
Proceedings of the 7th International Workshop on Web Content Caching and Distribution, (WCW’02), Boulder, CO, August 14-16.

Detective Browsers: A Software Technique to Improve Web Access

Performance and Security
�

Songqing Chen and Xiaodong Zhang
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795�

sqchen, zhang � @cs.wm.edu

Abstract
The amount of dynamic Web contents and secured e-

commerce transactions has been dramatically increasing in In-
ternet where proxy servers between clients and Web servers are
commonly used for the purpose of sharing commonly accessed
data and reducing Internet traffic. A significant and unneces-
sary Web access delay is caused by the overhead in proxy servers
to process two types of accesses, namely dynamic Web contents
and secured transactions, not only increasing response time, but
also raising some security concerns. Conducting experiments on
Squid proxy 2.3STABLE4, we have quantified the unnecessary
processing overhead to show their significant impact on increased
client access response times. We have also analyzed the techni-
cal difficulties in eliminating or reducing the processing overhead
and the security loopholes based on the existing proxy structure.
In order to address these performance and security concerns, we
propose a simple but effective technique from the client side that
adds a detector interfacing with a browser. With this detector, a
standard browser, such as the Netscape/Mozilla, will have simple
detective and scheduling functions, called a detective browser.
Upon an Internet request from a user, the detective browser can
immediately determine whether the requested content is dynamic
or secured. If so, the browser will bypass the proxy and forward
the request directly to the Web server; otherwise, the request will
be processed through the proxy. We implemented a detective
browser prototype in Mozilla version 0.9.7, and tested its func-
tionality and effectiveness. Since we simply move the necessary
detective functions from a proxy server to a browser, the detective
browser introduces little overhead to Internet accessing, and our
idea can be implemented by patching existing browsers easily.

1 Introduction

Proxy servers are originally designed for caching static Web
contents that are files stored in a Web server, and have been effec-
tively used for this purpose. � Proxy servers also have to deal with

�
This work is supported in part by the National Science Foundation

under grants CCR-9812187, EIA-9977030, and CCR-0098055.
� Proxy servers can also be used as firewalls for security reasons.

other ever emerging types of Web contents. In this study, we ex-
amine the proxy’s roles in processing dynamic Web contents and
secured transactions, and present a software method to improve
the Web access performance and security.

Dynamic Web contents are generated by programs executed at
the requesting time. Although the response time to access a dy-
namic Web page is several orders of magnitude slower than that to
access a static page, the amount of dynamic Web content services
in commercial, government, and industrial applications has been
dramatically increasing. Researchers have examined the percent-
age of dynamic contents in several highly popular Web sites in-
cluding the Melissavirus site, the eBay site, the 1998 Olympic
Winter Game site, and the Alexandria Digital Library site and
others, and found the percentage ranges from 10% to 42% [10],
[16], [17].

A number of methods had been devised to improve the per-
formance of dynamic Web content services based on the cur-
rent Web access infrastructure, focusing on effectively caching
and processing dynamic web pages. One representative ap-
proach from the server side is to cache dynamic contents
in the Web servers or in a dedicated storage close to the
servers[10],[13],[14],[17],[19]. The approach from the proxy side
is to restructure existing client side proxy servers to be capable of
some Web server processing and caching functions for dynamic
contents [8],[9],[15],[16]. Many studies have shown that caching
dynamic contents at the server side is most effective and more ap-
propriate [10],[12],[14],[17],[19]. In other words, dynamic con-
tents are continuously changing and not suitable for client-side
proxy caching, and thus it is not beneficial for a proxy to keep
them. Although most proxy servers do not cache dynamic Web
contents , a proxy has to make connections to Web servers and
temporarily place a document while its dynamic nature is de-
tected for the purpose of a replacement or deletion.

Internet E-commerce services have become popular and been
provided by many company servers, and ever-increasing business
transactions are completed online. E-commerce requires a secure
channel to complete these transactions. Since the standard HTTP
protocol is not sufficiently secure, the SSL was proposed [3], and
commonly used for the secure data transmission, such as online

shopping, on-line credit card payment. Since the secure trans-
actions must not be intercepted or cached by any intermediary,
a proxy has to tunnel the communication between the client and
the server when such a content reaches the proxy. The involve-
ment of the proxy can be a serious security concern besides the
unnecessary processing overhead.

Instead of further investigating Web server caching or enhanc-
ing proxy caching ability for dynamic contents and the secured
transactions, we have made our efforts to eliminate the client-
side proxy processing overheads, and to provide a reliable way
for secure transactions. This technique is also complementary to
the server-side caching approach, further reducing response times
to clients and removing unnecessary processing burdens on the
proxy and unnecessary risks for secured transactions. In the rest
of the paper, the term of “proxy” or a “proxy server” means a
client-side proxy.

In this study, we will first show that this ignored proxy pro-
cessing overhead is significant. We also look into the security
risks of tunneling secured transactions. Conducting experiments
on the proxy Squid2.3-STABLE4 [6], we have quantified this un-
necessary processing overhead to show its significant impact on
increased client access response times. We show that the average
additional time spent on the Squid proxy to process a dynamic
document is about 10% � 30% of the average response time of a
direct access to the Web server with the caching ability for a dy-
namic document, and is 3 � 10 times higher than that for accessing
a static document in the Web server.

The performance results have led us to consider restructuring
the organization of representative proxy systems, aiming to re-
duce or eliminate the processing overhead and the unnecessary
risks in the proxy. For the dynamic contents, we discuss several
possible techniques, and present technical difficulties that prevent
us from achieving our goal. We conclude that it may not be possi-
ble to find an effective way to solve the overhead and the security
problem by restructuring proxy servers.

