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TRIANGULAR DECOMPOSITION METHODS FOR SOLVING
REDUCIBLE

NONLINEAR SYSTEMS OF EQUATIONS*

J. E. DENNIS, JR.t, JOSl MARIO MARTNEZ$, AND XIAODONG ZHANG

Abstract. This paper generalizes to the nonlinear case a standard way to solve general sparse
systems of linear equations. In particular, Duff [J. Inst. Math. Appl., 19 (1977), pp. 339-342] has
suggested that row and column interchanges be applied to permute the coefficient matrix of a linear
system into block lower triangular form., The linear system then can be solved by using the associated
block Gauss-Seidel or forward block substitution scheme. This is the approach taken in the Harwell
MA28 routine. If more than one matrix with the same sparsity pattern is to be factored, then the
reordering need not be redone. In extending this approach to nonlinear problems, it is necessary to
assume as in the linear case that component equations can be evaluated separately from equations
in other blocks. The algorithm for doing the reordering is very fast, and if the equations can be put
into block lower triangular form with each block size much less than the dimension of the system,
then a large savings is in order because only the diagonal blocks need to be factored. In the nonlinear
variants considered here, there are additional advantages. Not only are just the diagonal blocks of
the Jacobian matrix computed and factored, but the off-diagonal partial derivatives need not even
exist. Numerical tests and analytic results affirm the intuition that these variants are superior locally
to Newton’s method. Current work is concerned with globalizing these methods and with variants
especially suited to parallel implementations.

Key words, block triangular decomposition, Gauss-Seidel-Newton method, sparse nonlinear
systems of equations, parallel processing
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1. Introduction. This paper will consider the problem of solving the large-scale
nonlinear system of equations

(1.1) F(x) =0,

where F" Rn Rn and the Jacobian J(x) is sparse. We will assume we know the
structural sparsity pattern of the Jacobian matrix J(xk). By this we mean that we will
assume we have encoded which components of x affect the value of each component
f of F. We admit that there may be some incidental additional sparsity in J(x) at
some particular x caused by some of the partial derivatives happening to be zero at
that x, but we do not attempt to exploit incidental sparsity. One way to determine
structural sparsity would be to use finite differences to compute the jacobian at some
point, and assume that any exact zero in the result is a structural zero. Of course, it
is possible to foil this scheme, but it is highly unlikely to fail in practice.
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We will analyze a rather large class of methods. They are decomposition methods,
and they share the congenital advantages and disadvantages of this class. Among
them, if a problem can be decomposed in the requisite way, it will be rather obvious
that the correct choice of a method from this class would be a sensible way to attack
the problem. On the other hand, the choice of a particular member of this class for
a particular problem is always going to depend on some properties of the function,
but we think there are many hints here as to how to make this decision. However,
there are some basic assumptions we make in order to be reasonably confident that
one should choose one of the methods discussed here rather than a straightforward
Newton’s method, which is in fact one of the methods considered here when the
sparsity is sufficiently random.

The main assumption we make in order to use effectively one of the methods
considered here, is that the components of F should be able to be partitioned into
blocks of components that can be evaluated each at different points in a total time
roughly equivalent to the evaluation of F at a single point. This is a strong assumption
which is by no means always correct, but it is true for many large problems, where
it is not at all unusual to have difficulty in applying library versions of Newton’s
method because they usually assume that the user at least will furnish a routine
that accepts x and returns F(x). In many cases, the user assembles and encodes
the residual calculations in blocks and never thinks in terms of computing the entire
vector F(x) at one time. To make things simple, we make our presentation here as if
each component could constitute such a block.

The second assumption is that Tarjan’s algorithm [16] applied in the usual way
Duff [6] to the sparsity structure of the Jacobian F’(x) would result in a set of row
and column permutations P and Q that would give PF (x)Q a nontrivial block lower
triangular structure. This actually goes somewhat with the first assumption in prac-
tice, but when the decomposition gives the entire Jacobian as a single block, then all
the methods given here reduce to Newton’s method with various strategies for when
to reevaluate the Jacobian.

In large engineering systems, these properties are very common. To see this,
consider the simulation of a large system of roughly sequential processes like a chemical
plant. It is standard in chemical engineering to have a library of equation models of
component processes (distillation columns, catalytic crackers, etc.) and, for a specific
design problem, to pull these off the shelf and connect them by additional equations
that set the outputs from a certain process to the inputs to its daughter processes. Of
course, there can be feedback loops that complicate the Jacobian structure, but that
is dealt with cheaply by Tarjan’s algorithm, and the resulting block lower triangular
decomposition of such structures generally is found to be very useful in solving for
the Newton step.

The last difficulty we mention is again common to decomposition methods. These
methods generally are more difficult to implement in such a way as to ensure conver-
gence from poor initial guesses. For example, no one has yet published a convincing
way to globalize any of the Brown-Brent methods. And yet, Brown-Brent methods
and Gauss-Seidel methods, which include the ones proposed here, are used regularly
in practice. There are at least two reasons for this. The first is that these decom-
position methods seem to be able to converge unmodified from worse initial guesses
than methods that make more superficial use of structure. (See Mor and Cosnard
[12].) The second is that for many applications there are very good initial guesses
available as a matter of course. Still, we are investigating ways to extend the region
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of convergence for these methods.

2. Newton’s method. The standard Newton’s method for (1.1) generates suc-
cessive estimates xk E Rn of a solution x* Rn of (1.1) as:

(2.1) Solve J(Xk)sN --F(xk) and set xk+l Xk-}- 8N, k-O, 1,

In the case of large sparse nonlinear problems, a single standard method, such as the
Newton’s method, may not handle all the instances of (1.1) efficiently, but rather the
algorithm must take into account the sparsity structure and other special characteris-
tics of the problem. Our purpose here is to suggest one way to use existing technology
automatically to tailor methods for particular sparsity patterns.

