

Strong Cache Consistency Support for Domain Name System

2004 SIGCOMM Poster

Xin Chen, Haining Wang, Shansi Ren and Xiaodong Zhang College of William and Mary, Williamsburg, Virginia For more information, contact: Xin Chen, Department of Computer Science College of William and Mary P.O. Box 8795 Williamsburg, VA 23185 Tel. 757 221-3477 E-mail xinchen@cs.wm.edu

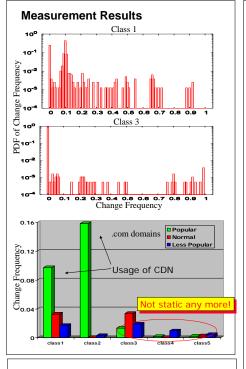
Motivation

- TTL-Based Cache Consistence:
 - Originally designed for static domain name mapping
 Only weak consistency provided
- *Current DNS Cache Updates:*
- Set a short TTL before update (2-3 days)
- Resume to a normal TTL after update (2-3 days)
- Long update delays even changes are anticipated!
- **Problems**: (in the changing world!)
 - Unpredictable mapping changes: many changes are unexpected while critical services need always-on availability
 - Dynamic domain name mapping: widely deployed dynamic DNS solution sets up servers on temporal IPs from DHCP
 - Emergence events to support: Web servers are closed/moved at emergence (e.g. 911, nature disaster, etc.)
 - Redundant DNS traffic: Content
 Delivery Network providers use small
 TTLs to achieve load balance among
 their surrogates

Objective

An effective solution for DNS cache consistency

DNS Dynamics Measurement


How often does a domain name to IP address mapping change?

- SOA: *authority indication for a zone;*
- A: *hostnames to IP address mappings;*
- PTR: *IP addresses to hostname mappings;*
- NS: domain name server reference lists for a zone;
- MX: mail exchangers for a domain.
- DNS resource records are changed for different purposes
 - 'A' records -- most used, have significant effects if changed
 - our measurements are focused on 'A' records

Methods

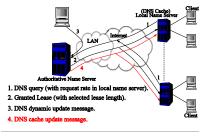
- Domain Name Collection
- IRcache: Nov. 5 Nov. 11, 2003
 Domain Name Classification
 - TLDs: .com, .net, .org, .edu, cc domains
 - CDNs: identified by specific strings of CDN providers
- Dyns: identified by specific strings of dynamic DNS providers
- 5 classes: based on domains' TTLs
 Measurement Period
 - Nov. 30, 2003 Jan. 3, 2004

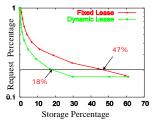
Class	TTL	Resolution	Duration	Domain number
1	[0,1m)	20 sec	1 day	803
2	[1m, 5m)	1 min	3 days	934
3	[5m,1h)	5 min	3 days	2020
4	[1h,1d)	1 hour	7 days	7217
5	[1d,inf)	1 day	1 month	4473

Dynamic Lease

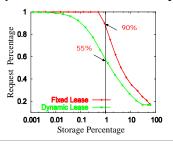
- Lease: a combination of polling and invalidation
- Challenge: lease length selection
 - long leases: more storage overhead
- short leases: more network traffic Assumption: request intervals follow
 - Poisson distribution with average arrival rate λ

Storage overhead: $P = t/(t + \frac{1}{\lambda})$


- Communication overhead: $M = 1/(t + \frac{1}{\lambda})$ Problem definition:
- Storage-constrained lease: minimize the communication overhead given the storage allowance
- Analysis: equivalent to a Knapsack problem Optimal solution: maximal lease length
 - granted to the caches with the highest query rate (dynamic lease), because:

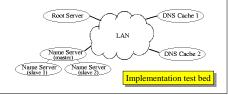

Communication-constrained lease can be defined and solved in a similar way.

Our Solution -- DNScup DNS Cache Update Protocol


Basic idea: an authoritative name server uses dynamic lease technique to notify relevant caches when its resource record changes.

Dynamic Lease Performance - Storage

Dynamic Lease Performance - Request


Implementation

- Efficiency
 - >UDP: first choice

>Update propagation without NOTIFY

Robustness

- >Name server repeats sending until ACK received
- >DNS cache validates all records after reboot Compatibility
- Name server supports both TTL and DNScup mechanisms
- >DNS cache can use both TTL and lease Security
- Name server uses TSIG to control updates
 DNS cache uses ACK to verify updates

Computer Science the college of william & MARY
http://www.cs.wm.edu/~xinchen/DNScup.html