In order to eliminate the overhead portion of the response time
to access dynamic Web contents and unnecessary risks for secure
transactions, we propose a simple but effective technique that en-
hances a standard browser, such as the Netscape/Mozilla, to be
able to detect and schedule the outgoing requests, which we call
a detective browser. Similar effort has been made to make clients
more intelligent for the purpose of scalability in [18].

Upon an Internet request from the user, the detective browser
can immediately determine whether the requested content is dy-
namic, or it requires a secured channel. If so, the browser will
bypass the proxy and send the request directly to the Web server
instead of going through the proxy. Otherwise, the request will
be sent to the proxy as usual. We have implemented a detec-
tive browser prototype and tested its functionality and effective-
ness upon a text based browser. We have also implemented it in
the Mozilla.0.9.7. Since we simply move the necessary detection
function from a proxy to a browser, and the detection can be done
by scanning the URL only once, the detective browser introduces
little overhead to Internet accessing, and our implementation can
be patched to any existing browser easily to provide an additional
option for users.

2 Sheltering dynamic contents in proxy and
the overhead

Before we discuss how a proxy processes dynamic contents,
we briefly overview its basic procedure of processing requests.
Upon a Web page delivery request, the proxy first checks if the
page is available and valid. If so, the proxy will deliver the page to
the requesting client. If the page is available but it is not valid, the
proxy will send an IMS (If-Modified-Since) message to the server
to check whether the contents have been changed. The server will
either send an updated page to the proxy or inform the proxy that
the page has not been changed. The proxy will then either send
the updated page or the original page to the requesting client. If
the requested page is not cached in the proxy, then the request
will be forwarded to the server. Upon receiving a reply from the
server, the proxy will store the page in the local memory/disk, as
well as forward a copy of the page to the requesting client. As
soon as the header of the page is received from the server, the
proxy is able to decide if the page is cacheable or uncacheable

�

.
The replacement policy will work to reclaim the space by deleting
LRU or unusable pages at a certain frequency.

2.1 How are dynamic contents processed in
the proxy?

A representative proxy is the Squid proxy. It uses the same
procedure to process requests for dynamic contents that are un-
cacheable in the proxy as it uses for static ones. The time and
space used to process the dynamic contents are true overhead be-
cause the contents will not be reused by other clients. Following
is a sequence of steps in proxy squid2.3-STABLE4 to process re-
quests for dynamic contents.

� Upon receiving a request from the client (using function
clientReadRequest()), the proxy parses the request and pro-
cesses the headers (using functions parseHttpRequest() and
urlParse(), respectively). The access right of the request
will be checked (using function clientAccessCheck()) af-
ter the redirection is done (using function clientRedirect-
Done()). Then the proxy will process the request (using
function clientProcessRequest()) by filling in some known
attributes in the data structure, and determining if the re-
quested content is in the proxy. Since the request is for a
dynamic content, it has not been cached in the proxy.

� The proxy forwards the request to the Web server (using
functions clientProcessMiss() and fwdStart()) after finding
no peer proxy (using function peerSelect()). A TCP connec-
tion will be started (using function fwdConnectStart()), if a
persistent connection is not used, via which the request will
be sent to the server (using function httpSendComplete()).

� When the server returns the generated dynamic content,
the proxy allocates a block of memory to store the content

�
The dynamic or static nature of the Web contents is determined by the

Web server, while whether the content is cacheable or uncacheable may
be suggested by the Web server by setting the reply headers, and decided
by the proxy. Not all static contents are cacheable, but most dynamic
contents are uncacheable.

(using function httpReadReply()). The proxy detects that
the content is uncacheable after parsing the header (using
function httpProcessReplyHeader()). The proxy makes the
dynamic content be private (using function httpMakePri-
vate()). (In contrast, if the content is static, the proxy will
use httpMakePublic() to make the file public.) Even if the
dynamic content will expire and not be reused, the proxy
will buffer/store it in the local memory/disk (using func-
tions storeAppend() and storeSwapOut()), and sends a copy
to the client (using function storeClientCopy2()).

� Since the stored dynamic content is not usable again, it will
be put into the LRU list, where the document will be re-
placed to release the space (using function storeMaintain-
SwapSpace()).

In each step, corresponding data structures will be created and
allocated for processing. Related operations for these data struc-
tures are nested. The space and processing time involved in these
operations delay the response time to the clients accessing dy-
namic contents.

2.2 Technical difficulties in eliminating the
overhead

“Can we eliminate or reduce the overhead by detecting the dy-
namic content as early as possible in the proxy?”. We first raised
this question, and have tried to provide solutions for it. The dy-
namic nature of a request can be detected if the proxy further
parses the request immediately after the request is received.

The implementation of this early detection in the proxy is
straightforward with little overhead. With this early detection
ability, a proxy has the following three alternatives to deal with a
dynamic content request.

� Making the Web server contact the client directly. After de-
tecting the dynamic nature of a request, the proxy asks the
Web server receiving the request for the dynamic content
to contact the client directly, instead of sending the docu-
ment to the proxy. The proxy processing overhead will be
eliminated because the proxy will never receive dynamic
contents from Web servers. Unfortunately, this proposal is
not practically useful although it is technically possible. In
current Internet infrastructure, the data communications for
a request from a client and its reply from the proxy are fixed
in a pair of ports. In order to make the server contact the
client directly, each client must be capable of listening to
multiple connections because the reply for a request may
come from a site that is different from the targeted destina-
tion. In addition, the socket used by the client to send the
request needs to be terminated if the reply does not come
from the proxy. A new connection between the client and
the Web server must be created after that. The additional
cost and existing Internet infrastructure make it impossible
for this proposal to be implemented.

