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Abstract

Computational Fluid Dynamics (CFD) applications are
highly demanding for parallel computing. Many such ap-
plications have been shifted from expensive MPP boxes to
cost-effective clusters. Auto-CFD is a pre-compiler which
transforms Fortran CFD sequential programs to efficient
message-passing parallel programs running on clusters.
Our work has the following three unique contributions.
First, this pre-compiler is highly automatic, requiring a
minimum number of user directives for parallelization. Sec-
ond, we have applied a dependency analysis technique for
the CFD applications, called analysis after partitioning. We
propose a mirror-image decomposition technique to par-
allelize self-dependent field loops that are hard to paral-
lelize by existing methods. Finally, traditional optimiza-
tions of communication focus on eliminating redundant syn-
chronizations. We have developed an optimization scheme
which combines all the non-redundant synchronizations in
CFD programs to further reduce the communication over-
head. The Auto-CFD has been implemented on clusters
and has been successfully used for automatically paralleliz-
ing structured CFD application programs. Our experiments
show its effectiveness and scalability for parallelizing large
CFD applications.

1. Introduction

In Computational Fluid Dynamics (CFD), people numer-
ically simulate the complex flow of various types of fluids
under different ranges of speeds on high performance com-
puters. CFD has become one of the most important pillars
in the fields of aviation and aerospace. The CFD numerical
models and simulations are highly complex and computa-
tionally demanding for both CPU and memory storage. For
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by the U.S. National Science Foundation under grants CCR-9812187,
EIA-9977030, and CCR-0098055, and by Sun Microsystems under
grant EDUE-NAFO-980405.

example, a sample problem size for an external flow simu-
lation element given by the Powered-Lift Group of the Ap-
plied Computational Fluids Branch at the NASA-Ames Re-
search Center consists of 5,000,000 grid points, 50,000 it-
erations, and 5,000 floating point operations per point per
iteration—��

�� operations per problem [18].

It would be ideal for computational scientists to have
both MPP machines and general-purpose paralleliz-
ing compilers for solving their increasingly large and
complex application problems. However, on the sys-
tem architecture side, many such applications have been
shifted from MPP machines to clusters for both eco-
nomic and technical reasons. On the system software side,
parallelizing compilers are reasonably mature only for cer-
tain application programming models [23]. Paralleliz-
ing compiler development for important and specific
classes of large problems is highly necessary. Auto-CFD
is a pre-compiler which transforms Fortran CFD se-
quential programs to efficient message-passing parallel
programs running on clusters. Our pre-compiler ad-
dresses the need of both system architecture and system
software by targeting the programming models of CFD ap-
plications on clusters. Our work has the following three
unique contributions. First, this pre-compiler is highly au-
tomatic, requiring a minimum number of user directives
for parallelization. Second, we have applied a depen-
dency analysis technique for the CFD applications, called
analysis after partitioning. We propose a mirror-image de-
composition technique to parallelize self-dependent field
loops that are hard to parallelize by existing methods. Fi-
nally, traditional optimizations of communication focus
on eliminating redundant synchronizations. We have de-
veloped an optimization scheme which combines all the
non-redundant synchronizations in CFD programs to fur-
ther reduce the communication overhead. The Auto-CFD
has been implemented on clusters and has been success-
fully used for automatically parallelizing structured CFD
programs. Our experiments show its effectiveness and scal-
ability for parallelizing large CFD applications.
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      v(i,j)=f(v(g1(i), g2(j)))

   end do

Reference-only

do i=1, M

      ...=f(v(g1(i), g2(j)))

(c) C-type

(b) R-type

Assignment-only

do i=1, M
   do j=1, N
      v(i,j)=...
   end do
end do

(a) A-type

Combined
do i=1, M
   do j=1, N

   end do
end do

Unrelated

   do j=1, N

   end do
end do

do i=1, M
   do j=1, N
      ...

end do

(d) O-type

Figure 1: Types of field loop.

