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Abstract

We propose a scalable Web document sharing infrastructure model called Browsers-Aware Proxy Server. In this design, a proxy

server connecting to a group of networked clients maintains an index file of data objects of all clients’ browser caches. If a user

request misses in its local browser cache and the proxy cache, the browsers-aware proxy server will search the index file attempting

to find it in another client’s browser cache before sending the request to an upper level proxy or the Web server. If such a request

does hit in a remote client, this client will directly forward the data object to the requesting client; or the proxy server fetches the data

object from this client and then forwards it to the requesting client. The contributions of this caching model are twofold. First, we

show that the amount of sharable data in browser caches is significant and can be utilized for document sharing among clients to

improve Web caching performance and scalability. Second, the browsers-aware model can effectively and further improve Web

prefetching performance. The browsers-aware model and its supported prefetching technique build a strong locality-aware Internet

environment to make Web accesses fast with low communication costs. Conducting trace-driven simulations, we show the

effectiveness of the browsers-aware model, and its unique advantages to facilitate prefetching.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Proxy caching is an effective solution to quickly
access the cached data on the client side and to reduce
Internet traffic to Web servers. A group of networked
clients connects to a proxy cache server, where each
client has a browser cache buffering popular and
recently requested data objects. Upon a Web request
of a client, the browser first checks if it exists in the local
browser cache. If so, the request will be served by its
own browser cache. Otherwise the request will be sent to
the proxy cache. If the requested data object is not
found in the proxy cache, the proxy server will
immediately send the request to its cooperative caches,
if any, or to an upper level proxy cache, or to the Web
server without considering if it exists in other browsers’
caches. We believe there are three practical reasons for a
proxy server to exclude this consideration. First, the
browser caches are not shared for software simplicity
and user privacy reasons; and the dynamic status in each
onding author.
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cache is unknown to the proxy server. Second, the
possibility of a proxy cache miss which is a browser
cache hit may have been considered low although no
such a study has been found in literature. Finally, a
browser cache was initially developed as a small data
buffer with a few simple data manipulation operations.
Users may not effectively retain the cached data with a
high quality of spatial and temporal locality. It is
desirable to understand the potential performance gain
by sharing data among browsers before making efforts
to design and implement browsers-aware proxy servers
with enforced or optional security considerations. We
have following qualitative arguments for it.

First, since browser caches are not shared among
themselves, the size of the proxy cache is limited, and no
data consistency is maintained between browser caches
and the proxy cache, it is certainly possible that a data
object is stored in one or more browser caches, but has
been replaced in the proxy cache.

Secondly, browsers provide a function for users to set
the browser cache size. With the rapid increase of
memory and disk capacity in workstations and PCs, and
with the rapid growth of Web applications, user browser
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cache size will tend to significantly increase as time
passes. In addition, several new software techniques are
introduced for users to effectively increase the browser
cache size. For example, ‘‘browser cache switch’’ [12]
allows users to set multiple browser caches in one
machine, and to switch them from one to another during
Web browsing. Thus, different caches can be used for
different contents and for different time periods. This
technique significantly increases the size of a browser
cache for an effective management of multiple data
types. However, the larger the browser cache size is set,
the more spatial locality will be underutilized by the
proxy cache server.

Thirdly, in order to help Web users to effectively use
and manage large browser cache data, browser software
has been upgraded to include several sophisticated
database functions, such as file searching, folding, and
grouping. With the aid of these functions, users will pay
more attention to the organized browser cache data
objects, and tend to keep them in the cache much longer
than the unorganized data objects. However, the longer
the cached data is retained, the more temporal browser
cache locality will be underutilized by a proxy cache
server.

Fourthly, in order to improve the browsing speed, a
large memory drive can be configured to store the entire
browser cache. This technique of ‘‘browser cache in
memory’’, has been implemented in several commercial
browsers, such as Internet Explore and Netscape. This
technique can be further extended to periodically save
the cached data objects in a special directory in the disk.
The data will be brought back from the disk to the
special memory drive whenever the system is restarted or
rebooted. Several studies (see e.g. [11,30]) have shown
that in modern computer systems, transferring data
through a moderate speed network will be significantly
faster than obtaining the same amount of data from a
local disk through page faults. The high speed memory
access is not only beneficial to a local user, but also
speeds up data accesses for remote users to share
browser caches.

Finally, the number and types of Web servers have
increased and will continue to increase dramatically,
providing services to a wider and wider range of clients.
Thus, the number of unique file objects cached in client
browsers has increased and will continue to increase. It
is impossible for proxy caches to cover all multi-
requested file objects of tremendous types even with a
perfect cache replacement strategy, increasing the
possibility for browser caches to keep file objects that
have been replaced in proxy caches.

In summary, the quality of spatial and temporal
locality in browser caches has been and will continue to
be improved, inevitably providing a rich and commonly
sharable storage among trusted Internet clients or peers.
We propose a Web document sharing infrastructure
model called Browsers-Aware Proxy Server. In this
design, a proxy server connecting to a group of
networked clients maintains an index file of data objects
of all clients’ browser caches. If a user request misses
in its local browser cache and the proxy cache, the
browsers-aware proxy server will search the index
file attempting to find it in another client’s browser
cache before sending the request to an upper level proxy
or the Web server. If such a request hits in a remote
client, this client will directly forward the data object to
the requesting client; or the proxy server fetches the
data object from this client and then forwards it to
the requesting client.

Besides utilizing client document resources to improve
Web caching performance and scalability, the browsers-
aware model has the following unique advantages to
facilitate prefetching techniques in Web servers and
proxy. First, in a browsers-aware environment, some
cached files are stored in the proxy, and many of them
are distributed in the browsers of clients. Thus, the
proxy has additional space to store prefetched files,
minimizing negative prefetching effects to the proxy
caching. Second, the browser file index in the proxy
enables the proxy to directly push the prefetched files to
the browsers where they are not cached, reducing
network traffics between proxy and browser. Finally,
When prefetching is conducted between a Web server
and a proxy, the index in the proxy can be used to
ensure that the Web server only delivers the pre-
fetched files that are neither in the proxy nor in its
connected clients, eliminating unnecessary file duplica-
tions, and reducing the network traffic between Web
servers and the proxy.

The paper is organized as follows. Section 2 presents
the structure of the browsers-aware proxy server.
Section 3 describes the trace-driven simulation environ-
ment. Performance evaluation is given in Section 4,
where we also estimate overhead involved to implement
the browsers-aware model. In Section 5, we show
how prefetching techniques are beneficial from the
browsers-aware model, and present additional prefetch-
ing performance improvement achieved by utilizing
the browsers-aware model. We overview related work
in Section 6, and conclude the work in Section 7.
2. Browsers-aware proxy server

In this design, the proxy server connecting to a group
of networked clients maintains an index file of data
objects of all clients’ browser caches. If a user request
misses in its local browser cache and the proxy cache,
the browsers-aware proxy server will search an index
file attempting to find it in a client’s browser cache
before sending the request to an upper level server. If
such a request hits in a remote client, we propose two
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alternative implementations to let the requesting client
access the data object. First, the proxy server will inform
this client to directly forward the data object to the
requesting client. In order to retain user browsers’
privacy, the message passing from the source client to
the requesting client should be anonymous to each
other. The second implementation alternative is to make
the proxy server provide the data by loading the data
object from the source client and then storing it to the
requesting client.