As motivation, we will suppose we decided to use Newton’s method on a general
instance of (1.1). Then we probably would use a graph coloring approach to compute
J(xk) efficiently (see Curtis, Powell, and Reid [4], Coleman and Mor [3], and Dennis
and Schnabel [5]). After that, we might apply the Harwell code MA28 to solve the
linear system (2.1). If we did so, then permutation matrices P and Q would be found
such that

PJ(xk)Q(QTsN) -PF(xk)

is a block lower triangular system. Of course, the system may have only one block, but
the search for the permutations is cheap enough (see Harary [10], Duff [6], and Duff,
Erisman, and Reid [8]) that nothing significant is lost in trying. On the other hand,
if a nontrivial block triangular structure is revealed, then the Newton step can be
found by forward block substitution, which is the same as a linear block Gauss-Seidel
sweep down the permuted Newton system. This would require only that the diagonal
blocks be factored. Of course, the diagonal blocks of PJ(x)Q are nonsingular if and
only if J(x) is nonsingular. For many problems, the structural sparsity of J(x) stays
constant across all iterations and so it is not necessary to reorder at every iteration.

The foregoing is exactly the algorithm we refer to when we compare our suggested
methods to Newton’s method.

In a nutshell, what we propose here is to reorder the equations and variables
still only once, but before, rather than after, starting the nonlinear solution process.
If Newton’s method is implemented as outlined above, then reordering information
is being computed and used in the linear inner loop, but is not being used by the
nonlinear outer loop. Our purpose is to argue that this is wasteful.

In the next section, we will make precise the comparison between the Newton
method defined by (2.2) and the algorithms we suggest, which are variants of block
Gauss-Seidel-Newton, or block Jacobi-Newton in the terminology introduced in Or-
tega and Rheinboldt [14]. In 3, we outline some variants, which we analyze in 4.
Section 5 contains the results of some numerical experiments that show the advantage
of our approach. Section 6 is devoted to a discussion and summary of these results
and where they seem to point. The proofs of the convergence results are included in
the Appendix.

3. Newton-Gauss-Seidel vs. Gauss-Seidel-Newton. It will simplify no-
tation greatly if we assume for the remainder of this paper that the permutations have
been absorbed into the problem. Thus, when we write x, we really mean QTx; when
we write F(x), we really mean PF(QTx); and J(x) is really the block lower triangular
matrix PF(x)Q. Thus, if we apply Newton’s method to solving this incarnation of
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(1.1) given by

F(),

F() F(,. z),

)(1, ,...,
where

x (Xl, x2, Xm)T E Rnl Rn "" R’’ R’

Fi Rnl Rn RTM "* Rn, 1, 2,..., m,

m

E ni n,
i=1

then we have to solve

(3.e)

_k+l k sgfori 1 mandk 0,1,2,and seti =xi +
We should use forward block substitution, which is the same as the block Gauss-

Seidel linear iteration, to compute the Newton step by

(3.3) 0(z[) ff -F(),Oxl

and for 2,..., m, s/N comes from the ni ni linear system

i-1 k
kOFi(xkloxi xki siN Fi(Xkl" ,xi)+ j=IE OFi(xk" xi s

But now the key observation is that the right sides of (3.4) are just the first-
order Taylor approximations to -Fi(Xkl + sNl ,xk2 + S2N,..., Xi_k + siN-l, xki ). Thus, if
we can compute values of Fi independently, it must surely be better to do so than
to build a Taylor approximation to it at the expense of computing the strict lower
triangular part of the Jacobian. This leads us to suggest the block version of the
Gauss-Seidel-Newton method given by

(3.5)
kOFi(Xl xi

Oxi
. )8i --Fi(xkl "4r" 81,X " 82,. -1 "nt- 8i-1,
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where xi’k-t-1 xik + si, i 1,.. m and k 0, 1, 2,
It is worth noting here that the fact that the lower triangular parts of the Jacobian

do not appear in the algorithm has the effect that the local quadratic convergence
analysis given below does not require the lower triangular parts of the Jacobian even
to exist. In contrast, for Newton’s method, they must exist and be smooth so that
the Taylor approximation (3.4) is sufficiently accurate not to impede convergence.

Finally, let us set some more terminology. The methods fit the general framework
of p. 214 of Ortega and Rheinboldt [14]. Our methods are only for the block lower
triangular case. But, we were unable to find a naming scheme to reflect that which
did not eventually get out of hand when we applied it to the variants given in the
next section. Thus, we will base our notation on Ortega and Rheinboldt [14], but we
will not use the word "block" in any of the names, since it would have exactly the
same obvious meaning in all the names. Notice that for (3.1), Newton’s method and
the Newton-Gauss-Seidel method are both given by (3.4), and so they are identical.
The reason for such attention to names is that things are about to get complicated
in the next section.

4. Variants of nonlinear Gauss-Seidel. In this section, we will look at some
modifications of the Gauss-Seidel-Newton method given by (3.5). These will consist
in using modifications of Newton’s method on each block.

First note that for all these variants, besides the obvious advantages of not needing
to compute the strict lower triangle of the Jacobian, it would be possible to apply
only to the diagonal blocks graph coloring heuristics to compute the derivatives by
finite differences or automatic differentiation. And so, based again on the assumption
that the Fi can be evaluated independently and assuming also that the cost of F(x)
is the same as the sum of the costs of an evaluation of each Fi, one could not do
worse than the result of coloring the entire graph. On a parallel machine, there are
obvious possibilities for savings by considering coloring, derivative calculations, and
factorizations independently for each diagonal block.