2. Computation Model of CFD Applications

Fluid movement patterns are expressed by Euler, Navier-
Stokes and other equations [18]. Solving these equations
by iterative numerical methods, CFD scientists character-
ize and study fluid movement phenomena for a wide range
of applications.

In CFD applications, the first step is to generate a grid
in an irregular physical flow field. The grid is then trans-
formed into a computational grid in a regular shape, such
as a rectangular grid. Each point in a grid corresponds to a
group of data describing the flow field status in that area,
such as velocities on different dimensions, densities, pres-
sures, and temperatures. We use arrays to indicate this data
for the whole grid, which are called status arrays. The sec-
ond step is to initialize the arrays to describe the initial sta-
tus of the flow field. A CFD simulation will eventually reach
a stable flow field status after many iterations of computa-
tion. Each iteration may include several loops. Each itera-
tion calculates all grid points in the field once. We define
such an iteration as a frame. The iteration will not stop un-
til a convergence condition is satisfied (the maximum data
error of all grid points between the current iteration and the
previous iteration should be less than a given error �).

Jacobi and Gauss-Seidel iterations and their variants are
commonly used iterative methods in CFD. Each grid point
is calculated based on neighbor grid points. Kernel compu-
tations are based on five-point stencil and nine-point sten-
cil models [18]. For accessing each status array, denoted
as �, we have defined four types of loops in CFD programs
shown in Figure 1. The four types are: A-type (Assignment-
only), R-type (Reference-only), C-type (Combined assign-
ment and reference), and O-type (Unrelated loop opera-
tions)

3. Software Structure of Auto-CFD

Figure 2 presents the basic structure of our pre-compiler
and how it is connected in a parallel execution environ-
ment. The input of the pre-compiler is a CFD sequential
source program. The output of the pre-compiler is a paral-
lel CFD source program in SPMD model with communi-

cation statements (PVM/MPI calls). The pre-compiler first
partitions the grid subject to communication optimizations.
Each subgrid is assigned to a parallel subtask. The pre-
compiler analyzes the dependency among subtasks to pre-
liminarily determine the synchronization points. After opti-
mizing synchronizations by eliminating redundant synchro-
nization points and combining non-redundant synchroniza-
tions, the pre-compiler determines the final synchronization
points and determines data items for message-passing in
each synchronization point. Applying the analysis results,
the pre-compiler finally restructures the sequential source
code into optimized parallel source code. The restructuring
procedure consists of inserting communication statements,
modifying loop indices, redefining the sizes of arrays, mod-
ifying read file statements, and other related operations. The
reference on the implementations of the restructuring pro-
cedure is given in [24].

4. Dependency Analysis
4.1. Grid Partitioning

We first briefly introduce grid partitioning techniques
that are necessary technical background for dependency
analysis. Grid partitioning serves for two purposes: (1) to
balance the computation among the subtasks; and (2) to
minimize communication during the computation among
the subtasks. For tori grids, all the partitioned subgrids
should be sized as equally as possible for load balancing.
In addition, we have rigorously proved that the amount of
communication is minimized if the grid is partitioned by
finding the equal number of grid points (or as close to equal
as possible) for all demarcation lines of a partitioned sub-
grid.

4.2. Dependency Analysis

After partitioning the grid, the pre-compiler starts to
identify the communication data sets through dependency
analysis. For a CFD application, the program structure and
operations in field loops are complicated. We have consid-
ered the following 5 cases in the implementation of Auto-
CFD:

(1) Multiple status arrays will be referenced in a Field-Loop.
All the status arrays are analyzed in order to find the intersection
sets made up of arrays to be assigned and arrays to be referenced.
The dependency will be determined following this analysis.

(2) References in some field loops may not be a regular five-
point stencil or a nine-point stencil. Some references in these field
loops occur only on a certain dimension or in a certain direction.

(3) For grid points in boundaries, the program usually includes
a special code section for those points.