� Making the client contact the Web server directly. After de-
tecting the dynamic nature of a request, the proxy declines
a dynamic content request by sending a message back to
the client to ask it to contact the Web server directly. Thus,

the proxy processing overhead will be eliminated. However,
the overhead times spent on the client request and the proxy
declination will significantly increase the response time of
accessing dynamic contents.

� Making the proxy not shelter the dynamic contents. Af-
ter detecting the dynamic nature of a request, the proxy
processes the request as the existing proxy does. How-
ever, the received dynamic content will not be cached. In
other words, the content will be flushed out of the mem-
ory soon after it is forwarded to the client. This approach
can certainly save the proxy space, but the processing time
overhead and proxy load burden remain, because the space
maintenance (using function storeMaintainSwapSpace() in
Squid) is overlapped with the proxy operations on the
clients’ requests and servers’ replies. This is the best that
current proxy can do.

Discussing several alternatives based on existing proxy struc-
tures, we have presented the technical difficulties in eliminating
the processing overhead even if the proxy detects the dynamic
nature of a client request in the earliest stage.

3 Tunneling HTTP communications be-
tween clients and servers through proxy

Before we look into the details about how the proxy tunnels
the HTTP communications, we have a brief overview at the SSL,
which is atop of TCP/IP for the secured data transmission. SSL is
an open, non-proprietary protocol proposed by Netscape Inc. [3],
which has become the most common way to provide encrypted
data transmission between Web browsers and Web servers in In-
ternet. Built upon private key encryption technology, SSL pro-
vides data encryption, server authentication, message integrity,
and client authentication for any TCP/IP connection. Most com-
mercial Web sites provide secured services to the clients based on
the SSL.

To tunnel the communication between the client and the
server, a CONNECT method is used (instead of the normal GET).
The CONNECT method is a way to notify the proxy to tunnel
the arrived contents. The SSL session is established between the
client who sends the request, and the Web server who generates
the reply; the proxy between the two parties merely tunnels the
encrypted data, simply passing bytes back and forth between the
client and the server without knowing the meaning of the content.

3.1 How is the tunneling done in the proxy?
In Squid 2.3, the tunneling is done for both the client and the
server as follows upon an SSL session request.

� Upon receiving a request for secured transactions from the
client by function clientReadRequest(), the proxy parses
the request and processes the headers by functions parse-
HttpRequest() and urlParse(). The access right of the re-
quest will be checked by function clientAccessCheck(), af-
ter the redirection is done by using function clientRedi-
rectDone(). Then the proxy will process the request using
function clientProcessRequest(), in which the CONNECT

method will be identified and function sslStart() will be
called to start the tunneling.

� The proxy uses function sslReadClient() to read the client
request and queues it for writing to the server. Functions
sslSetSelect() and sslWriteServer() are then called to write
data from the client buffer to the server side.

� When the proxy gets a reply from the Web server, it calls
function sslReadServer() to read from the server and queue
it for writing to the client. Functions sslSetSelect() and
sslWriteClient() are then called to write data from the server
buffer to the client side.

In Squid 2.5, the program becomes more complicated since
Squid can encrypt or decrypt the connections, with the help of
the OpenSSL[4]. However, the tunneling principle is the same.

3.2 The potential security problems of the
proxy tunneling function

Besides the additional proxy overhead to tunnel the communi-
cations between the client and the server (we will present our
measurement results later in the paper), the tunneling can be a
potential source to cause security problems.

� Bogus transactions. IRCache group has reported their ex-
periences on processing SSL requests in proxy [2] with fol-
lowing quotes. “Hackers have abused our service in the past
by routing SSL requests through our caches”. “We used to
accept SSL requests, but some dishonest people abused our
service by relaying bogus transactions through our caches.
Because of these transactions, we received many complaints
about credit card fraud and threats of FBI involvement.
Thus, we now must deny all SSL requests”. “Currently, the
only way anyone could make a credit card purchase through
proxies is if the origin server accepts such transactions over
insecure, unencrypted connections”.

� Tunneling port can be a target. The number of ports used
for communications is limited. The port used for tunnel-
ing can be targeted for attacks even it is not in a reserved
one. For example, it has been reported that a HTTP client
CONNECTing to port 25 could relay spam via SMTP.

� Implementation Bugs. It is impossible to guarantee that an
implementation of tunneling is bugs-free. Any small pro-
gram bugs in tunneling can open security loopholes. This is
only a potential problem.

We strongly argue that the proxy should not be involved in any
secured transactions.

4 Analysis and measurement of the over-
head for sheltering and tunneling

As discussed in Section 2.1, a dynamic document request will
be processed by a sequence of four steps, the same as the static
contents to be requested for the first time, in the proxy although
the obtained dynamic document will not be used. In each step,
processing time and/or storage space are consumed. In step 1,

overhead operations involved are receiving, parsing, checking,
redirecting the request, and a final request miss in the proxy. In
step 2, the proxy will make a peer-selection and a socket connec-
tion to the target server. The major delay in this step comes from
a TCP connection and slow start. In step 3, overhead operations
involved are receiving, reading, parsing and storing the requested
dynamic document. A memory block must be allocated to receive
the document, and disk space is allocated to store the document.
Finally in step 4, a replacement operation is used to delete the
obtained document.