4.1. Nonlinear Gauss-Seidel. Steward [15] and Erickson [9] suggest the lim-
iting case of the class of methods we will consider. It is the block version of what
Ortega and Rheinboldt [14] call the nonlinear Gauss-Seidel method. In this method,
one solves the block systems successively starting from the top left corner and using
the newest values as they are found:

(4.1) x* * i-1,2,.., m.solve F(x’, _l,x) 0 for x,

This method is defined independently of the particular solution technique applied
to the blocks, but Erickson [9] used Newton’s method to solve for each x for his
comparisons with Newton’s method (3.4). He ran experiments on a 66-variable non-
linear block triangular equation, where the sizes of the 2 diagonal blocks are 44 and
22, respectively.

The ratio he reported of the computing time between Newton’s method and the
nonlinear Gauss-Seidel method was 2.7. Since Erickson does not specify whether
he takes advantage of the block forward substitution approach for solving the linear
systems for the Newton step, and since this ratio is very close to 3, which could
be estimated by Eim__l n3 (En__l ni)3 for the savings from doing only the block
factorizations rather than the entire matrix, we are not sure how to interpret these
results.
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4.2. The Gauss-Seidel-Newton method. The Gauss-Seidel principle is to
use new information as soon as it is available in order to achieve fast convergence,
and this should be especially advantageous for block lower triangular systems.

k [gi(xki,i)]-I (xkixi Fi ’)
(4.2)

k,i (Xk+l .,k+l Xk
OFi(’)

i 1,..., m.where xi ,...,i-1, i), Ji(’)
Oxi

k,i and Ji without further definition.Below, we will use xi
It will not surprise the reader that for all the examples we tried, this method

converged in less time than Newton’s method. There are several reasons for this.
First, there is the probability that we will use fewer iterations because of the Gauss-
Seidel principle. But even if we use the same number of iterations, we do less function
work because only diagonal Jacobian blocks are evaluated rather than the whole
matrix. The only savings in linear algebra required for our method compared to
Newton’s method is that Newton’s method has to form the linear combinations of
products of blocks in the strict lower triangular part of the Jacobian with already
determined components of the Newton step in order to correct the right-hand side of
the linear system to be solved for the next component. Test results are given in 5.

4.3. The Gauss-Seidel-Newton stationary (q-step) method. In practice,
applying more than one inner iteration to each block can reduce the total number
of outer sweeps and the total computing time. Of course, too many inner iterations
means that one is doing nonlinear Gauss-Seidel, which has a slower convergence rate
than Newton’s method.

There is another very interesting issue to consider in deciding how many inner
iterations to use. Suppose, for the sake of argument, that x (x,x2) has the
property that x : x, but x2 x. Then, unless one iterates on the first block
until convergence, x is not x. Thus, each inner iteration on the second block will
be taking us further from x because it will be trying to converge to a solution to

O.
This is an extreme case, but in general one can extend this way of thinking to see

that when we begin iterating on a block, it is probably true that the earlier blocks
have improved their variables. Therefore, we expect that as we iterate on the ith block

l.(.k+toward a solution to. i-1 ,xi) 0, initially we will improve our approximation to

x. However, if we keep doing inner iterations, that improvement will end and we will
$draw further from x as we continue toward the root of F(xk+1 .k+l

’’’’’’i--l xi) 0
The experimental results of several such cases are in 5, including one case in

which we diverge if we take more than two inner iterations, but not enough so that
we are doing nonlinear Gauss-Seidel.

We found it best to implement the inner iterations in the cheapest way; we use
a stationary Newton method in which we do a new block function evaluation at each
inner iteration, but only one Jacobian evaluation and factorization per block per outer
sweep. The algorithm for q inner stationary Newton steps on each block is as follows:

(4.3)
Xk(,+l) ...k(,) k,i (Xk(,),
forv--0,...,q-1, i=l,...,m, k=0,1,2,...,

and xi (x ,i-1 ,x with x xi,
(q) _k+

X x
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4.4. The modified Gauss-Seidel-Newton stationary (q-step) method.
Another variation, which is well suited to parallel computation, is to evaluate and
factor the diagonal blocks concurrently at xk. We will show in the next section that
this modified method and its variations are quadratically convergent. The algorithm
for q inner stationary Newton steps on each block is as follows:

(4.4)
(xk(’),i_k(,+l) x(,) [ji(xk)]_iFi,, ,,

for-0,...,q-1, i=l,...,m, k-0,1,2,

4.5. Gauss-Seidel-quasi-Newton q-step methods. The more general form
for the methods we consider, as well .as some others we will consider in future work,
is

(Xk(’)’i Bk() a nonsingular ni x ni matrix,
....k(’),i lk+1 .k+l (Y) (O)=xk (q)and x (x ,i-1 ,x with x i, x x

(4.5) for=0,...,q-1, i=l,...,m, k=0,1,2,

The notation

:i (Xl,... ,xi e RTM Rn:a "" RTM, 1,2,...,m

will be useful in the analysis. Thus, method (4.2) corresponds to (4.5) with

(4.6) B(’) &(Xl+ "+
wi__ X ), q 1,

method (4.3)is (4.5)with

(4.7) By( ) j (x[ "vi-- Xi )

and method (4.4) is (4.5) with

(4.8)

4.6. Block Jacobi-Newton. Finally, we include the well-known Jacobi-New-
ton method for completeness in our test results. It is not a forward nonlinear substi-
tution or Gauss-Seidel method.

k+l k_ [Ji(xkl,.. k -1(4.9) x xi x )] Fi(2ki ), i= 1, m, k= 1,

Note that there is no inner iteration; in order to obtain xk+l from xk, one solves the
m independent linear blocks. The same argument is used for all the Jacobian blocks
and function blocks.