(4) The number of dimensions of status arrays may be larger
than the number of dimensions of the flow field. In some CFD ap-
plications, programmers may pack multiple status arrays into one
high dimensional array. The extended dimensions due to the pack-
ing are not related to the grid partitioning. We should be able to
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Figure 2: Basic software structure.
do i=1, M

   end do
end do

   do j=1, N
       v(i,j)=f(v(i-1, j-1))

do i=1, M

   end do
end do

   do j=1, N

(a) (b)

       v(i,j)=f(v(i-1, j), v(i+1, j), v(i, j-1), v(i, j+1))

Figure 3: Examples of self-dependent field loops.

distinguish the extended dimensions from the original dimensions
that are called status dimensions.

(5) We must identify the dependency distance (the number of
grid points referenced in one direction of one dimension for one
calculation) since in some CFD applications such as multiple-
grids, it is likely that the dependency distance is larger than 1.

Our dependency test algorithm generates a set of field
loop dependency pairs, called ���� . Each element in this
set records a pair of dependent field loops and records other
related information, such as dependent status arrays and
dependency distances. Scanning the entire program sec-
tion, the algorithm first identifies the loop structures and
the statements referencing status arrays. The algorithm then
searches for all pairs of assignment statements and refer-
ence statements, and further identifies the field loops includ-
ing these statements. If the loop pair has been included in
set ���� , additional related information for the loop pair is
recorded. Otherwise the loop pair is added into the set. De-
pendent pairs in ���� consist of the complete dependent
information. The information in ���� is sufficient for syn-
chronizations, communications and program restructuring.

When a pair of dependent field loops (an A-type and an
R-type) happens to be the same loop, the loop is called as
self-dependent field loop. Figure 3(a) and (b) give two rep-
resented examples. Loops in Figure 3(a) which do not have
dependences opposite to the lexicographic order can be par-
allelized using a wavefront method or a loop skewing tech-
nique [2, 22]. The dependence graph of the loops in Figure
3(b) is shown in Figure 4(a). This graph has both depen-
dences in the lexicographic order and dependences oppo-
site to the lexicographic order. The dependence distance is
1. Loops in Figure 3(b) are not parallelizable by traditional
methods[2]. We have developed a method called mirror-
image decomposition of the dependence graph to parallelize
the self-dependent loops in Figure 3(b). The method first
decomposes a dependency graph of a program (e.g. Fig-
ure 4(b)) into subgraphs (e.g.Figure 4(c) and (d)) based on
the access direction of status arrays. Then traditional tech-
niques of wavefront, or pipelining are applied to subgraphs.
The detailed descriptions of the dependency test algorithm
and mirror-image decomposition can be found in [24].

(a) Dependent Graph (b) Dependent Graph (c) Decomposotion Graph 1 (d) Decomposotion Graph 2

J

I

(i,j)

J

I

J

I

J

I

Figure 4: Mirror-image decomposition.

5. Synchronization and Communication Op-
timizations

Using the dependency analysis results, the pre-compiler
determines where to do synchronization and communica-
tions and what data are needed for communications for each
pair of dependent field loops. We focus on synchronization
and communication optimizations between neighbor sub-
tasks in this paper. A synchronization point refers to a po-
sition (or a line number) in a program, where the depen-
dent data of a variable have been updated so that the up-
date of this variable can proceed. The dependency analy-
sis generates these synchronization points to ensure the cor-
rectness of a parallel program, but it does not consider its
efficiency. The communication in a synchronization point
refers to message passing of the dependent data between
two neighbor computing nodes. We have developed opti-
mization techniques to improve execution efficiency by re-
ducing the number of synchronization points and by com-
bining the communications.

5.1. Optimizations from combining synchroniza-
tions

We use� �� ������ � 	 to denote a loop, where �����
is a loop variable, and � is the ordered set of statements
making up a loop body. We also define an extended loop
body denoted as ��

� ���� � � � ����, where �� is the
�
 statement of the loop and �� is the ��� �
 statement. We
give the following definitions:
Definition 6.1. Inner Loop and Outer Loop: For loop
�� �� ��� �� 	 and �� �� ��� �� 	, if ��

�
� ��

�
, then

�� is a inner loop of ��, and �� is a outer loop of ��, de-
noted as �� � ��.
Definition 6.2. Direct Inner Loop and Direct Outer Loop: If
�� � ��, and there is no loop �� such that �� � �� � ��,
then �� is a direct inner loop of ��, and �� is a direct outer
loop of ��, denoted as �� � ��.
Definition 6.3. Adjacent Loops: If both loop �� and loop
�� do not have a outer loop, or both �� and �� have the
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same direct outer loop, loops �� and �� are adjacent loops,
denoted as �� � ��.
Definition 6.4. Simple Loop: Loop � is a simple loop if and
only if ����� ������ � ���� � ���� � ��� � �.