The time and space involved for the above operations are true
processing overhead. In this section, we will quantify the over-
head by measurement.

4.1 Processing overhead measurement for
Sheltering

Figure 1 presents a basic measurement structure of the process-
ing overhead for dynamic contents in proxy. There are two sets
of measurements: (1) the average response time from a client to
directly request a set of dynamic documents (represented by the
solid arrow lines in Figure 1), and (2) the average response time
from the same client to request the same set of dynamic docu-
ments through a proxy (represented by the dotted arrow lines in
Figure 1). The difference between (2) and (1) is the average pro-
cessing overhead in the proxy ideally. The Squid proxy is used
in our experiments. The “client” we used in the experiments is
not a normal browser, but is a text-based program. Its functions
are to send out the requests, and wait for the reply from a Web
server or from a proxy server. After the requested document is
received, the client completes its job. It does not involve the nor-
mal browser functions of displays and other services (defined in
Netscape/Mozilla), since they may cause more unstable factors.

Proxy

Same Client

 Client

Client

Server

Figure 1: Basic measurement structure of the processing
overhead for dynamic contents in proxy.

Intuitively, the overhead measurement should involve neces-
sary instrumentation in the proxy and the use of workloads of
dynamic Web contents. We did the instrumentation, but found
that the results are very unstable with high intrusive effect. Ex-
amining the experiments, we realized that there is a potential dis-
advantage for using workloads of dynamic contents in our mea-
surements. Dynamic contents often need timely services from the
Web server, which may take up to multiple seconds for running
service programs. Such dynamic changes and long delays may

significantly disturb the server’s load, and thus the measurement
accuracy. For example, when we access the cgi-bin Web pages,
the server needs to fork a process/thread to execute the program,
and then sends the result back.

Considering the nature of the processing overhead in the
proxy, we have found that the overhead is independent of dy-
namic contents. Because the Squid proxy processes a dynamic
document exactly the same as it does a static document, if it is
the first time to be requested, except that the proxy marks the
a dynamic document as “private” for a future replacement (see
Section 2.1). Thus, the processing overhead can be accurately
measured by using static workloads.

In our experiments, the response time of static Web contents
is much more stable and short (in the order of 0.1 seconds), and
the Web server was not involved after the content is delivered. In
addition, instrumentation in the proxy for measurements can gen-
erate additional overhead, possibly disturbing the measurement
accuracy.

In our new experiments, the “client” program periodically
sends requests to front pages of a set of selected and rep-
resentative Web sites that are listed in Table 1. The selec-
tion is based on the following considerations. First, the se-
lected Web sites are frequently accessed, it is likely that their
front pages are always cached in the servers’ memories, and
the servers are sufficiently powerful to react to a huge amount
of accesses. Thus, periodically sending requests to each Web
site, we are able to obtain relatively stable response time. Sec-
ond, four popular Web site types are covered in our experiments:
“.com”, “.edu”, “.gov”, and “.org”. Finally, considering the dis-
tance, we selected Web servers on the east coast (www.ets.org,
www.ieee.org, www.mit.edu, and www.whitehouse.gov), on the
west coast (www.hp.com, www.intel.com, www.microsoft.com,
and www.stanford.edu), and a local site (www.wm.edu).

The experiments are set up by running the Squid proxy (ver-
sion squid2.3-STATBLE4) and client programs on a Pentium 3
Intel 1GHz processor machine with Redhat 7.1 Linux. The ma-
chine is dedicated to the experiments. We have minimized pos-
sible system intrusion when we measure the processing overhead
for two reasons. First, a proxy is normally shared by multiple
clients with context switching overheads. In contrast, our proxy
serves only one client, minimizing the effect of unrelated over-
head in the measurement. Second, in our experiments, the client
and the proxy are co-located on the same machine, eliminating
the networking transfer time between a client and the proxy. In
practice, this networking time can potentially disturb the mea-
surement of the processing overhead.

4.2 Quantifying the processing overhead for
Sheltering

In order to cover the entire time period of a day, we conduct
the measurement every hour 24 times a day. Besides the differ-
ences of type and distance, the front pages of the selected Web
sites have different content lengths. We have repeated measure-
ments 100 times for each site to calculate the average Squid proxy
processing overhead. In our calculation, we discarded extremely
large values that are not possible, and discarded the measured val-

ues when some of the web sites is temporally unavailable. Table
1 presents the content length, average processing overhead time,
its variance, and the standard deviation of the measurements.

The measured processing overhead of each site is quite con-
sistent, ranging from 0.1 seconds to 0.3 seconds. The average
overhead time is 0.2 second. The quantum of the time overhead
accounts for 10% to 30% of response time for a direct access to
the Web server for a dynamic document, and 3 to 10 times higher
than that for accessing a static document [19]. In order to ver-
ify that the measured result is machine independent, we ran the
same experiments on an Intel Pentium 4 with 1.7 GHz proces-
sor, where the other configurations are exactly the same as in the
Pentium 3 machine on which we did experiments. We obtained
almost identical results.

In addition, space overhead is also involved because mem-
ory and disk are used to temporally store the dynamic contents.
Besides the required space for the contents, related data struc-
tures will be allocated, which can be complicated. For example,
the structure of StoreEntry is used, which includes other com-
plex structures, such as MemObject, HttpReply, and HttpHeader,
HttpBody, in turn.

4.3 Processing overhead for tunneling
It is difficult to get secured transaction workloads for experi-
ments. Thus, we are not able to provide the measured overhead
at the moment in this paper. Comparing operation differences,
the tunneling overhead should be slightly lower than the shel-
tering overhead but at a comparable level, where no further re-
quest/reply header parsing is necessary. Our major concern of
tunneling is not the performance overhead, but the security prob-
lem.