Besides the simple structure for implementation, the Jac0bi method also exhibits
a high degree of parallelism. Its main drawback is its slow rate of convergence. We
will see this in the analytical convergence results and the experimental results in the
following two sections.

5. Convergence results. In this section, we will give some convergence the-
orems for (4.5). At first, they may seem surprisingly strong, but this is the power
of putting the system in block lower triangular form before starting the nonlinear
solution process.
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Let [. denote an arbitrary norm defined on each Rn as well as its subordinate
matrix norm. For every and any 2i Rn x... x R*, i 1,..., m, we use the norm

xk 2kin X* The Jacobian of Fi with respect to xiRemember that x Ym Xm.
is denoted by Ji(2i).

For all our results we will assume: There exist x* E Rn, el > 0 such that F(x) is
well defined for all x such that [Ix- x*[[ < el, and

(5.1) F(x*) --0.

The Jacobian matrix Ji(i) exists for all i such that ][i-]l < 1. Moreover, Ji(i)
is continuous at and Ji() is nonsingular for all i 1,..., m. We also assume
that for some F

(5.2) [Ji(i)-ll < F

--$for all 1,..., m and I]2i x <- e. There exists L > 0 such that

(5.3)

for all i 1,..., m and [[2i xi _< 1. There exists a _> 0 such that

for all j <_ i= 1,...,m and
LEMMA 5.1.

(5.5) IFi(2i-,xi)- Fi( i_l,Xi)l < 11- -11
for all 1,..., m, 112i xi -< tl.

Proof. This property can be easily obtained by using (5.4).
Remark. Observe that we are not assuming differentiability of Fi with respect to

variables xj, j i. This allows us to include under our analysis more general functions
than the ones considered in the usual convergence analysis for Newton methods.

THEOREM 5.2. Let r (0, 1). There exist e2 > 0 such that if

(5.6) [Ix x*[I <_ e2

and

(5.7) IB()- J(7)l-< 5

for all t 0,..., q- 1, 1,..., m, k 0, 1, 2,..., then the sequence {xk} generated
by (4.5) is well defined, converges to x*, and satisfies

(5.9) [x/k+ r-k -, 1,.. m,x -< -I1 II,
m



366 J.E. DENNIS, JR., J. M. MARTNEZ, AND X. ZHANG

and

(5.0) IIx+ x* II <- rllx x*

Moreover, for all O, 1, q l -1, m and k 0,1, 2, we have

(.)
(/) IB() LI() *1)1() + *Ix 1 < r( J(i)l + x xl+ rlli--1
Proof. See the Appendix.
The following result applies to the Gauss-Seidel-Newton (4.3) and modified Gauss-

Seidel-Newton methods (4.4) with q inner iterations.

THEOREM 5.3. Assume that the choice of Bk () in (4.5) is given by (4.7) (the
Gauss-Seidel-Newton) or by (4.8) (the modified Gauss-Seidel-Newton). Then, there
exists 3 > 0 such that if

IIx *11 < ,
the sequence generated by (4.5) is well defined and converges to x*. Furthermore,
there exists Cl such that

(.)
so that

(5.13)
and

* -k -* vT1

-kxl < IIx x +

where 0,...,q, i 1,...,m, and k 0, 1, 2,
Proof. See the Appendix.
The rest of this section is dedicated to an analysis of the Jacobi-Newton method

discussed in 3. Recall that an iteration of this method is defined by
k+l k k)(.) x g()-F(

for 1,...,m. It turns out that in a sense, the method is m-step quadratically
convergent.

THEOREM 5.4. There exist e4, c2 > 0 such that, if

(5.16) x0 X*II -- 4,the sequence generated by the Jacobi-Newton method (5.15) is well defined, converges
to x*, and satisfies

(5.17) -kT1 "12 IX-i-t-1 *< (Ix x +... + xl)
for all 1,..., rn and k _> rn- 1.

Moreover, defining

yk (xk xk2+l ,kWm-1),’’’,m

there exists a constant c3 > 0 such that

(5.18) Ilyk+l x*ll <_ c311yk x*ll 2

for all k--0, 1, 2,
Proof. See the Appendix.
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6. Experimental results. We generated our test problems from the Mor4-
Garbow-Hillstrom [13] test set. Some are polynomial and some are combinations
of polynomial and trigonometric functions. Such simple functions would not favor
the methods studied here because they are so cheap to differentiate. Thus, New-
ton’s method does not have to pay much of a penalty for the extraneous derivative
calculations.

In all cases, the diagonal blocks were fairly large, which again means that Newton’s
method does not have to do as much extraneous differentiation in computing the strict
lower triangular part of the Jacobian as if the diagonal blocks were small. But the
diagonal blocks were the same size, which our intuition says might favor a Gauss-
Seidel method because it would maximize the average amount of new information
available to each block iteration. However, all diagonal blocks of the same size would
minimize the extra linear algebra needed by Newton’s method for correcting the right-
hand sides in computing the Newton step.

The computer we used is a single processor of Inte180386 in the Sequent Symmetry
system.

We wanted to avoid having to code Tarjan’s algorithm [16] just to test our ideas,
and so we used systems already in block triangular form with known solutions.