In order to implement the browsers-aware concept in
a proxy server, we create a browser index file in the
proxy server. This index file records a directory of
cached file objects in each client machine. Each item of
the index file includes the ID number of a client
machine, the URL including the full path name of the
cached file object, and, if any, a time stamp of the file or
the time to live (TTL) provided by the data source. Since
the dynamic changes in browser caches are only
partially visible to the proxy server (when a file object
is sent from the proxy cache to the browser), the browser
index file will be updated periodically by each browser
cache. Here is another alternative. After a file object is
sent from the proxy server to a client’s browser cache, its
index item is added to the browser index file. Whenever
this file object is replaced or deleted from the browser
cache, the client sends an invalidation message to the
proxy server. After then, the proxy deletes the corre-
sponding index item.

Fig. 1 presents the organization of the browsers-aware
proxy server by an example. A group of client machines
is connected by a local area network. For a given Web
service request with a specific URL in client machine i;
the browser cache is first searched attempting to satisfy
the request. After the request misses in the browser
browser
index

proxy
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Server

discover

proxy
 miss

LAN

cache

browser
index hit

browser
miss

browser
cache

client client client clientji1 n

forward requested document;
 or fetch/forward by the proxy

Fig. 1. Organization of the browsers-aware proxy server.
cache, client i sends the request to the proxy server,
where the proxy cache is searched for the same purpose.
After the request misses again in the proxy cache, the
browser index file is searched, where the URL is
matched in client machine j: The proxy server informs
client machine j to forward the cached file object to
client i; or fetches the cached object from machine j and
then forwards it to client i: Client i hits the file object in
the browser cache after the file object is delivered by
client j or by the proxy server.
3. Simulation environment

The browsers-aware proxy server and related perfor-
mance issues are evaluated by trace-driven simulations.
The evaluation environment consists of different Web
traces, a simulated clustered client machines, and a
proxy server having aware or unaware browser caches.
We will discuss the selected Web traces and our
simulation model in this section.

3.1. Traces

Table 1 lists the Web traces we have used for
performance evaluation, where infinite cache size is the
total size storing all the unique requested documents.

1. NLANR traces: NLANR (National Lab of Applied
Network Research) provides sanitized cache access
logs for the past 7 days in the public domain [23].
NLANR takes special steps to protect the privacy of
those participating in their cache mesh. Client IP
addresses are randomized from day to day, but
consistent within a single log file. Client IP addresses
are very important in our study, so we use traces
based on 1 day’s log file. NLANR provides about 10
proxies’ traces. We have used 1 day’s trace of July 14,
2000 from the ‘‘uc’’ proxy, which is denoted as
NLANR-uc. The name is uc.sanitized-ac-
cess.20000714.

2. Boeing traces: The Boeing Company collected
anonymized logs from Boeing’s Puget Sound peri-
meter (firewall) proxies by using an anonymizer tool
(log2anon) and made these logs available in [3]. For
privacy reasons, client IP addresses are not identical
between two different days, so we use traces based on
1 day’s log file. We have used 1 day’s trace on March
4, 1999, and 1 day’s trace on March 5, 1999, which
are the most recent traces in this site and denoted as
Boeing-4 and Boeing-5.

3. BU traces: Boston University collected traces from
the similar computing facility and user population in
1995 and 1998, which can be found in [4]. We select
the traces in a period of 2 months of the 2 years,
which are denoted as BU-95 and BU-98, respectively.
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Table 1

Selected web traces

Traces Period # Requests Total GB Infinite Cache (GB) # Clients Max. hit ratio (%) Max. byte hit ratio (%)

NLANR-uc 7/14/00 360806 4.36 3.72 95 19.11 14.80

Boeing-4 3/4/99 219951 7.54 6.21 3996 44.91 17.69

Boeing-5 3/5/99 184476 7.00 5.50 3659 45.07 21.63

BU-95 Jan.95–Feb.95 502424 1.31 0.90 591 64.14 31.37

BU-98 Apr.98–May 98 72626 0.45 0.29 306 40.62 35.94

CA�netII 9/19–/9/20/99 745943 0.089 0.062 3 34.20 29.84
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4. CA�netII traces: The CA�netII (Canada’s coast
to coast broadband research network) parent
cache provides sanitized log files in [5]. The client
IDs are consistent from day to day, so we concate-
nate 2 days’ logs together as our trace denoted as
CA�netII. The two logs we used are the traces
collected on September 19, 1999 and September 20,
1999, which are the most recent traces in this site.
Their names are access.1999-09-19.gz and access.
1999-09-20.gz.

3.2. A browsers-proxy caching environment

We have built a simulator to construct a system with a
group of clustered clients connecting to a proxy server.
The cache replacement algorithm used in our simulator
is LRU. All the traces have the size of a document for
each request. If a user request hits on a document whose
size has been changed, we count it as a cache miss. We
have implemented and compared the following five Web
caching organizations using the trace-driven simula-
tions:

1. Proxy-cache-only: each client does not have a browser
cache. Every client request is sent directly to the
proxy cache server.

2. Local-browser-cache-only: each client has a private
browser cache, but there is no proxy cache server for
client machines.

3. Global-browsers-cache-only: each client has a browser
cache which is globally shared among all the clients
by maintaining an index file in each client machine.
The index file records a directory of cache documents
of all clients. A browser does not cache documents
fetched from another browser cache. If a request is a
miss in its local browser, the client will check the
index file to see if it is stored in other browser caches
before sending the request to a Web server. There is
no proxy cache server for the group of client
machines.

4. Proxy-and-local-browser: each client has a private
browser cache, and there is a proxy cache server for
the group of client machines. If a request misses in its
local browser, it will be sent to the proxy to check if
the requested document is cached there. If it misses
again, the proxy will send the request to an upper
level server.

5. Browsers-aware-proxy: this is the enhanced proxy
caching technique presented in Section 2.

We have validated our simulator motivated by the
method in [8]. We input the NLANR trace to our
simulation with an infinite proxy cache size. We
compared the simulated hit ratios and the actual daily
hit ratios reported in the public domain [23]. The reason
we use an infinite cache size for comparisons is as
follows. All the proxies of NLANR allocate about 16
GB of the disk for caching. But, for privacy and
protection reasons, we are only able to use 1 day’s log
file, whose total requested document size is less than
16 GB: Our experiments show that the average hit ratio
difference is about 6% for the NLANR trace. In the
actual daily statistics of the NLANR trace, some of
today’s requests hit the documents cached ‘‘yesterday’’.
The simulation does not reflect this small number of
special hits. This is a major reason for the 6% error. We
also validated our simulator for all the traces by
comparing the hit ratios and byte hit ratios of above
schemes 4 and 5 with infinite proxy cache and browser
cache. They all join to the same point.