5 The design and implementation of detec-
tive browsers

Figure 2 presents the position of the detective browser in the
Internet, which consists of an unmodified browser and its attached
detector. Upon a client request, the detective browser first checks
if the request is for a dynamic document. If so, the request will be
directed to the targeted server, bypassing the proxy. Otherwise,
the request will be routinely sent to the proxy. In Figure 2, the
proxy is set on the client side (client-side proxy or proxy), and/or
the server side (server-side proxy or reverse proxy). We try to
eliminate the client-side proxy overhead.

Internet
Reverse

Proxy
Proxy WWW ServerDetector

static

static

Detective Browser

Unmodified
Browser

dynamic/ secure

dynamic/secure

Figure 2: The detective browser model.

Site Names Length (Bytes) Overhead (�) Variance Standard Deviation Locations

MIT.EDU 6919 0.094 0.025 0.158 MA
STANFORD.EDU 10197 0.118 0.010 0.102 CA

ETS.ORG 18903 0.131 0.009 0.093 NJ
WM.EDU 19160 0.117 0.001 0.033 VA

MICROSOFT.COM 23167 0.265 0.0003 0.005 WA
IEEE.ORG 26839 0.260 0.060 0.240 NJ

WHITEHOUSE.GOV 27655 0.271 0.11 0.33 DC
INTEL.COM 36831 0.273 0.003 0.055 CA

HP.COM 46180 0.299 0.078 0.279 CA

Table 1: The selected Web sites and measured average overheads for processing dynamic contents in the proxy.

5.1 The types of dynamic contents and se-
cured transactions to be detected

Generally, dynamic Web contents have following features (1)
documents are changed upon each access (e.g. cgi binaries [1],
asp [7], fast-cgi, ColdFusion,etc.), (2) documents are the results
of queries (e.g. the google search engine), and (3) documents
embody client-specific information (e.g. cookies [11] or the
SSIs. Generally speaking, these documents are the following
types of dynamic contents: queries, SSI(Server Side Includes),
and scripts.

� scripts: There are scripts written and executed in different
ways. Generally, they could be in following formats:

– cgi (Common Gateway Interface[1]): CGI is a stan-
dard for interfacing external applications with infor-
mation servers, such as HTTP or Web servers. A
plain HTML document that the Web daemon retrieves
is static, which means it exists in a constant state: a
text file that does not change. A CGI program, on the
other hand, is executed in real-time, so that it can out-
put dynamic information. Generally, it can be used
to connect a Web server with a wide range of appli-
cations. It could be written in different languages, as
long as they are executable. Such as, the script written
by Perl is always named with “pl” as its extension.

– asp (Active Server Page[7]): The operations on asp
page is done at the Web server. After the ASP codes
are executed, all the asp code is stripped out of the
page. A pure HTML page is all that is left and will be
sent to the browser.

– PHP (PHP: Hypertext Preprocessing[5]): PHP is a
general-purpose scripting language that is especially
suited for Web development and can be embedded
into HTML. Like the asp, the code is executed on the
server and the client would receive the results of run-
ning that script.

� queries: The contents in all the search engines belong
to this category. Users normally interact with the server
by inputting some information into the form (for exam-
ple, use “google” to search something by inputting the key

word). Normally the server is connected to some back-
ground databases, so that the query could be executed and
the result could be sent back to the user via the server.
Queries could be implemented by forms, CGI, ASP, PHP,
JSP, etc. No matter how the queries are implemented, they
have the commons that a “?” appears in the URL when a
client sends the request.

� SSI (Server Side Includes): SSI applies to an HTML doc-
ument, provides for interactive real-time features such as
echoing current time, conditional execution based on logi-
cal comparisons, and others. An SSI consists of a special
sequence of tokens on an HTML page. As the page is sent
from the HTTP server to the requesting client, the page is
scanned by the server for these special tokens. When a to-
ken is found the server interprets the data in the token and
performs an action based on the token data. The pages with
the “shtml” as their name extensions are the SSIs, but some
do not have a “shtml” name extension.

The detective browser is also able to detect the following re-
quests for secured transactions.

� Secure ports HTTP requests: When the port 443 or 563 is
given in the request following the host, then it is clearly
a request for secured service from the server. 443 is for
secured http, 563 is for snews

�

� HTTPS requests: All netscape versions support the https
requests, which is a secured http request, and is done on the
SSL. Whenever you go to the American Express, Discover,
or whatever to pay your bill online, it automatically leads
you to the https.

The detective browser detects each type of dynamic contents
and secured transactions as follows:

� Regarding scripts, there are the following.

– For cgi, the URL must include the “cgi-bin”, and the
script ends with name extension of “.cgi” or “.pl”.
It will include a symbol of “?” when it is used for
queries. The detective browser can easily determine
the type by parsing the unique symbols.

�
The TSL is working to make the secured and insecured services to

share a common port, such as 80.

– For asp, all asp pages must have the extensions of
“.asp”, which is easy to check for in the URL. Also,
when it is used for queries, the “?” must appear in the
URL.

– For PHP, all PHP pages must have the extensions of
“.php”, which is also very easy to check for in the
URL. Same as asp, when it is used for queries, the
“?” must appear in the URL.

� Regarding queries, one or more keywords are always as-
sociated with each query. No matter how they are imple-
mented, there must be a “?” in the URL followed by some
keywords, so that we can simply check for this symbol in
the URL. This can be also combined with searching for
“cgi-bin”.