The test problems we used were generated in a simple way from some variable-
dimension problems in Mor, Garbow, and Hillstrom [13]. Given any block dimension
n and number of blocks m, we generated some polynomial test functions from two
variable-dimension test problems as follows: Let the function Fa R’ Rn be the
block of nonlinear equations with n unknowns y- (Yl, y2,... ,Yn):

n

fi(Y) Yi + E YJ (n + 1), 1 <_ <_ n- 1,
j--1

Let Fb" Rn Rr be another block of nonlinear equations with n unknowns:

fi(y) (3- 2yi)yi- yi- 2yi+ / 1, i--1,...,n.

Now generate an n. m x n. m system in the blocks of variables x (Xl,X2,... ,x,)
by

F(x)

Fa(z )+

The second group of functions were generated from Fa, Fb, and the trigonometric
system Fc with n unknowns:

n

fi (y) n E cos yj + i(1 cos yi) sin yi,

j--1

i=l,...,n



368 J.E. DENNIS, JR., J. M. MARTNEZ, AND X. ZHANG

as follows:

Fl(x) F(xl),
F2(z, x2) Fo(z) + F(2),
F3(Xl,X2,X3) Fa(Xl) + Fb(X2) + Fc(x3),

F+(l,... ,3+1)
Fa(xl) + t-11-Ij=1Fb(x3j-1)Fc(x3j)Fa(z3j+l)]Fb(z3t-)Fc(x3t)

+ F(xt+)F(z) Ft+2(x,...,z,+2) =0.

F(zl) + H=I F(z3_l)F(z3)F(z+) + R(3+2)
P+(z,...
F(z) + H=I F(z_l)F()F(z3+)]F(z3,+2)

+ F(xt+)

F(l,X2,...

Here we report results on a single processor to demonstrate that the methods
given here are very good sequential algorithms. In later work, we will test parallel
variants of the Gauss-Seidel-Newton approach for systems of the form (3.1).

In all ces, to keep things simple the starting value of x w reonably close
to the solution, and no globMizing strategy w used. The stopping criterion was to
reduce the total function g2 norm below 10-12.

First, we compare the performance of the five methods on a 600 600 polynomial
block triangular system with six blocks of 100 variables (see Fig. 1).

As expected, the Jacobi-Newton method took the most time to converge. The
nonlinear Gauss-Seidel method took 13 iterations for each block, and total computing
time w impressively small. The Gauss-Seidel-Newton method used one iteration
less than the Newton’s method, but the computing time was about 27% because of
less time spent in Jacobian evaluation. We do not compute the strict lower triangle,
and in doing linear algebra, Newton must correct the right-hand sides in solving for
the Newton step.

The Gauss-Seidel-Newton method with more than one inner iteration w the
most effective one among all the methods for this problem. The experimental results
show that the number of outer iterations is sharply decreed from 13 to 5 .when the
number of inner iterations is increased to 2. However, the number of outer iterations
decrees more slowly the inner number of iterations increes further. The optimal
number of stationary inner iterations is problem dependent. Our experiments show
that when q 4, then k 3 w needed, and this minimized the computing time for
this system.

Next we tested a 1600 x 1600 polynomial block triangular problem with 16 blocks
of 100 variables (see Fig. 2). Unfortunately, the Jacobi-Newton method could not
converge to a solution from the same x as the other methods used. We modified
the initial value so that it w closer to a solution, and we found the solution by the
Jacobi-Newton method. This group of experiments also showed that the nonlinear
Gauss-Seidel method and the Gauss-Seidel-Newton with stationary inner iterations
converged fter than the Newton’s method.

We also tested the five methods on the second group of nonlinear block triangular
problems with combined polynomial and trigonometric functions with 8 blocks of 100



TRIANGULAR DECOMPOSITION METHODS 369

T (sec)
I400

1200

1000

800

600

400

2OO 3 itns

G-S-N(4)

5 itns
4 itns

G-S-N(3) G-S-N(2)

13 itns 13 itns

G-S-Nt

14 itns

23 itns

1) Newton J-N

FIG. 1. One-processor times for different methods on a 600 x 600 polynomial system.

T (sec)
3000

25OO

2000

1500

1000

I
7 itns

5 itns

G-S-N(5)

15 itns

8 itns

10 itns

G-S-N(4) G-S-N(3) G-S-N(2) N-G-S

17 itns

17 itns

G-S-N(1) Newton

FIG. 2. One-processor times for different methods on a 1600 x 1600 polynomial system.

variables and 16 blocks of 100 variables, respectively (see Figs. 3 and 4). Performance
was similar to the first tests, but the Jacobi-Newton method again failed to converge
on the larger problem of the second group. Also, the Gauss-Seidel-Newton method
was not as effective as before. The largest number of inner iterations successfully
applied was 2, except for the nonlinear Gauss-Seidel method which in a sense has
infinitely many inner iterations. When more inner iterations than 2 were applied, the
method did not converge to the solution (see Figs. 3 and 4).

In general, more inner iterations should make the Gauss-Seidel-Newton method
more likely to converge. But, as we discussed in 3, this is not always true. The
experiments presented in Figs. 3 and 4 are examples of this point.

The best way to handle this situation is to adaptively choose the number of inner
iterations for each block by some easily imagined strategies, such as reaching a target
percentage reduction in the block function norms. It is not our purpose in this paper
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T (sec)
2500

30 itns

2000
24 itns

1500
17 itns 23 itns 24 itns

1000

5OO

G-S-N(2) N-G-S G-S-N(1) Newton J-N

FIG. 3. One-processor times for different methods on a 800 x 800 polynomial, trigonometric
coupled variable function.
T (sec)
6000

5000

4000

3000

2000

1000

18 itns

G-S-N(2)

27 itns

N-G-S

28 itns

G-S-N(1)

10 itns

Newton

FIG. 4. One-processor times for different methods on a 1600 x 1600 polynomial, trigonometric
coupled variable function.

to complicate the basic idea with such implementational details, however important
to a production version they might be. But to illustrate the point, we did some
experiments to show how convergence can vary with the choice of qi.