5.1.1. Generating upper-bound regions for synchro-
nization points
A synchronization and a communication are needed be-

tween each dependent field loop pair, �� � �� where ��

is an A-type field loop and �� is an R-type field loop. The
correctness of the program is ensured as long as the syn-
chronization point is inserted at any position after ��

and before ��. This is a legal region for the synchro-
nization point. We call this region a synchronization re-
gion. The starting point of the synchronization is placed
right after loop ��, and the ending point of the synchro-
nization is placed right before loop ��. However, we may
find areas, such as the areas inside inner loops, in a syn-
chronization region where placing the synchronization
point could cause redundant synchronizations. We de-
fine the synchronization region excluding such areas as
an upper-bound synchronization region. We aim at iden-
tifying an upper-bound synchronization region for each
synchronization point, and determining the minimum num-
ber of intersections of these upper-bound synchronization
regions so that the numbers of synchronizations and com-
munications can be minimized.

We have developed an algorithm to generate upper-
bound synchronization regions. The idea of the algorithm
consists of two parts: to move out the starting point of a syn-
chronization region from loops as far as possible and then
to determine its synchronization region. The algorithm first
analyzes the direct inner loops in an non-simple loop as fol-
lows. The starting point can be moved out to the next level
loop if there is no R-type loop. If there exists an R-type loop,
the synchronization region has to be kept in this non-simple
loop. The algorithm then determines the synchronization re-
gion as follows: if an R-type loop is found between the start-
ing point and the end of the loop, the synchronization region
is identified to be between the starting point and the R-type
loop; otherwise the region is identified to be between the
starting point and the end of the non-simple loop.

Figure 5 shows how our algorithm generates upper-
bound synchronization regions. In Figure 5(a), the direct
outer loop of the A-type loop is �� that does not include
the R-type loop. So, the starting point of the synchroniza-
tion region at the end of the A-type loop can be moved to
the end of next level loop ��. For the same reason, the start-
ing point can be moved again, to the end of the �� loop.
The direct outer loop of �� is �� that includes the R-type
loop. Thus, the starting point cannot be further moved out.
Now a synchronization region needs to be determined. Fig-
ure 5(b) shows two typical cases. In case 1, the R-type loop
is included between the starting point and its direct outer

1

2

A-type loop

R-type loop

L1

L2
L3

A-type loop

R-type loop

L1

L2
L3

A-type loop

L1

L2
L3

R-type loop

case 1 case 2

(b)determine synchronization region

unrelated loop movable starting point 

(a) move out starting point

syn. regionnon-movable starting point

Figure 5: Starting point movement and synchronization
region identification in a non-simple loop.

loop ��. The synchronization region starts from the start-
ing point and ends in the beginning of the R-type loop,
but excludes unrelated loops. In case 2, the R-type loop is
not included between the starting point and its direct outer
loop ��. The synchronization region starts from the start-
ing point, and ends at the end of the direct outer loop ��,
but excludes unrelated loops.