We use two performance metrics. Hit ratio is the ratio
between the number of requests that hit in browser
caches or in the proxy cache and the total number of
requests. Byte hit ratio is the ratio between the number
of bytes that hit in browser caches or in the proxy cache
and the total number of bytes requested.
4. Performance evaluation

Before presenting performance results, we will first
look into a browser and proxy cache size related issue to
provide a basis and a rationale for us to configure our
simulated Web caching system.

4.1. Sizes of browser and proxy caches

Rousskov and Soloviev [27] have studied seven Squid
proxies covering several levels of the caching hierarchy
from leaf university proxies, to top level proxies for
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Table 2

Representative proxy cache configurations presented in [27]

Proxies Hot memory (MB) Disk cache (GB) # clients Memory cache/client (MB) Disk cache/client (MB)

ruu 32 5.6 518 0.0618 10.8

uit 32 3.8 378 0.0847 10.1

adfa 32 5.8 798 0.0401 7.3
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Fig. 2. The hit ratios and byte hit ratios of the five caching policies using NLANR-uc trace, where the browser cache size is set minimum.
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large country-wide networks, and to the international
root proxy located at NLANR. Three of them are leaf
proxies which are related to our study: ruu from
Netherlands, uit from Norway, and adfa from Australia.
Their proxy cache related configurations are listed in the
second to fourth columns of Table 2. Squid uses a two
level cache. The first level is a small and hot memory in
which very popular and recently requested documents
are kept. The second level is a disk cache where the
majority of documents reside. The second and third
columns in Table 2 are the sizes of the hot memory and
disk caches. The last two columns are the average proxy
cache size in hot memory per client and the average
proxy cache size in disk per client. We assume each
client’s browser has a cache. If we use the average
proxy cache size per client in Table 2 as the browser
cache size of each client, the memory space ranging from
0.04 to 0:08 MB is certainly too small, and the total
cache size ranging from 7.34 to 10:86 MB is also not
large enough in practice for today’s computer systems.
Therefore, in our study we define a minimum browser
cache size as

MinðCachebrowserÞ ¼
Cacheproxy

m
; ð4:1Þ

where Cachebrowser is the size of a client browser cache, m

is the number of clients, and Cacheproxy is the size of the
proxy cache responsible for the m clients. We also
conservatively define an average browser cache size as

AverageðCachebrowserÞ ¼
bCacheproxy

m
; ð4:2Þ

where b is in a range of 2–10. If the accumulated
browser cache size increases faster than the increase of
the proxy cache size, the value of b tends to increase if
both clients and the proxy server are upgraded as time
passes.

4.2. How much is browser cache data sharable?

To answer this question, we have operated the five
caching policies with different traces on a simulated
Web caching environment where the browser cache size
of each client is set to minimum. Performance results of
all the traces we have used are quite consistent. Due to
the page limit, we only present the results of hit ratios
and byte ratios from the NLANR-uc trace in Fig. 2,
where the size of the proxy cache is scaled from 0.5%,
5%, 10%, and to 20% of the infinite proxy cache size,
the browser cache size is also scaled up accordingly.

Fig. 2 shows that the hit ratios (left) and byte hit
ratios (right) of the browsers-aware-proxy-server are the
highest, particularly, the hit ratios are up to 5.94%
higher and the byte hit ratios are 9.34% higher than
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those of the proxy-and-local-browser, even when the
browser cache size is set to minimum. This means that
sharable data locality does exist, even for a small
browser cache size. The sharable data locality propor-
tionally increases as browser cache size increases and as
the number of unique file objects cached in browsers
increases, both of which are the trends in Web
computing. In next subsection, We will show that
significant proxy cache performance improvement can
be achieved by the proposed browsers-aware proxy
server to exploit sharable data locality.

We also show that methods of proxy-cache-only, local-

browser-cache-only, and global-browsers-cache-only are
not as effective as the method of proxy-and-local-browser.
Local-browser-cache-only had the lowest hit and byte hit
ratios due to the minimum caching space. proxy-and-

local-browser only slightly outperforms proxy-cache-only,
which implies that performance gain from a local browser
cache is limited. Another observation worth mentioning
is that proxy-and-local-browser and global-browsers-

cache-only had lower hit and byte hit ratios than
browsers-aware-proxy-server. This observation confirms
the existence two types of misses. First, there exist some
documents which are already replaced in the proxy
cache but still retained in one or more browser caches,
because the request rates to the proxy and to browsers
are different, causing the replacement in the proxy and
browsers at a different pace. Second, there are some
documents which are already replaced in browser caches
but still retained in the proxy cache, because a browser
cache is much smaller than the proxy cache. The
browsers-aware-proxy-server effectively addresses these
two types of misses.

Fig. 3 presents the breakdowns of the hit ratios and
the byte hit ratios of the browsers-aware-proxy-server

using NLANR-uc trace. There are three types of hits:
hits in the local browser cache, hits in the proxy cache,
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and hits in remote browser caches. We show that the hit
ratio and byte hit ratio in remote browser caches should
not be neglected even when the browser cache size is
very small.

The browsers-aware-proxy-server has another advan-
tage over the proxy-and-local-browser policy in terms of
‘‘memory’’ byte hit ratios. In other words, for the same
byte hit ratio, a higher percentage of requests will hit in
the main memory of browser caches and the proxy cache
provided by the browsers-aware-proxy-server. (Accesses
to main memory have much lower latency than accesses
to disks.) To quantitatively justify this claim, we have
compared the memory byte hit ratios of the two policies
for an equivalent byte hit ratio.

In our simulation, we set the memory cache size in the
proxy as 1/150 of the proxy cache size based on the
memory ratio reported in [27]. We also set the memory
size of a browser cache as 1/150 of the browser cache
size, which is not in favor of the browsers-aware-proxy-

server because the memory cache portion in a browser
can be much larger than that for the proxy cache in
practice. We also conservatively assume that one
memory access of one cache block of 16 Bytes spends
200 ns (the memory access time is lower than this in
many advanced workstations), and one disk access of
one page of 4 kB is 10 ms:

Fig. 2 shows that the hit and byte hit ratios of the
browsers-aware-proxy-server at 5% of the infinite cache
size are very close to those of the proxy-and-local-

browser policy at 10% of the infinite cache size (the hit
ratio comparison is 15.3 vs. 15.7, and byte hit ratio
comparison is 13.06 vs. 12.91). However, the memory
byte hit ratios of the two schemes are quite different
under the same condition, which are 3.5% for the
browsers-aware-proxy-server, and 1.9% for the proxy-

and-local-browser policy, respectively. The larger mem-
ory byte hit ratio of the browsers-aware-proxy-server in
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this case would reduce 15.2% of the total hit latency
compared with the proxy-and-local-browser. The latency
reduction due to the higher percentage memory accesses
will be larger in practice because the memory cache size
of each browser is much larger than the assumed size.