For example, the best result we got for the 800 800 problem with eight blocks
of 100 variables was to use in the first and second outer iterations, respectively, 1, 2,
3, 2, 2, 2, 3, 3 inner iterations. In the third outer iteration, 2 inner iterations were
applied to the first block, and 3 to the other blocks. We obtained convergence with
five more outer iterations, with 3 inner iterations applied to each of the blocks.

This sums to 8 total outer iterations and 1024 seconds spent, which reduced the
computing time approximately 25% over the solution by the Gauss-Seidel-Newton
method with the best uniform number of inner iterations. Similarly, for the 1600
1600 problem with 16 blocks of 100 variables, 10 outer iterations and 1995 seconds
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were used with varying numbers of inner iterations, which was approximately a 30%
reduction in computing time over the best performance by applying a fixed number
of inner iterations to each block.

7. Summary and future research. We have shown that Gauss-Seidel-Newton
algorithms can be much more effective than Newton’s method applied to nonlinear
systems put into block triangular form by standard graph algorithms used to permute
general sparse linear systems to block lower triangular form.

We have introduced the notion of allowing stationary inner iterations in the
Gauss-Seidel-Newton method, and we have seen that the Jacobi-Newton method,
which has the highest degree of parallelism among the methods, has the slowest con-
vergence rate, and seems less effective.

The development of secant approximations to the diagonal blocks of a block tri-
angular Jacobian is an attractive research topic, since it would allow cheap approx-
imations and it would allow the factorization of the Jacobian approximation to be
updated efficiently. We have done some analytical studies on quasi-Newton meth-
ods in which the block diagonals are approximated by different updates such as the
Broyden update (see Broyden [1]). We plan to implement these methods on parallel
computers and to test the performance.

The algorithms we considered here all have various synchronization points in
them. For Jacobi and Gauss-Seidel methods, a potentially attractive alternative is
to allow parallel processors to proceed asynchronously. We will develop synchronous
and asynchronous parallel methods based on the sequential methods we have studied
in this paper.

A. Proofs of the convergence results.
LEMMA A1. Suppose that

(A.1) {e, i=l,...,m, =0,1,...,q}

is a set of positive real numbers such that

(A.2)
m

e
i--1

(A.3)
i-1

e’+1 _< F(5 / Le)ei / FaE ej
j--1

ofor 1,...,m and 0, 1,...,q- 1. By convention= O.
Then, there exist continuous functions i,,(e, ), i 1,..., m, u 1,..., q such

that

(A.4) i,v(0, 0) 0

and

(A.5) e _< ,(e, 5) e

for all i 1,...,m and 1,...,q.
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Proof. We proceed by induction on i. Let us first prove (A.5) for 1 by
induction on u. For u-- 1, we have by (A.2) and (A.3) that

e’ e <_ F(5 + Le)e <_ F(5 + Le)e.
Therefore, (A.5) holds with

(A.6) 1,1 (e, 5) F(5 + Le).
Now let us prove (A.4) and (A.5) for i 1 and E {1,..., q}. The inductive

hypothesis is that 1, is defined and satisfies

.(0.0) 0

and

< ,(,, )o
for t 1,...,- 1.

By (A.3) and the inductive hypothesis, we have that

7 < r( + L7-)7-<_ F (5 + L1,-1 (,, 5)e) i,-1 ({,

IF (5 + LI,-I (e, 5)e)] 1,-1 (e, )e.
Thus (A.5) holds for i 1 defining

,(e, ) F(6 + L,_(e, 5)e),_ (e, 5).
By the inductive hypothesis, , is continuous and ,(0, 0) 0. Therefore, (A.5)
is proved for 1, u 1,..., q.

and

Assume, by inductive hypothesis, that Cj,t is defined and satisfies

.(0.0) 0

< ,().ej_

for all j E 1,...,i- 1}, t? 1,...,q.
Let us prove (A.4) and (A.5) for a given > 1, u 1,... ,q. We proceed by

induction on . If- 1, we have, by (A.3) and the inductive hypothesis, that

i-1
0 0 ql<F(+Le )e + F e

j=l

i-1 j

r(e + Le) ey + r. ,(, 51
j=l kj=l

[ ],
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Thus (A.5) holds with

i-1

i,1 (e, 5) F(5 + Le) + FcZ "4,q(e, 5).
,4=1

If v > 1, we have by (A.3) and the inductive hypothesis that

0
ej.

j=l

Thus (A.5) holds, defining

i-1

i,(e, 5) F(5 + Li,_ (e, ))i,-1 (t5, ) + FcE J,q(f" )"
j=l

By the inductive hypothesis, i,u is continuous and i,u(0, 0) 0. Therefore, the
existence of the functions , such that (A.4) and (A.5) hold is proved.

Proof of Theorem 5.2. By (4.2), IJi(2)-11 < F. Therefore, we can define 51 > 0
so that IB-ll _< F for all Bi E IRnxn such that IB- Ji()l-< 1 for i= 1,..., m.

Let e2, 5 be such that 0 < e2 _< el, 0 < 1, and

r
(A.7) i,(e2, ) _<

for all 1,..., m and v 1,..., q, where the functions i, are given by Lemma
A1.