5.1.2. Combining synchronization regions for loops
As described above, one upper-bound synchronization re-

gion is generated for each synchronization point. Upper-
bound synchronization regions for some synchronization
points could be overlapped. So synchronization points of
the overlapped regions can be merged as one single syn-
chronization as long as the merged synchronization point is
placed in the overlapped region. The optimal solution is to
find the minimum number of regions so that the total num-
ber of synchronizations is minimized. We have developed
and implemented an algorithm in Auto-CFD to achieve this
optimization. The basic idea is as follows. All the upper-
bound synchronization regions are sorted by the program
line number of the first statement. An example of this sort-
ing is shown in Figure 6(a) where 6 synchronization points
are needed in the program. The 6 upper-bound synchroniza-
tion regions have been created for the 6 synchronization
points. Intersected regions are generated in the sorted order.
A new intersection will not be generated until the currently
sequenced region does not intersect with the existing inter-
sections. Thus, the minimum number of intersections of the
regions is found. Using this algorithm, the 6 upper-bound
synchronization regions in Figure 6(a) have been combined
into 2 regions, which is the minimum number of the inter-
sections for block synchronizations (see Figure 6(b)). After
optimization, the first three synchronizations are combined
into one synchronization and corresponding communica-
tions are aggregated. Same thing happens to the last three
synchronizations. If the regions are not intersected in this
way, we may obtain more regions than the minimum. Fig-
ure 6(c) gives such an example in which the six regions are
combined into 3 regions. The proof of the correctness and
the minimization of the algorithm is given in [24].
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6
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4 5 6
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3 4

5 6

(a) (b) (c)

Figure 6: Two different strategies (b) and (c) to combine
synchronization points. Each square represents the up-
per bound synchronization region generated for a syn-
chronization point. Shadow areas are intersections of
upper-bound synchronization regions.

5.2. Synchronization optimizations for branch
structures

We have focused on optimizations for loops in the last
section. We consider synchronizations in branch structures
in this section. The upper-bound synchronization regions
are determined in branch structures as follows:

1. If there is a ���� statement in a synchronization region,
the region will be ended before the ���� statement.

2. When there is an �� � ���� block in a synchronization
region, and if there is an R-type loop in the �� � ����

block, the synchronization region will be ended before
the ������� block; otherwise the region only needs to
exclude the �� � ���� block.

3. If the starting point is in an �� � ���� block, it can be
moved out of the block as long as there is not an R-
type loop in the �� � ���� block.

We give examples to explain how synchronization regions
are determined in Figure 7, where (a) is an example for case
1, (b) and (c) are examples for case 2, and (d) and (e) are
examples for case 3. In Figure 7(e), there is an R-type loop
in the ���� block, but the R-type loop and the A-type loop
in the �� � ���	 block cannot be executed at the same time.
Thus, the starting point after the A-type loop can be moved
out of the �� � ���� block. Further optimization for the case
in Figure 7(c) and for while loops can be found in [24]

5.3. Combining the synchronizations from multi-
ple subroutines

An application program usually consists of many sub-
routines. We have investigated the possibility of combin-
ing synchronizations from multiple subroutines. Here is
the outline of our work. When a subroutine call is met in
the process of locating the synchronization region, the pre-
compiler checks if there is an R-type loop in the subrou-
tine. If so, a synchronization is installed before the subrou-
tine call. Otherwise the synchronization region excludes this
call statement. If there is a synchronization region in the end

A-type

R-type

goto n

A-type A-type
A-type A-type

R-type

R-type

R-type R-type

if e then

else

endif

if e then

else

if e then if e then

else

endif

endif

endif

else

R-type

(a) (b) (c) (d) (e)

Figure 7: Examples of determining upper-bound syn-
chronization regions in branch structures. A circle rep-
resents a movable starting point, while a dot represents
a non-movable starting point. Shadow areas represent
upper-bound synchronization regions.

R-type

program

call a

call b 

call a

subroutine a

subroutine b

(a)

program

call a

call b 

call a

R-type

subroutine a

subroutine b

Ω(π  )j

(b) (c)

program

call a

call b 

call a

R-type

subroutine a

subroutine b

Ω(π  )i

Ω(π  )j

Ω(π  )i

Ω(π  )j

Ω(π  )i
Ω(π  )

Ω(π  )

i1

j1

i2Ω(π  )

Figure 8: Combining the synchronizations from multiple
subroutines. A dot represents a starting point. Shadow
areas are upper-bound synchronization regions for sub-
routines in (a) and (b). The shadow area in (c) is the com-
bined synchronization region.

of the subroutine, this region can be moved out of the sub-
routine, which could be combined with other upper-bound
synchronization regions.