4.3. Performance of browsers-aware proxy

We have evaluated and compared the performance of
the browsers-aware-proxy-server and proxy-and-local-

browser schemes using the two Boeing traces and two
BU traces. For experiments of each trace, the proxy
cache size is set to 0.5%, 5%, 10%, and 20% of the
infinite proxy cache size. Accordingly, each browser
cache is also set to 0.5%, 5%, 10%, and 20% of the
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average infinite browser cache size calculated from all
the browsers. The infinite cache size of a browser is the
total size of all uniquely requested documents in this
client. For example, if the proxy cache is set to 0.5% of
the infinite proxy cache, all browsers’ caches will also be
set to 0.5% of the average size of the infinite browser size
of all browsers. The value of b calculated from each
trace falls into the average range of 2–10. The value of b
calculated from each Boeing trace is slightly larger than
the average range. This is reasonable because one proxy
serves a huge number of clients for the Boeing traces.

Figs. 4–7 present the hit ratios (left) and byte hit
ratios (right) of the two policies on Boeing-4 trace,
Boeing-5 trace, BU-95 trace, and the BU-98 trace,
respectively. Compared with the proxy-and-local-browser
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browser cache size is set average.
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scheme, browsers-aware-proxy-server consistently and
significantly increases both hit ratios and byte hit ratios
on all the traces.

When the number of clients is small, and their
accumulated size of the browser caches is much smaller
or not comparable to the proxy cache size, the cache
locality inherent in browsers is low, so the performance
gain from the browsers-aware proxy cache will also
be insignificant. Fig. 8 presents such an example, where
the total number of clients of the CA�netII trace is only 3,
the accumulated size of three browser caches is small.
The increases of both average hit ratio and byte hit ratio
of this trace by the browsers-aware-proxy-cache are below
1%, compared with the proxy-and-local-browser scheme.
4.4. Performance impact of scaling the number of

clients

We have also evaluated the effects of scaling the
number of clients to browsers-aware proxy servers. For
each trace, we observe its hit ratio (or byte hit ratio)
increment changes by increasing the number of clients
from 25% to 50%, 75%, and 100% of the total number
of clients. We also call each percentage as a relative
number of clients. For all relative numbers of clients of
each trace, the proxy cache size is fixed to 10% of the
infinite proxy cache size when the relative number of
clients is 100%. The byte hit ratio increment or the hit
ratio increment of the browsers-aware proxy server for a
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given trace is defined as
ðbyteÞ hit ratio of browse aware � ðbyteÞ hit ratio of proxy and local browser

ðbyteÞ hit ratio of proxy and local browser
:

Fig. 9 presents the hit ratio increment curves (left figure)
and the byte hit ratio increment curves (right figure) of
the three traces as the relative number of clients changes
from 25% to 100%. Our trace-driven simulation results
show that both hit ratio increment and byte hit ratio
increment of the browsers-aware proxy server propor-
tionally increases as the number of clients increases. For
some traces, the increments are significant. For example,
the hit ratio increment of BU-98 trace increases from
10.70% to 13.35%, 16.87%, and 19.35%, as the relative
number of clients increases from 25% to 50%, 75%,
and 100%, respectively. The byte hit ratio increment of
BU-95 trace increases from 4.33% to 20.17%, 24.82%,
and 28.08%.

The performance results indicate that a browsers-
aware proxy server is performance beneficial to client
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cluster scalability because it exploits more browser
locality and utilizes more memory space as the number
of clients increases.

4.5. Overhead estimation

The additional overhead of the browsers-aware proxy
cache comes from the data transferring time for the hits
in remote browsers. The simulator estimates the data
transferring time based on the number of remote
browser hits and their data sizes on a 10 Mbps Ethernet.
The browser access contention is handled as follows. If
multiple requests hit documents in a remote browser
simultaneously, the bus will transfer the hit documents
one by one in the FIFO order distinguished by each
request’s arrival time. Our experiments using the ping

facility show that the startup time of data communica-
tions among the clients in our local area university
network is less than 0.01 second. Setting 0.01 second as
the network connection time, we show that the amounts
of data transferring time and the bus contention time
spent for communication among browser caches of the
browsers-aware proxy server on all the traces is very
low. For example, the largest accumulated communica-
tion and network contention portion out of the total
workload service time for all the traces is less than
1.25%. In addition, the contention time only contributes
up to 0.12% of the total communication time, which
implies that browsers-aware proxy server does not cause
bursty hits to remote browser caches.

Another potential overhead is the update of the
browser index file if the update is not conducted at a
suitable time or conducted too frequently. There have
been some solutions to address this concern. For
example, the browser could send its update information
when the path between the browser and the proxy is free
to avoid contention. The study in [9] shows that the
update of URL indices among cooperative caches can
be delayed until a fixed percentage of cached documents
are new. The delay threshold of 1–10% (which
corresponds to an update frequency of roughly every
5 min to an hour in their experiments) results in a
tolerable degradation of the cache hit ratios. In their
experiments, the degradation is between 0.02% and
1.7% for the 1% choice. Our concerns should be less
serious because the updates are only conducted between
browsers and the proxy without broadcasting. But in
their case, each proxy need broadcast its updates to all
the others. Thus, the index file update overhead between
browsers and proxy is very low.

The last potential concern is the space requirement of
the proxy cache to store the browser index. We address
this concern by an example. Each URL is represented by
a 16-byte MD5 signature [14,21]. Assume there are 1000
clients connected to one proxy. Each client has a
browser with a 8 MB cache. We assume that an average
document size is 8 kB: Each browser has about 1000
Web pages. The proxy server only needs about 1000�
ð8 MB=8 kBÞ � 16 ¼ 16 MB to store the whole browser
index file for the 1000 browsers. If we apply the
compression methods presented in [9,22], the browsers-
aware proxy server requires even less space to store the
index file (e.g. a storage of 2 MB is sufficient for the
1000 browsers with a tolerant inaccuracy).

We can also implement a Bloom filter that is used to
keep URL indices of cooperative caches in [9]. Assume
that there are 1000 clients connected to one proxy. Each
client has a browser with an 8 MB cache. Similar to [9], we
also assume that an average document size is 8 kB:
Each browser has about 1000 Web pages. The Bloom
filter need 2 kB to represent 1000 pages of each browser.
The Proxy needs about 2 MB to store the whole browser
index file.
5. Browsers-aware model supported prefetching

5.1. Prefetching methods in a standard proxy caching

environment

Web prefetching has been proposed to further reduce
the client-perceived latencies, which preloads the Web data
a client may request in the near future based on the client’s
past surfing activity. The performance improvement of
Web prefetching combined with caching can be doubled
compared with caching alone (see e.g. [18]). Based on the
source of the access history used for predictions, we can
divide prefetching methods into three categories.