Assume (4.6) and (4.7). Let us prove inductively that

0(),i _,
(A.8) II[x xi < e2

for all 1,...,m, u 0, 1,...,q and that

(n..q o() , r ,_< Ix,.m
j--1



374 J.E. DENNIS, JR., J. M. MARTNEZ, AND X. ZHANG

for all i-- 1,...,m, u- 1,...,q.
We proceed by induction on i. So, let us first prove (A.8) and (A.9) for i 1. If
1 and u 0, (A.8) is trivial. If 1 and 1, we have, by (4.3), (A.1), (A.6),

(A.7), and (4.6), that

So, (A.8) and (A.9) are proved for i 1, 1.
Assuming that (A.8) and (A.9) are true for i= t and e {1,..., q- 1}, let us

prove these two inequalities for 1, replacing by u / 1.
By (4.3), (A.1), (A.6), (A.7), (4.6), (4.5), and the inductive hypothesis, we have

that

o()xl Ix x (B(’))-lF(x(u))l
o(,,,)

__
IX1 --X- (BI(Y)) -1 (f Jl(X -[--t,(Xl(’) x))dt,) o(,)

<_ II (Bl())-J(x)l Ix()
o()+FLII -xl

_< r (11() ()l +l() l)I()

< r(5 + Llxl() xTI)lx() xl
So, by (A.3), (A.5), (4.6), and (A.7),

I1(+) 71 _< ,+(, 5)lx 71 _< 21 xTI.m

Therefore, (A.8) and (A.9) are proved for i-- 1 and -- 1,..., q.
Let us prove now that (A.8) and (A.9) hold for an arbitrary i E {2,...,m}.

Assume, as the inductive hypothesis, that

I1’ o)j -*11
for all j 1,...,i- 1, u 0,1,...,q and that

iX(U) . r
1 <_ 2I 1m

t=l

for all j 1,...,i- 1, 1,...,q.
We first prove (A.8) for 0. By the inductive hypothesis and (4.6), we have

that

0,i -1 0 if:*(Xi-1, )--( - xT)llIIx Xi II- Xi
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ii-1 o ,

i-1

j=l

i--1 j

m
j=l

i--1 i--1
0

m
j=l e=l

i--1 i--1

-+lx-lm
t--1 j=l

i-1

Ix xl+ Ix x IIx x 2,

t=l

sincei<mand r<l.

Now let us prove (A.8) and (A.9), replacing by + 1. The proof of (A.8) and
(A.9) for 1 is the same as the following proof, with the obvious substitutions.

By (4.3), (A.1), (A.6), (A.7), (4.6), (4.5), and the inductive hypothesis, we have
that

(A.10)
ixO(+) z o() x,* -(S())-F(x()")l

<_ I,
* (B())-F,(2*i_,i-())1
(_, )-F( _, )1

(11 )iz() x; (S())- g,(;_,x; + t(z() x;))dt

I- (B())-J,(;) Iz()
+ rLl(’) ,*1 + rll,_- x,_-* II

_< r (1") ,()1 + t_o.), x,* I) I,-) x,I
+ 11 -* -,

i--1

r( + tlz") z;I)l") ;I + r Iz ;I.
j=l

So, by (A.3), (A.5), (4.6), (A.7), and the inductive hypothesis,

(A.11)
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But, by the inductive hypothesis,

j

(A.12) Ix}-xl< r EIx-xl< r

-’1

for j 1,...,i- 1.
Adding the inequalities (A.11) and (A.12), we obtain

(A.13)

With (A.11) and (A.13), the inductive proof of (A.8) and (A.9) is complete.
Therefore,

m

* 0 rIxl x -< mr Ix xl Ilx x*
j=l

for all i 1,...,m.
So,

Repeating the argument used for k 0 we prove that (4.8)-(4.11) holds for
k 0, 1, 2, This completes the proof of the theorem. [1

Proof of Theorem 5.3. Let e2 and be oa given by Theorem 5.2 for r 1/2. Let
e3 <_ e2 be such that

IJ()- &(;)l _< a

for all i such that I1- 11 _< a. With this choice, the convergence of the se-
quences generated by the Gauss-Seidel-Newton method and the modified Gauss-
Seidel-Newton method follows from Theorem 5.2.

Let us prove by induction that there exist constants ci, that only depend on
P, L, {53, and a such that

for 1,...,m, 0, 1,2,...,q.
First, we prove (A.14) for the choice (3.7) of B/k(). We proceed by induction on

i. For i 1, we prove (A.14) by induction on .
For 0, (A.14) is trivial with c1, 1. Let us make the inductive step on z/.

By (5.11) and (4.6) we have

{Xlk(+ 1) *-xl _< r(l&(x’1) &(x)l
+ LIx() xTI)lx() xll.



TRIANGULAR DECOMPOSITION METHODS 377

So, by (5.3),

ix(+1) xl _< rL(lx xl + Ix() xl)lx()
< rL(Ix xTI / c,tlx xTIl+)cl,llx x[[+1

r/(l 7 + .11- ).ti+ llx xll
rn( + c,]]z x]])c,]]x[* x* [[+.

Therefore, the inductive step is complete, defining

c1,+ FL(1 + c,e)c,.
Assume now that ixj’k() Xjl*’ Cj,][ Xj-* ]]YT1 for all j e {1,..., i 1}, v e

{0, 1, 2,..., q}. Let us prove that (A.14) also holds for i. We proceed by induction
on v. For v 0, (A.14) is trivial with c,v 1. Let us make the inductive step. By
(.) nd (a.) e hve

,
z -<_ r(z J(;)

So, by (5.3),

z-+) + ,

i-I

j=l

i-I

<rL -+ Ix z-zl+ I+ II,-z, ll+

i-1,.I1 ; + + r. lx() -zl*
i--1

_
-,t1+r c.ll + tx x,

+ c,,ll ; I1+) -*,.11 z,

i-1 - -,11+

- Ile 7rn c,] x, q + 1 + c,.]]x x ] c,

j=l

Therefore, he inductive step is complete, defining

c,+ FL( ( C,q) + l + c,e)c,
j=l
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(A.15)

+r.(
j---1

Let us now prove (A.14) for the case where B/k is chosen by (4.8) (the modified
Gauss-Seidel-Newton). We also proceed by induction on i. As before, let us prove
(A.14) first for i 1. For 1 and 0, (A.14) is also trivial. Let us prove the
inductive step on .