� Regarding the SSI, we only process the pages with “.shtml”.
Since they all have the name extension of “.shtml”, so it is
easy to detect them in the URL.

� Regarding secured transactions:

– For the HTTPS request, the https will be easily
checked out on the URL since “https” will appear.

– For the requests to ports 443 or 563, the port number
must appear after the URL’s host. So it is easily to
check it out in the URL.

5.2 The software structure of the detector

while

HTTP request from the browser

StringInURL("https", URL, 5)

N

 StringInURL(":443", URL,4)

N

N

N

N

StringInURL("?", URL, 1)

StringInURL("cgi−bin", URL, 7)

Y

Y

Y

Y

Y

Y

Y

N

N

strlen(URL[i])> 0

i++ ;

Y

 ConnectionRedirect(URL, address)

New HTTP Request

Original Request . . .

. . .

StringInURL(".shtml", URL, 6)

StringInURL(".asp", URL, 4)

StringInURL(".php", URL, 4)

Figure 3: The operation flow diagram of the detector.

Figure 3 gives a high-level overview of how the detector is at-
tached to an unmodified browser to construct a detective browser.
The detector intercepts the HTTP requests before it is sent out,

and then analyzes the request. A major component of the detec-
tor is the StringSearch function for searching the specific sym-
bols representing dynamic contents in the URL or header. If such
symbols are detected, the request will bypass the proxy. Another
component is the ConnectionRedirect function for bypassing the
proxy.

We have implemented the detector associated with a text-
based browser for the convenience to measure its overhead. We
had also implemented it on the Mozilla.0.9.7.(Currently it works
on Linux Redhat 7.1.) It is very easy to patch the current standard
browser(Netscape/Mozilla) so that it is capable of performing the
detection function. We are making the detector as an user option
of the browser.

5.3 Detector overhead measurements

The detector adds some processing time to each request although
the URL is only scanned once. This overhead must be very small
so that the detective browser is viable in practice. The quantum
of the overhead must be trivial compared to the proxy processing
overhead we have eliminated by the detective browser.

We measured the detector overhead in two ways. One way is
to run the same set of requests with both the unmodified browser
and the detective browser programs. The measured time differ-
ence is the detector overhead, where the system clock is used.
Another way is to measure the number of clock cycles for ex-
ecuting the detector. Both measurements are the time interval
between when a request is sent and when the reply is received
completely. We obtained very consistent results from the two
measurement alternatives. Table 2 presents average measured de-
tector overhead results. Our measurements show that the detec-
tive browser only consumes 5 to 6 microseconds for each client
access, which is trivial compared with the browser’s performance
gain, and insignificant from a client point view.

6 Detective Browser Performance Analysis

If there are not many dynamic requests, or secured trans-
actions, why should we be bothered to make the patch on the
browser? To quantitatively determine how effective the detective
browser is, we analyzed access traces from NLANR [2]. The
time period ranges from February 25 to March 4, 2002. Among
the 9 different proxy sites from NLANR, we chose three cover-
ing the east coast, the Rocky Mountain area and the west coast
of USA. Traces of the east is from proxy site “pb.us.ircache.net”
located in Pittsburgh, Pennsylvania, (simplified as PB). Traces of
the Rocky mountain area is from proxy site “bo.us.ircache.net”
located in Boulder, Colorado, (simplified as BO). Traces of the
west is from proxy site “sj.us.ircache.net” located in San Jose,
California, (simplified as SJ).

6.1 The analyzed results from the traces

Table 3 gives breakdowns of different types of requests to the PB
Squid proxy. We put SSI and Scripts together here, since we will
give their detailed breakdowns below. The table shows that the
sum of the queries, SSI and scripts occupies a high percentage

Site Names Length (Bytes) Original Access(�) Detective Access(�) Difference (�) Overhead (� �)

MIT.EDU 6919 0.067 0.068 0.001 6
STANFORD.EDU 10197 0.245 0.245 0 5

ETS.ORG 18903 0.091 0.088 -0.003 5
WM.EDU 19160 0.250 0.249 -0.001 5

MICROSOFT.COM 23167 0.161 0.162 0.001 6
IEEE.ORG 26839 0.151 0.151 0 5

WHITEHOUSE.GOV 27655 0.060 0.060 0 5
INTEL.COM 36831 0.173 0.173 0 6

HP.COM 46180 0.297 0.297 0 5

Table 2: Measured detector overhead.

Date Total # Queries Queries (%) # SSI+Scripts SSI+Scripts (%) # Security Security (%)

Feb. 25 1,286,520 221,232 17.20 48,628 3.78 9,114 0.71
Feb. 26 1,421,559 245,162 17.25 51,620 3.63 10,271 0.72
Feb. 27 1,299,109 241,427 18.58 53,631 4.13 9,732 0.75
Feb. 28 1,182,899 175,237 14.81 38,456 3.25 6,738 0.57
Mar. 1 998,905 101,228 10.13 25,220 2.52 6,306 0.63
Mar. 2 592,992 51,231 8.64 15,001 2.53 3,418 0.58
Mar. 3 615,945 50,544 8.21 16,196 2.63 3,751 0.61
Mar. 4 1,026,297 113,478 11.06 32,607 3.18 9,263 0.90

Table 3: The breakdowns of requests from PB

of the total requests, ranging from 11% to 23%, which can be
bypassed from the proxy. Table 3 also shows that the number of
requests for secured transactions is small. The main reason for
this is that since 1998, the IRCACHE has stopped accepting the
SSL requests. Those recorded by the access.log of squid is only
those requests with 443 port. This has been further verified by
our trace analysis on denied requests in the corresponding access
logs and store logs. The total number of the detectable requests
should be much higher than the number we have reported here.