Figure 8 gives an example of optimizing synchroniza-
tions among multiple subroutines, where the main program
calls subroutine 
 twice and subroutine � once (see Fig-
ure 8(a)). Without optimization in Figure 8(a), the execution
needs three synchronizations in which two of them happen
in subroutine 
 and one happens in subroutine �. As shown
in Figure 8(b), there is a synchronization region, �����, in
the end of subroutine 
. This region can be moved out of
subroutine 
 to the main program. This region is further de-
rived into a new region ������ in the main program, which
is after the first “call 
” and before the R-type loop. Simi-
larly, we have derived synchronization regions ������ and
������ for the “call �” statement and the second “call 
”
statement, respectively. The pre-compiler further combines
������, ������ and ������ into a single region (see the
shadow area in Figure 8(c)). After the optimization, only
one synchronization is needed and communications are ag-
gregated.

6. Experimental Results and Analysis

Using the Auto-CFD, we have conducted several case
studies for aerospace engineering designs. We present two

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03) 

0-7695-2066-9/03 $17.00 © 2003 IEEE



Table 1: Improvement by synchronization optimizations.

program partition # of synchronization percentage of

before optimization after optimization optimization

� � � � � 73 8 89.0
� � � � � 84 10 88.1

case study 1 � � � � � 81 9 88.9
aerofoil simulation � � � � � 148 13 91.2

� � � � � 145 13 91.0
� � � � � 156 14 91.0

case study 2 � � � 72 7 90.3
flow simulation of sprayer � � � 69 7 89.9

� � � 141 7 95.0

Table 2: Overall performance of case study 1.
flow field scale �� � �� � ��

number of processors partition execution time (s) speedup parallel efficiency

1 1970 - -
2 � � � � � 1760 1.12 56%
4 � � � � � 2341 0.84 21%
6 � � � � � 1093 1.80 30%

representative case studies in this paper. Case study 1 is an
aerofoil simulation with 3,600 lines of Fortran code, and
case study 2 is a flow simulation of sprayers with 6,100 lines
of Fortran code. The aerofoil simulation does two major cal-
culations: the distribution of the velocity on the aerofoil sur-
face and the parameters of the flow close to the aerofoil sur-
face (also called boundary layer analysis). The flow simu-
lation of sprayers studies the air velocity for variations of
sprayers, such as the sprayer fan speeds and fan positions.
Both simulations are time-consuming CFD programs. The
results presented here are measured from a dedicated net-
works of 6 Pentium workstations connected by Ethernet.

6.1. Performance improvement of the synchro-
nization optimizations

Table 1 presents the performance improvement results
from the synchronization optimization on the two case stud-
ies. In the “partition” column, ����� means that the flow
field is partitioned into � parts in dimension� , � parts in di-
mension � , and � parts in dimension �, respectively. Each
of � � � � � subgrids is assigned to a subtask for execu-
tion in a processor. We have shown that the pre-compiler
is able to reduce the total number of synchronization points
for both programs by about 90%. The overall execution per-
formance results are presented in the next subsection.