* Client-initiated prefetching: The simplest way to do
prefetching is based on the client’s own access
history. Due to its potential performance benefits
without a requirement of changing Web servers,
client-based prefetching has gained a lot of attention
[17]. Due to the limited information observed by an
individual client, the prediction accuracy is low and
overhead is relatively high, which prevents it from
being widely deployed.

* Proxy-initiated prefetching: Compared with the
browser, a proxy can observe the accesses from
multiple users, which may make predictions more
efficiently [10]. The prefetching is conducted between
the proxy and the clients. The most attractive
property of proxy-initiated prefetching is that it does
not increase the external network traffic between the
proxy and the server. However, the interests of the
clients connected with one proxy are diverse.
Although the proxy can effectively make correct
predictions for the popular servers to all clients, a
large number of requests are to unpopular servers,
thus the proxy’s average prediction abilities can be
low.
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* Server-initiated prefetching: In a sever-initiated pre-
fetching, a Web server always pushes their popular
documents to the clients. Compared with the client
and the proxy, the Web server can observe much
more accesses even though advanced Web caching
technology has been well developed, which makes
server-initiated prefetching scheme be a perspective
solution.

Here is a typical procedure of a server-initiated
prefetching in a standard proxy caching environment.
Fig. 10 depicts the interactions between a client and a
server starting with a request issued by the client.

1. A client sends a message to the proxy to indicate its
current request status after either a browser hit or
miss.

2. The proxy forwards the client message to a server. If
the incoming message is a request (a miss in the
browser cache), the proxy will make a local search.
If the requested object is found, the proxy sends it to
the client.

3. The server processes the incoming message and
makes prefetching predictions.

4. The server sends back a set of prediction results to
the proxy (piggybacked with the requested object if
it is a miss in the proxy cache).

5. The proxy forwards server’s prediction results and/
or the requested object to the client.

6. The client checks if the predicted objects have been
cached or not after then.
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7. The client sends its requests to the proxy based on
its local checking for predicted objects.

8. The proxy forwards the requests to the server if the
requested objects are not in its cache.

9. The server sends back the requested objects to the
proxy.

10. The proxy forwards the objects to the client and keep a

copy for each cacheable object.

In this scheme, the prefetching activities are trans-
parent to the proxy, which only passively forwards the
messages between the client and the server and caches
every objects received from the server.

5.2. Prefetching overheads

The major concern on the deployment of Web
prefetching is the related overheads, which may offset
the potential benefits if they are not sufficiently reduced.
The overheads come from the following sources.

* Additional storage: Compared with Web caching, Web
prefetching needs more storage in client/proxy to keep
the preloaded Web objects for future use. It may
frequently trigger cache replacement to accommodate
those objects, which can reduce the cache hit rate.

Another storage overhead is the memory require-
ment for prediction data structure. It can be largely
reduced by effectively restructuring the data structures
of storing history information [7,25].
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* Additional network traffic: In most prefetching
schemes, Web prefetching has higher network band-
width demands because predictions are made based
on history statistics and they are not always correct.
In order to avoid wasting network resources when
wrong predictions are made, in most prefetching
schemes, a maximal size of the prefetched files as
the prefetching threshold is defined. However, the
network overhead is still significant when prefetching
is applied aggressively.

* Additional CPU cycles: The main requirement of
additional CPU cycles is on Web servers. More
requests are received by Web servers which need
more CPU cycles. Although the current CPU is
powerful to quickly handle HTTP requests, the CPU
overhead is still a major problems for two reasons: (1)
The request rate is bursty. It is not uncommon that
the request arrival rate during peak period can be 5–
10 times higher than the average. (2) As dynamic
content generation techniques are widely used,
increasingly more CPU cycles will be consumed.
Prefetching is also proposed to pre-compute the
dynamical contents, which may have significant
effects on the quality of existing Web services.

5.3. Reducing overheads by using the browsers-aware

proxy model

Browsers-aware model can effectively reduce the
prefetching overheads described in the previous subsec-
tion for the following reasons:

* The browsers-aware model provides more storage
space.

The benefits come from two parts: (1) The index
avoids unnecessary duplications between the proxy
and clients. (2) Proxy cache is only used to store the
commonly shared objects while a browser cache is
used to store both shared and non-shared objects.

* The browsers-aware model avoids unnecessary data
transmissions.

Traditionally, Web prefetching relies on the clients
to decide which objects to be prefetched on the basis
on their local browser caches. An individual client
does not know the contents of other clients connected
to the same proxy, which may result in transferring
redundant data cached by other clients. Browsers-
aware model can effectively avoid the unnecessary
network traffic since the proxy records the informa-
tion of objects in browser caches. The model also
simplifies the prefetching procedure by using proxy to
make decisions on behalf of clients.

* The prefetching aggressiveness can be adjusted by
proxies.

Prefetching aggressiveness is measured by the amount
of objects to be preloaded per client request. After each
prediction, the server sends a list of predicted objects to
the proxy for consideration. In a normal proxy caching
environment, the proxy knows little about the activeness
status of each object, and accepts all the preloaded
objects if space is available. Since the proxy space is
limited, the replacement activity can be frequent to store
preloaded objects. With the support of the browsers-
aware model, the proxy is fully aware of the current
locations of each cached object and its activeness status
based on its popularity. The proxy can accept more
predicted objects related to popular files, but less ones
related to the files with low popularity. With this
selection ability, the prefetching aggressiveness can be
effectively adjusted by proxies. Since the prefetching
accuracy is improved, the prefetching server load will be
reduced accordingly.

5.4. Browsers-aware proxy supported prefetching

scheme

In order to reduce the Web prefetching related over-
heads, we propose a browsers-aware proxy supported
prefetching scheme, which utilizes the index structure in
the proxy. We also place an additional field, called
popularity, for each index entry to record the access
frequency of correspondent objects stored in browser/
proxy cache.

Fig. 11 shows the interactions among the client, the
proxy and the server in the new prefetching scheme
supported by browsers-aware proxy. In this scheme, the
proxy actively participates the prefetching procedure.

1. A client sends a message to the proxy to indicate its
current request status after either a browser hit or
miss.

2. The proxy forwards the client message to a server. If
the incoming message is a request (a miss in
the browser cache), the browsers-aware proxy will
handle this in its own way (described in Section 2). If
the requested object is found either locally or in
another browser, it will be delivered to the client. The
field popularity of the object is incremented by one.

3. The server processes the incoming message and
makes prefetching predictions.

4. The server sends back a set of prediction results to the
proxy (piggybacked with the requested object if it is a
miss in the proxy cache).

5. The proxy checks if the predicted objects have been
cached or not in both the proxy and its connected
clients using the index. Then it sends a list of
demanded prefetched objects to the server, which
are not cached in neither proxy nor in clients. In
addition, the selection can also be influenced by the
value of popularity.

6. The proxy sends the request for predicted objects to
the server.
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7. The server sends back the requested objects to the
proxy.