Table 4 gives breakdowns of different types of requests to the
BO Squid proxy. The table shows that the sum of the queries,
SSI and scripts occupies a high percentage of the total requests,
ranging from about 15% to 98%. The percentage of queries on
March 2 and March 3 were very high. In two other periods, we
had a similar observation. Looking into the traces, we learned
that most of the quaries were from “www.yahoo.com”. These are
the proxy burdens that can be eliminated.

Table 5 gives breakdowns of different types of requests to the
SJ Squid proxy. It shows a similar trend as that in Table 3. This
table shows that the sum of the queries, SSI and scripts occupies
a high percentage of the total requests, ranging from about 10%
to 24%. These are also the proxy burdens that can be eliminated.

As an very important portion of all the traces, the queries are
further analyzed to see different ways of their implementations.
For the brevity, we gave the breakdowns of the queries to the BO
Squid proxy as a representative case.

Table 6 shows that ASP is used more frequently than CGI,
PHP, PL in implementing queries. Since SSIs and different kinds

of scripts may be intertangled together, Table 7 shows us that CGI
and ASP are used more than others.

Furthermore, we find some data from publications, which con-
firms our analysis. The Melissa virus online forum traces and re-
sults can be used as references for estimating the effects of the
detective browser to dynamic contents of the ASP type. Based
on the data published in [19], if the normal client accesses are
going through a client-side proxy, the detective browser is able
to reduce the average response time by 12.7%. If reverse-proxy
caching is also used, then the reduction of the average response
time to clients will be 33.3%. Also the proxy’s load burden will
be reduced at least 10%, since requests for dynamic contents by-
pass the proxy.

Regarding CGI, the ADL(Alexandria Digital Library) traces
and results can be used as a reference [13]. Since among 69337
requests, 28663 are for dynamic contents, then with our detective
browser, the proxy’s load burden can be reduced at least 41.3%
if the client accesses always go through the client-side proxies.
The reduction of the average response time to the clients will be
11.1%.

The AT&T internal recruiting database is considered as a ref-
erence for evaluating the detective browser’s effects to queries
[12]. If the detective browser is used by the client, then the aver-
age response time can be reduced by 18.2%.

Date Total # Queries Queries (%) # SSI+Scripts SSI+Scripts (%) # Security Security (%)

Feb. 25 197,332 25,254 12.80 7,203 3.65 1,264 0.64
Feb. 26 328,435 51,005 15.53 12,610 3.84 3,135 0.95
Feb. 27 324,658 44,200 13.61 11,505 3.54 2,519 0.78
Feb. 28 323,736 45,005 13.90 11,748 3.63 2,336 0.72
Mar. 1 470,783 251,796 53.48 9,871 2.10 3,517 0.75
Mar. 2 1,893,541 1,834,187 96.87 5,662 0.30 12,073 0.64
Mar. 3 1,947,952 1,895,764 97.32 5,803 0.30 14,301 0.73
Mar. 4 384,462 173,174 45.04 8,838 2.30 2,430 0.63

Table 4: The breakdowns of requests from BO

Date Total # Queries Queries (%) # SSI+Scripts SSI+Scripts (%) # Security Security (%)

Feb. 25 390,915 73,687 18.85 18,462 4.72 2,251 0.58
Feb. 26 201,212 9,398 4.67 9,031 4.49 1,371 0.68
Feb. 27 202,377 12,930 6.39 9,517 4.70 1,376 0.68
Feb. 28 240,133 18,564 7.73 9,090 3.79 1,592 0.66
Mar. 1 159,721 16,193 10.14 6,012 3.76 1,071 0.67
Mar. 2 161,702 12,469 7.71 4,582 2.83 1055 0.65
Mar. 3 115,392 11,354 9.84 4,170 3.61 844 0.73
Mar. 4 141,240 9,450 6.69 4,895 3.47 1,014 0.72

Table 5: The breakdowns of requests from SJ

6.2 What is the detective browser not able to
detect?

Besides the four types of common dynamic contents (cgi, queries,
asp, and cookies), the detective browser can also detect following
two dynamic content types: (1) Method (the request method other
than “GET” and “HEAD”), and (2) Auth (a request with an au-
thorization header). However, the detective browser is not able to
process the following uncacheable Web contents, since they are
only designated by the Web servers’ response:

� Pragma: the response is explicitly marked uncacheable with
a “Pragma:no-cache” header.

� Cache-control: the response is explicitly marked un-
cacheable with t he HTTP 1.1 cache-control header.

� Response-status: the server response code does not allow
the proxy to cache the response.

� Push-content: the content type “multipart/x-mixed-replace”
is used by some servers to specify dynamic content.

� Vary: the vary is specified in the header.

The usage of the above dynamic content types is low. We believe
there may be some other rare requests that are not well filtered
by the current version of the detective browser. The detective
functions will be upgraded as the formats of dynamic contents
and secured transactions are updated.

7 Conclusion

We have identified and quantified two overhead sources in the
proxy for processing dynamic Web contents and secured transac-

tions. We have also shown that this overhead source could not be
easily eliminated from the proxy, and security concerns can be se-
rious for proxy to tunnel secured transactions. Avoiding the delay
caused by proxy processing overhead for accessing dynamic con-
tents, and addressing the security concerns, our detective browser
actively determines if a request should go directly to the Web
server bypassing the proxy, or go through the proxy. We have
shown the effectiveness of this approach, and its low overhead in
implementations.