Table 3: Overall performance of case study 2.
flow field scale ��� � ���

number of processors partition execution time (s) speedup parallel efficiency

1 362 - -
2 � � � 254 1.43 71%
3 � � � 184 1.97 66%
4 � � � 130 2.78 70%

6.2. Overall performance and scalability

Table 2 presents the parallel execution times of case
study 1. This simulation includes a large number of self-
dependent field-loops that are hard to parallelize by tra-
ditional methods [2]. Auto-CFD parallelizes these loops
using the mirror-image decomposition and achieves some
speedups. The relatively low efficiencies presented in Ta-
ble 2 reflect this feature of the simulation program. The rea-
son causing the speedup of the program on 4 processors to
be lower than its speedup on 2 processors is as follows. On
2 processors, the best way to partition the flow field is to
cut the longest dimension of 99 grid points. Each processor
only needs to communicate demarcation grid points with
the other processor. On 4 processors, one alternative parti-
tioning is �����. Each processor holding an non-boundary
subtask needs to communicate with two neighbor proces-
sors. Thus, the number of grid points to be communicated
per processor is the same as that on the 2 processor sys-
tem. This means that the computation in each processor is
half of that in the 2 processor system, and the communica-
tion is doubled. The computation and communication could
not be fully overlapped due to the usage of mirror-image
decomposition. Thus, the speedup decreased on the 4 pro-
cessor system. We also ran this parallel program using 4
processors with another partitioning of � � � � �, and ob-
tained similar result. Since each subgrid is �� � �� � ��.
Each processor needs to communicate with two other pro-
cessors, and the total number of communicating grid points
is 1.6 times, or ��� � �� � �� � ������� � ��� times of
that in each processor in the 2 processor system. The com-
munications of one processor to other two neighbor proces-
sors are not balanced. Thus, the speedup by this partitioning
alternative also decreased, compared with the two proces-
sor system. The speedup increased on 6 processors because
the partitioning of �� �� � provided more balanced com-
munication with neighbor processors and generated an less
amount of communications than that in the 4 processor sys-
tem with a partitioning of �� �� �.

Tables 3 to 5 present the performance results of case
study 2. The overall performance presented in Table 3 in-
dicates that this simulation can be more efficiently paral-
lelized than the one in case study 1. Compared with the 2
processor system, the parallel efficiency of a 3 processor
system decreased because its communication volume of the
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Table 4: Scaling performance of case study 2 with a par-
titioning of �� �.

flow field execution time on execution time on speedup of parallel efficiency of

scale 1 processor (s) 2 processor system (s) 2 processor system 2 processor system

�� � �� 45 45 1 50%
�� � �� 108 66 1.64 82%
�� � �� 199 140 1.42 71%
��� � �� 331 218 1.52 76%
��� � �� 472 276 1.71 86%
��� � �� 712 403 1.77 88%
��� � �� 908 519 1.75 87%

Table 5: Superlinear performance of case study 2.
flow field scale ��� � ���

number of processors partition execution time (s) parallel efficiency over 2 processor system

2 � � � 2095 100%
3 � � � 1249 112%
4 � � � 1012 104%

processor holding the non-boundary task is doubled. Com-
pared with the 3 processor system, the parallel efficiency
of the 4 processor system increased because the amount of
the computation per processor is further decreased so that
caches are better utilized.

The performance results presented in Table 4 show the
impact of the grid density to the parallel efficiency on a 2
processor system. The parallel efficiency increases as the
grid density increases, except for the first two cases where
their flow fields are small. This is because the ratio of com-
putation to communication becomes larger as the grid den-
sity increases so that computation and communication can
be further overlapped to gain better performance.

As the grid density increases to a certain degree, a work-
station runs out of memory so that the execution slows down
significantly. Further increasing the number of workstations
could increase the accumulated memory size for solving a
large density grid problem. If the problem size is sufficiently
large but does not make workstations run out of their mem-
ories, the parallelized CFD program in case study 2 can ef-
ficiently utilize the cache in each workstation to achieve su-
perlinear speedup performance. Table 5 presents the super-
linear speedup performance results. As the grid density in-
creases to ���� ���, we obtain superlinear speedups on 2,
3, and 4 workstations.

7. Related work

We briefly overview some representative projects and
comparisons with Auto-CFD. The related work mainly
comes from the areas of pre-compiler transformation sys-
tems, parallel compilers, and algorithm design.