8. The proxy forwards the objects to the client and
updates the index.

There are three major differences compared with the
scheme without a support from the browsers-aware
proxy model:

* The proxy is mainly used to store the objects shared
by multiple clients. It does not cache those objects
with cookies or queries which are delivered to a
specific client.

* With the support of the browsers-aware model, the
proxy can select objects to prefetch on behalf of
clients. Specifically, steps 5 and 7 in the original
procedure are eliminated. It has two advantages: (1)
network traffic is reduced; and (2) a practical
deployment is straightforward. Since every object in
the proxy and all clients’ caches are known by the
proxy, it effectively avoids the unnecessary commu-
nications for sending a list of prediction results (from
the proxy to a browser) and for sending a selection
decision (from the browser to the proxy). This
reduces the traffic between proxy and the server
because the proxy only requests the prefetched
objects that are not cached in the proxy and the
clients. In addition, the interactions between clients
and the proxy are largely reduced.

* The proxy can be used to control aggressiveness of
Web prefetching with the new field popularity entry
in the index.
5.5. Performance evaluation

We also use the same set of proxy traces presented in
Section 3 to evaluate the performance of our browsers-
aware proxy supported prefetching scheme in our trace-
driven simulations. Limited by the availability of
correspondent Web server traces, we cannot measure
the prefetching abilities for each individual server in the
proxy traces, which is measured by prefetching accuracy
and hit ratio. Based on the analysis of prefetching in
real-world server traces, we set the following parameters
in our experiments:

* A—prefetching accuracy, defined as the possibility
that the predicted objects are used. Upon each client
request, a number of objects are predicted, which
may be accessed by the next request of the client.
Specifically, the prefetching accuracy is equal to the
ratio between the number of predicted objects being
accessed by the next request and the total number of
predicted objects for the next request.

* P—prefetching hit ratio, defined as the possibility
that a request can be predicted. Not all requests can
be predicted due to the limit of the number of
predicted objects for usage and shortage of the access
history. The prefetching hit ratio is equal to the
number of requests accessing the objects predicted by
their previous request and the total number of
requests.

The number of prefetched objects for every request is
decided by the accuracy and hit ratio. For example, if we
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have P ¼ 0:8 and A ¼ 0:2; on average, 4 objects will
be predicted for every request. However, the predicted
objects may not be transferred from Web servers. If the
requested URL has been cached, we assume the related
predicted objects are also cached. If not, the predicted
objects have certain probabilities being cached, which
are equal to the cache hit ratio without prefetching for
the same size cache.

We define byte effectiveness as the ratio between the
prefetching hit ratio and the prefetching traffic incre-
ment. Three performance metrics are used in our
performance evaluation:

* Relative hit ratio: the ratio of hit ratios between the
browsers-aware proxy supported prefetching and the
normal prefetching.

* Relative traffic increment: the ratio of traffic incre-
ment between the browsers-aware proxy supported
prefetching and the normal prefetching.

* Relative byte effectiveness: the ratio of byte effective-
ness between the browsers-aware proxy supported
prefetching and the normal prefetching.

In all experiments, we set the browser cache size as 5

times of
Cacheproxy

m
; where Cacheproxy is the size of the proxy
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Fig. 12. Comparisons of hit ratios between browsers-aware proxy suppo

parameters.
cache, and m is the number of clients. The replacement
policy is LRU.

5.5.1. Space effects on hit ratios

We divide the hit ratios into two categories: cache hits
which are defined as the hit ratios achieved by passively
caching and prefetch hits which are defined as the hit
ratios achieved by prefetching. Since more objects are
downloaded to browser/proxy caches, the replacement
operations can be more frequent. A limited cache size
has effects on both cache hits and prefetch hits. In this
part, we study the performance effects on cache hits of
browsers-aware cache supported prefetching when the
storage space is limited.

The results for different traces under different
parameters are shown in Fig. 12. Four sets of
parameters of P and A are used, which are set as P ¼
0:8 or 0.2 and A ¼ 0:8 or 0.2. The four experiments
evaluate the performance for the prefetching scheme
with different aggressiveness controls. In the first
experiment, by setting P ¼ 0:2 and A ¼ 0:8; on average,
there is one prefetched object every 4 requests. In the
second and third experiments, by setting P and A

equally, one object is predicted for every request. In the
fourth experiment, by setting P ¼ 0:8 and A ¼ 0:2; every
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Fig. 13. Comparisons of traffic increment between browsers-aware proxy supported prefetching and normal proxy cache prefetching for different

parameters.
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request will have 4 candidate objects for prefetching.
The browsers-aware proxy supported prefetching can
improve the cache hit ratio up to 40%. Compared with
the performance improvement when no prefetching is
used, it is more effective because of higher space
requirement of Web prefetching. Similar to the situation
without prefetching, with the increase of proxy cache
size, the differences of Web prefetching between a
normal proxy and browsers-aware proxy cache are
decreased. For all parameters, which represent different
aggressive prefetching schemes, the browsers-aware
proxy supported prefetching has higher cache hit ratios
than normal proxy prefetching due to more effective
cache space utilization. With an increase of prefetching
aggressiveness, the relative hit ratio of browsers-aware
proxy supported prefetching is also increased.

5.5.2. Traffic savings

With the deployment of Web prefetching, more
network traffic is required to transfer two kinds of
Web objects when the cache size is limited: (1) predicted
Web objects, and (2) cached Web objects but replaced
by prefetched objects. In order to account for two kinds
of traffic increment, we compute the traffic increment in
the following way:
* For the objects visited before by the same client, we
first check the local browser cache and proxy cache. If
it has been replaced, it should be transferred again.

* For the predicted objects, it is possible they have been
cached and the possibility is equal to cache hit ratio
without prefetching for the same size of browser/
proxy cache.

The results for different traces are shown in Fig. 13.
We use the same parameters in the previous set of
experiments to evaluate the traffic increment when
different aggressive prefetching schemes are used. For
the traces in our test, browsers-aware proxy supported
prefetching can reduce up to 35% network traffic
compared with normal prefetching. We observe for
most traces, the largest traffic saving is achieved when
the proxy cache size is 5% or 10% of infinity cache size.
The reason is that when the proxy cache size is small, the
normal proxy cache hit ratio is increased in a faster pace
than that in the browsers-aware proxy.

5.5.3. Effects on prefetching aggressiveness control

In this part, we evaluate the effectiveness of prefetch-
ing aggressiveness controlled by a browsers-aware proxy
cache. We assume that the prefetching hit ratio is
proportionally increased with the number of objects
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Fig. 14. Comparisons of prefetch effectiveness between fixed aggressiveness prefetching and variable aggressiveness prefetching of browsers-aware

proxy supported prefetching.
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prefetched. In our experiments, for every request, the
number of prefetched objects is from 1 to 4, and the
corresponding prefetching hit ratio is from 20% to 80%.
The aggressiveness of prefetching can be represented by
N; the number of prefetched objects for each request. In
order to evaluate the effects of prefetching aggressive-
ness control, a variable aggressiveness prefetching
scheme is designed to adjust the prefetching aggressive-
ness by the popularities of the objects. In this scheme, we
select 10% most popular URLs for aggressive prefetch-
ing, in which 4 objects will be prefetched, and the rest
90% URLs for less aggressive prefetching which only
prefetches 1 object for each request. If a URL is cached
in the browser/proxy cache, we assume that the related
prefetched objects are still in the cache. We compare the
prefetching scheme with other fixed aggressiveness
schemes with a constant number of prefetched objects
from 1 to 4. The results are shown in Fig. 14.