Acknowledgment: The work is a part of an independent research
project sponsored by the National Science Foundation for author
Xiaodong Zhang who serves as the NSF Program Director of Ad-
vanced Computational Research. The comments from the anony-
mous referees are helpful and constructive.

References

[1] http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

[2] http://www.ircache.net/

[3] http://www.netscape.com/eng/ssl3/

[4] http://www.openssl.org/

[5] http://www.php.net/

[6] http://www.squid-cache.org/

[7] http://www.takempis.com/asp1.asp

[8] K. Seluk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin
Hsiung, and Divyakant Agrawal, “Enabling Dynamic Con-
tent Caching for Database-Driven Web Sites”, in SIGMOD,
2001

Date Total # CGI-Q CGI-Q (%) # ASP-Q ASP-Q (%) # PHP-Q PHP-Q (%) # PL-Q PL-Q (%) OTHERS (%)

Feb. 25 25,254 1,000 3.96 2,893 11.46 767 3.04 288 1.14 80.41
Feb. 26 51,005 2,745 5.38 5,676 11.13 2,943 5.77 649 1.27 76.45
Feb. 27 44,200 2,322 5.25 5,039 11.40 1,990 4.50 756 1.71 77.13
Feb. 28 45,005 1,401 3.11 4,243 9.43 1,132 2.52 341 0.76 84.19
Mar. 1 251,796 1,356 0.54 3,854 1.53 1,029 0.41 377 0.15 97.37
Mar. 2 1,834,187 609 0.03 771 0.04 553 0.03 87 0.00 99.89
Mar. 3 1,895,764 284 0.01 753 0.04 142 0.01 41 0.00 99.94
Mar. 4 173,174 1014 0.59 3,751 2.17 912 0.53 218 0.13 96.60

Table 6: The breakdowns of queries from BO

Date Total # SHTML SHTML (%) # CGI CGI (%) # ASP ASP (%) # PHP PHP (%) # PL PL (%)

Feb. 25 7,203 597 8.29 1,401 19.45 3,343 46.41 746 10.36 1,116 15.49
Feb. 26 12,610 1,601 12.70 2,807 22.26 5,638 44.71 971 7.70 1,593 12.63
Feb. 27 11,505 1,311 11.40 1,981 17.22 5,473 47.57 1,126 9.79 1,614 14.03
Feb. 28 11,748 1,741 14.82 1,738 14.79 4,907 41.77 1,086 9.24 2,276 19.37
Mar. 1 9,871 1,019 10.32 1,783 18.06 3,421 34.66 1,378 13.96 2,270 23.00
Mar. 2 5,662 336 5.93 3,052 53.90 690 12.19 344 6.08 1,240 21.90
Mar. 3 5,803 204 3.52 2,843 48.99 996 17.16 192 3.31 1,568 27.02
Mar. 4 8,838 1,415 16.01 1,312 14.84 3711 41.99 1,032 11.68 1,368 15.48

Table 7: The breakdowns of the SSI and Scripts from BO

[9] Pei Cao, Jin Zhang, and Kevin Beach, “Active Cache:
Caching Dynamic Contents on the Web”, in Proceedings of
IFIP International Conference on Distributed Systems Plat-
forms and Open Distributed Processing(Middleware ’98),
Mar. 1998.

[10] Jim Challenger, Arun Iyengar, and Paul Dantzig, “A Scal-
able System for Consistently Caching Dynamic Web Data”,
in Proceedings of the IEEE INFOCOM ’99, Mar. 1999.

[11] http://home.netscape.com/newsref/std/cookie spec.html

[12] Fred Douglis, Antonio Haro, and Michael Rabinovich,
“HPP: HTML macropreprocessing to support dynamic doc-
ument caching”, in Proceedings of USENIX Symposium on
Internet Technologies and Systems, 1997.

[13] Vegard Holmedahl, Ben Smith, and Tao Yang, “Cooperative
Caching of Dynamic Content on a Distributed Web Server”,
in Proceedings of the Seventh IEEE Intl. Symposium on
High Performance Distributed Computing, July 1998.

[14] Arun Iyengar and Jim Challenger, “Improving web server
performance by caching dynamic data”, In Proceedings of
the USENIX Symposium on Internet Technologies and Sys-
tems, pages 49–60, December 1997.

[15] Qiong Luo, Rajasekar Krishnamurthy, Yunrui Li, Pei Cao,
Jeffrey F. Naughton, “Active Query Caching for Database
Web Servers”, In the 3rd International Workshop on the
Web and Databases (WebDB’2000) in conjunction with the
ACM SIGMOD Conference, May 2000.

[16] Ben Smith, Anurag Acharya, Tao Yang and Huican Zhu,
“Exploiting Result Equivalence in Caching Dynamic Web

Content”,in Proceedings of Second USENIX Symposium on
Internet Technologies and Systems(USITS99), Oct. 1999

[17] Jian Yin, Lorenzo Alvisi, Mike Dahlin, Arun Iyengar, “En-
gineering server-driven consistency for large scale dynamic
web services”, WWW10, May 2001.

[18] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Ander-
son, and D. Culler, “Using smart clients to build scalable
services”, Proceedings of 1997 USENIX Annual Technical
Conference, Anahein, California, January 6-10, 1997.

[19] Huican Zhu and Tao Yang, “Class-based Cache Manage-
ment for Dynamic Web Content”, in Proceedings of the
IEEE INFOCOM ’01, May 2001.