Pre-complier transformation systems. Both ADAP-
TOR (Automatic DAta Parallelism TranslaTOR) [4]
and VAST HPF [15] are source to source transforma-
tion systems that transform the data-parallel HPF pro-
grams into Fortran 77 or Fortran 90 programs. The input
of our pre-compiler is a standard Fortran sequential pro-
gram. Gnews [19] transforms a sequential Fortran program
to parallel Fortran code with MPI calls. The user must in-
sert directives into these sequential programs properly
in order to obtain good performance. Gnews mainly per-
forms the translation operations. The kernel of Gnews
does not include any techniques to exploit program paral-
lelism. In contrast, our pre-compiler includes paralleliza-
tion optimizations for the source to source transforma-
tions. An early related work is the ParaScope Editor [8],
which is a tool designed to help skilled users interac-
tively transform a sequential Fortran 77 program into a
parallel program.
Parallel compilers. Polaris compiler [16] [3] transforms
a sequential Fortran77 program to parallel programs on
both distributed shared memory systems and shared mem-
ory systems. Our target system is a message-passing ori-
ented clusters. SUIF Explorer [12] is an interactive and in-
terprocedural parallelizing compiler that has been imple-
mented on a Digital TurboLaser machine. It attempts to
provide a general-purpose parallelizer, leaving a few unre-
solved dependencies to users. Our pre-compiler orients a
specific class of applications and requires little parallel pro-
gramming skill from users.

POOMA(Parallel Object-Oriented Methods and Appli-
cations) [17] is an object-oriented framework for applica-
tions in computational science requiring high-performance
parallel computers. It is a library of C++ classes designed
to represent common abstractions in these applications.
POOMA requires parallel programming skills from users.
Algorithms design. A large number of parallelizing algo-
rithms have been proposed. Authors in [2] have evaluated
some well-known systems and have concluded that no sys-
tem is effective in covering different types of applications.
The approach of incorporating all these algorithms into an
optimizing compiler has its limitations for achieving opti-
mal performance [11].

Aiming at exploiting data parallelism, both research
groups at Rice and Stanford Universities propose algo-
rithms to maximize parallelism and minimize communica-
tions [1, 11, 20]. Papers [1] and [11] use five-point sten-
cil as one of their case studies. Paper [20] also uses some
simple stencil examples, and mainly focuses on pre-
senting optimization of CSHIFT operations in HPF for-
mat [7]. However, these examples represent a small part
of a CFD program. In addition, their studies do not in-
clude ������, ����	 and 
���� � 

���	 structures, but
only consider �� loops. Our pre-compiler treats its in-
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put as a whole package by considering different types of
programming structures in CFD programs.

Authors in [6] use DAG matrix to minimize redundant
dependencies and synchronizations. Eliminating redundant
synchronizations in single loops on shared-memory multi-
processors was studied in early work [14]. Authors in [10]
further studied removing redundant dependences in multi-
ple nested loops. The author in [13] studied parallelizing it-
erative loops with conditional branching. The work in [21]
focuses on optimizations for eliminating barrier synchro-
nization of SPMD programs. Because our pre-compiler first
partitions the grid as balanced as possible, the barrier syn-
chronization used to determine the end of the CFD program
execution will not be a sensitive factor that degrades per-
formance. So we only focus on minimizing synchroniza-
tion and communication among the grid neighbors. Paper
[9] presents a global communication optimization technique
based on data-flow analysis and linear algebra. It aims at
eliminating redundancy while our work targets at combin-
ing non-redundant synchronizations in addition to eliminat-
ing redundant synchronizations. Another related work is [5]
that presents a new compiler algorithm for global analysis
and communication optimization in data-parallel programs.
Again, this work does not consider optimization for com-
plicated data structures to which we apply our optimization
techniques.

8. Conclusion
We have presented a pre-compiler for automati-

cally transforming a Fortran CFD sequential program into a
parallel SPMD program. The pre-compiler needs some di-
rectives for specifying the CFD applications and the clus-
ter system but does not require parallelizing skills from
users. Appendix 1 presents the required directives, and Ap-
pendix 2 gives an example of the automatic transforma-
tion result from a sequential program to a parallel program.
We have also discussed the mirror-image decomposi-
tion technique with dependence test algorithm briefly
and the technique of combining all non-redundant syn-
chronizations in detail, which are two technical contri-
butions for exploiting CFD parallelism and further re-
ducing synchronization and communication overhead.
Experiments have shown their effectiveness for paralleliz-
ing structured CFD sequential programs for execution
on clusters. This pre-compiler is also applicable to gen-
eral message-passing parallel systems.
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