaches an Abort
decision. In the third action, j detects that some process has completed its second phase and reaches
the same decision as that process has.

For each process j, let

• ph.j be the current phase of j; ph.j is 0 initially, 1 after j has cast its vote, and 2 after j has
reached a decision,

• v.j be the vote of j; v.j is true iff the vote is Yes,

• d.j be the decision of j; d.j is true iff the vote is Yes,

• up.j be the current status of j; up.j is true iff j is executing.

The Two-phase protocol is described formally in the following program, along with the set of faults it
tolerates.



program Two-phase
constant X : set of ID;

c : X;
var ph : array X of 0..2;

up, v, d : array X of boolean;
process j : X;
parameter k : X;
begin
j=c ∧ up.j ∧ ph.j=0 → ph.j , v.j := 1 , ?
[]
j=c ∧ up.j ∧ ph.j=1 ∧ (∀l ∈ X : up.l ∧ ph.l=1 ∧ v.l) → ph.j , d.j := 2 , true
[]
j=c ∧ up.j ∧ ph.j=1 ∧ (∃l ∈ X : ¬up.l∨ph.l=2∨(ph.l=1 ∧¬v.l))→ ph.j , d.j := 2 , false
[]
j 6=c ∧ up.j ∧ ph.j=0 ∧ (up.c ∧ ph.c=1) → ph.j , v.j := 1 , ?
[]
j 6=c ∧ up.j ∧ ph.j=0 ∧ ¬up.c → ph.j , d.j := 2 , false
[]
j 6=c ∧ up.j ∧ ph.j<ph.k ∧ (up.k ∧ ph.k=2) → ph.j , d.j := 2 , d.k
end

faults F
{true → up.j := ¬up.j}

Program Two-phase is F -tolerant for S, where

S = ph.c=0 ⇒ (∀j : ph.j=0 ∨ (ph.j=2 ∧ ¬d.j))
∧ ph.c=1 ⇒ (∀j : ph.j 6=2 ∨ ¬d.j)
∧ (ph.c=2 ∧ d.c) ⇒ (∀j : ph.j 6=0 ∧ v.j ∧ (ph.j 6=2 ∨ d.j))
∧ (ph.c=2 ∧ ¬d.c) ⇒ (∀j : ph.j 6=2 ∨ ¬d.j )

Observe that processes decide to Commit iff each process votes Yes, in all computations of program
Two-phase that start in a state where each process is yet to vote.



Stabilizing: Minimum Spanning Tree Construction

The specification is to continually maintain a rooted minumum spanning tree, with stabilizing toler-
ance to faults that change the set of up processes or the adjacency relation. In the solution described
below, we accommodate such changes by ensuring that the reconfiguration program performs its task
irrespective of which state it starts from.

In our solution, the rooted spanning tree is represented by a “father” relation between the processes.
Each tree.i process maintains a variable f.i whose value denotes the index of the current father of
process P.i. Since the layer can start in any state, the initial graph of the father relation (induced by
the initial values of the f.i variables) may be arbitrary. In particular, the initial graph may be a forest
of rooted trees or it may contain cycles.

For the case where the initial graph is a forest of rooted trees, all trees are collapsed into a single tree
by giving precedence to the tree whose root has the highest index. This is achieved as follows. Each
tree.i process maintains a variable root.i whose value denotes the index of the current root process of
P.i. If root.i is lower than root.j for some adjacent process P.j then tree.i sets root.i to root.j and
makes P.j the father of P.i.

For the case where the initial graph has cycles, each cycle is detected and removed by using a bound
on the length of the path from each process to its root process in the spanning tree. This is achieved as
follows. Each tree.i process maintains a variable d.i whose value denotes the length of a shortest path
from P.i to P.(root.i). To detect a cycle, tree.i sets d.i to be d.(f.i)+1 whenever f.i ∈ N.i and d.i < K.
The net effect of executing this action is that if a cycle exists then the d.i value of each process P.i in
the cycle gets “bumped up” repeatedly. Eventually, some d.i exceeds K−1, where K is the maximum
possible number of up processes. Since the length of each path in the adjacency graph is bounded by
K−1, the cycle is detected. To remove a cycle that it has detected, tree.i makes P.i its own father.



process tree.i (i : 1 .. K)
var root.i, f.i : 1 .. K;

d.i : integer;
parameter j : 1 .. K;

begin

(root.i < i) ∨
(f.i = i ∧ (root.i 6= i ∨ d.i 6=0)) ∨
(f.i 6∈ (N.i ∪ {i}) ∨ d.i ≥ K) −→ root.i, f.i, d.i := i, i, 0

[]
f.i = j ∧ j∈N.i ∧ d.i<K ∧
(root.i 6=root.j ∨ d.i 6=d.j+1) −→ root.i, d.i := root.j, d.j+1

[]
(root.i<root.j ∧ j∈N.i ∧ d.j<K) ∨
(root.i=root.j ∧ j∈N.i ∧ d.j+1<d.i) −→ root.i, f.i, d.i := root.j, j, d.j+1

end

Figure 1: Process tree.i

This program satisfies true leads to G, where

G ≡ (k = max {i | P.i is up}) ∧
(∀i : P.i is up :

(i=k ⇒ (root.i= i ∧ f.i= i ∧ d.i=0)) ∧
(i 6=k ⇒ (root.i=k ∧ (∃j : j ∈ N.i : f.i=j ∧ d.i=d.j+1 ∧ d.j=min{d.j′|j′ ∈ N.i}))))

At each state in G, for each process P.i, root.i equals the highest index among all up processes, f.i is
such that some shortest path between process P.i and the root process P.(root.i) passes through the
father process P.(f.i), and d.i equals the length of this path. Therefore, a rooted spanning tree exists.
Also, note that each state in G is a fixed-point; i.e., once the tree.i processs reach a state in G, no
action in any of the tree.i modules is enabled.