For all the traces in our tests, the variable aggressiveness
prefetching scheme has much higher byte effectiveness
compared with that with the fixed aggressiveness. For
example, in NLANR-uc trace, compared with the less
aggressive prefetching scheme with N ¼ 1; the variable
aggressiveness prefetching scheme achieves 2 times higher
in byte effectiveness. Similar results are presented in
Fig. 14 compared with different aggressive prefetching
schemes. With the increase of proxy cache size, the
performance improvement is also increased due to more
popular objects and related predicted objects to be cached.
6. Related work

Much work has been done on Web caching at
different levels. The caching issues on the server side
are representatively discussed in [2,24]. Ref. [13] studies
Web content sharing in a multi-level Internet storage
hierarchy without considering client browsers. Designs
and implementations of browsers have been studied in
many papers (e.g. [19,26]). The work in [31] attempts to
transfer server’s functions to clients. The results of
above cited work are supportive to our work based on
increasingly powerful browsers.

Client access patterns are characterized by several
research groups (see e.g. [8,15,29]). Ref. [1] gives a
comprehensive study on the changes in Web client
access patterns based on the traces collected from the
same computing facility and the same nature of the user
population separated by 3 years. Their experiments
show that the hit ratios are significantly reduced
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compared with the data 3 years ago. One reason for this,
we believe, is that the access variations have increased as
more Web servers are emerging. Thus, it will be more
difficult to retain an optimal hit ratio by increasing
proxy cache size and by improving cache replacement
strategy. The browsers-aware proxy server has the
potential to harvest the sharable data to adapt the trend
of the increasing access variations.

Cooperative proxy caches are discussed in Refs.
[9,13,20,28], which focus on the proxies at the same level.
We have indirectly shown that overall performance will
be further improved if each proxy in a cooperative system
utilizes sharable data from all its clients.

Advanced proxy caching techniques, such as ad-
vanced replacement policies (e.g. [6,16]), can be bene-
ficial to the browsers-aware proxy when both browsers
and the proxy use the same policy. We have confirmed
this by testing different replacement policies, including
the GreedyDual-Size algorithm [6].
7. Conclusion

We have proposed and evaluated a browsers-aware
proxy server to provide Web document sharing service.
We have also quantitatively answered two questions: (1)
how much browser data is sharable? and (2) how much
proxy caching and prefetching performance improve-
ment can we gain by the browsers-aware model? Our
study shows that the amount of sharable data is
significant, and can be utilized to improve the caching
performance by the proposed browsers-aware structure.
In addition, we show that the browsers-aware model has
several advantages to effectively support Web prefetch-
ing activities. We are currently implementing a brow-
sers-aware proxy server along with the prefetching
schemes.
Acknowledgments

We are grateful to the anonymous referees for their
constructive comments and critiques that help us to
improve the quality of the paper. We thank Bill Bynum
for reading the paper and for his constructive com-
ments. This work is also a part of an independent
research project sponsored by the National Science
Foundation for program directors and visiting scientists.
References

[1] P. Barford, A. Bestavros, A. Bradley, M. Crovella, Changes in

Web client access patterns: characteristics and caching implica-

tions, World Wide Web J. 2 (1) (January 1999) 15–28.
[2] R. Bianchini, E.V. Carrera, Analytical and experimental evalua-

tion of cluster-based network servers, World Wide Web J. 3 (4)

(December 2000).

[3] Boeing log files, ftp://researchsmp2.cc.vt.edu/pub/boeing/

[4] BU traces, ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-tra-

ces.tar.gzftp://cs-ftp.bu.edu/techreports/1999-011-usertrace-98.gz.

[5] Canada’s coast to coast broadband research network: http://

ardnoc41.canet2.net/; Sanitized log files: http://ardnoc41.canet2.-

net/cache/squid/rawlogs/

[6] P. Cao, S. Irani, Cost-aware WWW proxy caching algorithms,

Proceedings of the USENIX Symposium on Internet Technolo-

gies and Systems, Monterey, CA, December 1997, pp. 193–206.

[7] X. Chen, X. Zhang, A popularity-based prediction model for Web

prefetching, IEEE Comput. (March 2003) 63–70.

[8] B.M. Duska, D. Marwood, M.J. Feeley, The measured access

characteristics of World-Wide-Web client proxy caches, Proceed-

ings of the USENIX Symposium on Internet Technologies and

Systems, Monterey, CA, December, 1997, pp. 23–36.

[9] L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a

scalable wide-area Web cache sharing protocol, Proceedings of

1998 SIGCOMM Conference, Vancouver, Canada, pp. 254–265.

[10] L. Fan, P. Cao, W. Lin, Q. Jacobson, Web prefetching between

low-bandwidth clients and proxies: potential and performance,

Proceedings of ACM SIGMETRICS Conference on Measure-

ment and Modeling of Computer Systems, Atlanta, CA, May

1999, pp. 178–187.

[11] M.J. Feeley, W.E. Morgan, F.H. Pighin, A.R. Karlin, H.M. Levy,

Implementing global memory management systems, Proceedings

of the 15th ACM Symposium on Operating System Principles,

Copper Mountain, CO, December 1995, pp. 201–212.

[12] J. Fox, Browser cache switch for Internet explorer, WebDeveloper

Conference 2000, San Francisco, CA, September 2000.

[13] S. Gadde, M. Rabinovich, J. Chase, Reduce, reuse, recycle: an

approach to building large Internet caches, Proceedings of the

sixth Workshop on Hot Topics in Operating Systems, Capecod,

MA, May, 1997, pp. 93–98.

[14] G. Gonnet, R. Baeza-Yates, Handbook of Algorithms and

Date Structures in Pascal and C, Addison–Wesley, Reading,

MA, 1991.

[15] S.D. Gribble, E.A. Brewer, System design issues for Internet

middleware services: deductions from a large client trace,

Proceedings of the 1997 Usenix Symposium on Internet Techno-

logies and Systems, Monterey, CA, December 1997, pp. 207–218.

[16] S. Jin, A. Bestavros, Popularity-aware GreedyDual-size Web

proxy caching algorithms, Proceedings of 20th International

Conference on Distributed Computing Systems, (ICDCS’2000),

Taiwan, China, April 2000, pp. 254–261.

[17] R.P. Klemm, WebCompanion: a friendly client-side Web

prefetching agent, IEEE Trans. Knowledge Data Eng. 11(4)

(July/August 1999) 577–594.