So, in this case, we must define

(A.16) C1,,+1 FL(1 + Lcl,,e)ci,,.

Now let us prove (A.14) for the choice (3.8) for a generic i e { 1,..., m}, assuming
k(v) ,that ixj -xjl _< cy,vIl-;11+1 holds for all j e {1,...,i- 1}. For 0, (A.14)

is again trivial. For + 1, we have that

So, in this case, we must define

(A.17) el,g-I-1 FL(1 + Lci,,e3) i,, -t- Ca Cj,q e-(+1)

Therefore, the inductive proof is complete and (A.14) holds both for the choice (3.7)
and for the choice (3.8) of B/k. Now, defining c maxi,{ci,}, we have that

(A.18) -k u/l

for -- 1,...,q, i 1,...,m, k 0, 1, 2, So,

(A.19) Ixk+l x, Ix(q) * -k -. xk x.llq+x, -< i I1, , + -< Cl II



TRIANGULAR DECOMPOSITION METHODS 379

for i 1,..., m. Adding the inequalities (A.19) for i 1,..., m, we obtain

IIx II < II
Hence, (5.12), (5.13), and (5.14) follow, defining Cl mc. This completes the proof
of the theorem. D

We need an auxiliary lemma to prove Theorem 5.4.
LEMMA A2. Let eke, i 1,..., m, k 0, 1, 2,..., 1, f2, 3 > 0 be real numbers

such that eki >_ 0 for all 1,...,m,k 0, 1,2,..., and

(A.20)

Let e > O. There exists e’ E (0, e] such that if
m

(A.21) Eei
we have

m

(A.22) e
i--1

.for all k 0, 1, 2,... and

k= 0(A.23) lime
k--oo

for i 1,..., m. Moreover, there exists c > 0 such that

(A.24) cik+ <__ C[({/k)2 d"""" d- (elk-i+1)2]

.for all i, k such that k > m- 1, i 1,..., m.
Proof. Define

(A.25) wk ..k+i-1

for i 1,...,m, k 0, 1, 2,...,

k(A.26) wk (wk, win).

Let us consider a fixed k. We will prove that

(A.27) w+<- E x(w,...,w), =l,...,m,
T(,)

where (Yl,..., Yi) is a monomial of degree at least 2 whose coefficients are positive
and independent of k, T(i, ) is a set of indices, and O(i, ) is the number of monomials
that occur in (A.27).

We proceed by induction on i. So, let us first prove (A.27) for 1. In fact, by
(A.20), we have that

(A.28)
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So, (A.27) holds for i= 1 with v(1, u)= 1 for all u, and (wk) #[(w)2.
Now, let us assume that-wjk+v <_ Y’]eT(j,v)(wk, w]) for all j 1, i-1,

v >_ 1. Using this, we are going to prove (A.27). We proceed by induction on v. If
v 1, we have, by (A.20) and the inductive hypothesis, that

i-1
k+l ..k+i < 1 (e/k’t-i-1)2

__
(2 -I" 3t:iwi i ]_

j=l

i-1-- fll (e/k+i-l)2 -t- (/2 -t-/3
j-’l

i-1

l(w/k)2 + (2 + 3W/k) Wj
j=l

i-1

1 (W/k)2-I-(2 + 3W/k)(
j---1 AT(j,j)

The right-hand side of the last inequality has the form of the right-hand side of
(A.27). So, (A.27) is proved for u 1. Finally, assume that

ujk+g. k<_ (,

for all j 1,..., i- 1 and for j i, e 1,...,- 1. Then, by (A.20),
i--1

w+ ++- < Z(++-)
_ - + (Z +. -++-

j=l

i--1

3wk+u-1< Z(+-) + ( + )-++-

,eT(i,u-1)
i-1

for a suitable definition of Y(i,p). om the construction, we easily see that he
coecients and indices involved in the monomials

In particular, for u 1, we hve that

(A.29) w

for all 1,..., m, k 0, 1, 2, But, since wj
1,...,m, j 1,...,i, (A.28) implies

+ < (w + +(A.0) )P(II*II),
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where P is a polynomial. By (A.30) and (A.20), IIwll can be made as small as desired
if Itell is small enough. Therefore, it holds that (A.23) and (A.24) follow from (A.30)
and (A.20).

Proof of Theorem 5.4. Define

(A.31) e -x
for 1,..., m, k 0, 1, 2, Then by (5.5) and (5.3), we have, if
that

(A.32)
ek+l k+l k (xkl,.. X)-lFi(xkl,.. xki)lIxi xil Ixi xi Ji .,

k I.IFi(i_,x) Fi<_ ]x xi Ji(k )-Fi(2;_,xi )] / IJi(2k - 2"_
IX/k X J/(2/k) -1 J,(27_,x; + t(z z;))dt (x

/ lJ()-l I1. -,- -11
*j -*;1 + rLl + rll IIrtJ()- J()ll - -

i-1

2rLl + (r rLl t) I 1
i-1

kr() + (r +r).
j=l

Hence, by (A.31) and (A.32), the inequality (A.20) holds if It-*11 isough.
Therefore, the thesis follows by Lemma A2 using a straightforward inductive rgu-
ment.
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