[18] T.M. Kroeger, D.D.E. Long, J.C. Mogul, Exploiting the bounds

of Web latency reduction from caching and prefetching,

Proceedings of Usenix Symposium Internet Technologies and

Systems, Monterey, CA, December 1997, pp. 13–22.

[19] T.S. Loon, V. Bharghavan, Alleviating the latency and bandwidth

problems in WWW browsing, Proceedings of the 1997 Usenix

Symposium on Internet Technologies and Systems, Monterey,

CA, December 1997.

[20] R. Malpani, J. Lorch, D. Berger, Making World Wide Web

caching servers cooperate, Proceedings of the 4th International

World Wide Web Conference, Boston, MA, December 1995.

[21] A.J. Memezes, P.C. van Oorschot, S.A. Vanstone, Handbook of

Applied Cryptography, CRC Press, Boca Raton, FL, October

1996.

&ast;ftp://researchsmp2.cc.vt.edu/pub/boeing/a4
&ast;ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-traces.tar.gz
&ast;ftp://cs-ftp.bu.edu/techreports/1995-010-www.client-traces.tar.gz
&ast;ftp://cs-ftp.bu.edu/techreports/1999-011-usertrace-98.gz
&ast;http://ardnoc41.canet2.net/a4
&ast;http://ardnoc41.canet2.net/a4
&ast;http://ardnoc41.canet2.net/cache/squid/rawlogs/a4
&ast;http://ardnoc41.canet2.net/cache/squid/rawlogs/a4


ARTICLE IN PRESS
L. Xiao et al. / J. Parallel Distrib. Comput. 63 (2003) 945–962962
[22] B.S. Michel, K. Nikoloudakis, P. Reiher, L. Zhang, URL

forwarding and compression in adaptive Web caching, Proceed-

ings of IEEE INFOCOM 2000, March, 2000, pp. 670–678.

[23] National Lab of Applied Network Research: http://www.irca-

che.net/ Sanitized access logs: ftp://ircache.nlanr.net/Traces/

Statistics: http://www.ircache.net/Cache/Statistics/

[24] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.

Zwaenepoel, E. Nahum, Locality-aware request distribution in

cluster-based network servers, Proceedings of the Eighth Sympo-

sium on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-8), October 1998, pp. 205–216.

[25] J. Pitkow, P. Pirolli, Mining longest repeating subsequences to

predict world wide Web surfing, Proceedings of the 1999 Usenix

Symposium on Internet Technologies and Systems, Boulder, CO,

April 1999, pp. 139–150.

[26] M. Reddy, G.P. Fletcher, An adaptive mechanism for

Web browser cache management, IEEE Internet Comput. 2 (1)

(January 1998) 78–81.

[27] A. Rousskov, V. Soloviev, A performance study of the squid

proxy on HTTP/1.0, World Wide Web 2 (1–2) (January 1999)

47–67.

[28] R. Tewari, M. Dahlin, H.M. Vin, J.S. Kay, Design considerations

for distributed caching on the Internet, Proceedings of the 19th

IEEE International Conference on Distributed Computing

Systems (ICDCS), Austin, TX, May 1999, pp. 273–284.

[29] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T.

Landray, D. Pinnel, A. Karlin, H. Levy, Organization-based

analysis of Web-object sharing and caching, Proceedings of the

2nd USENIX Symposium on Internet Technologies and Systems,

Boulder, CO, October, 1999, pp. 25–36.

[30] L. Xiao, X. Zhang, S.A. Kubricht, Incorporating job migration

and network RAM to share cluster memory resources, Proceed-

ings of the 9th IEEE International Symposium on High

Performance Distributed Computing (HPDC-9), Pittsburgh, PA,

August 1–4, 2000, pp. 71–78.

[31] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, D.

Culler, Using smart clients to build scalable services, Proceedings

of the USENIX 1997 Annual Technical Conference, Anaheim,

CA, January 1997, pp. 105–117.

Li Xiao is an assistant professor of Computer Science and

Engineering at Michigan State University. She received the

BS and MS degrees in Computer Science from North-

western Polytechnic University, China, and the Ph.D. degree

in Computer Science from the College of William and Mary
in 2002. She is a recipient of USENIX Fellowship for her

Ph.D. dissertation research from 2001 to 2002. Her research

interests are in the areas of distributed and Internet systems,

system resource management, and design and implementa-

tion of experimental algorithms. She is a member of ACM and

IEEE.

Xin Chen is a Ph.D. candidate of Computer Science at the

College of William and Mary. He received his B.S. degree from

Xi’an Jiaotong University, China, in 1996, and M.S. degree

from the University of Science and Technology of China in

1999, both in Computer Science. His research interests are in

the areas of distributed, Internet and networking systems.

Xiaodong Zhang is Lettie Pate Evans Professor and Chairman

of the Computer Science Department at the College of William

and Mary. He was the Program Director of Advanced

Computational Research at the U.S. National Science

Foundation from 2001 to 2003. He is a past editor of IEEE

Transactions on Parallel and Distributed Systems, and currently

serves as an associate editor of IEEE Micro. He received his

B.S. degree in Electrical Engineering from Beijing Polytechnic

University in 1982, M.S. and Ph.D. degrees in Computer

Science from University of Colorado at Boulder in 1985 and

1989, respectively. His research interests are in the areas of

parallel and distributed computing and systems, and computer

architecture.

Yunhao Liu received his BS degree in Automation Department

from Tsinghua University, China, in 1995, and a MA degree in

Beijing Foreign Studies University, China, in 1997, and a MS

degree in Computer Science at Michigan State University in

2003. He was a Regional Manager in China Telecom from

1997 to 1998, and a Deputy Director in China Post from 1998

to 2001. He is now a Ph.D. student of Computer Science and

Engineering at Michigan State University. His research

interests are in the areas of distributed systems, Internet and

e-commerce technologies, peer-to-peer systems, location-aware

computing, and high-speed networking. He is a student

member of the IEEE.

&ast;http://www.ircache.net/a4
&ast;http://www.ircache.net/a4
&ast;ftp://ircache.nlanr.net/Traces/a4
&ast;http://www.ircache.net/Cache/Statistics/a4

	On scalable and locality-aware web document sharing
	Introduction
	Browsers-aware proxy server
	Simulation environment
	Traces
	A browsers-proxy caching environment

	Performance evaluation
	Sizes of browser and proxy caches
	How much is browser cache data sharable?
	Performance of browsers-aware proxy
	Performance impact of scaling the number of clients
	Overhead estimation

	Browsers-aware model supported prefetching
	Prefetching methods in a standard proxy caching environment
	Prefetching overheads
	Reducing overheads by using the browsers-aware proxy model
	Browsers-aware proxy supported prefetching scheme
	Performance evaluation
	Space effects on hit ratios
	Traffic savings
	Effects on prefetching aggressiveness control


	Related work
	Conclusion
	Acknowledgements
	References


