
Journal of Parallel and Distributed Computing 61, 609�640 (2001)

Architectural Effects of Symmetric Multiprocessors
on TPC-C Commercial Workload1

Xing Du

Software and Systems Development Lab, Hewlett-Packard Company, Bellevue, Washington 98007

Xiaodong Zhang

Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187

Yingfei Dong

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455

and

Lin Zhang

LXB World Marketing (Canada), Vancouver, British Columbia, Canada V5T 1P5

Received November 1, 1997; revised November 1, 1998; accepted November 14, 2000

Commercial transaction processing applications are an important workload
running on symmetric multiprocessor systems (SMPs). They differ dramatically
from scientific, numeric-intensive, and engineering applications because they
are I�O bound, and they contain more system software activities. Most SMP
servers available in the market have been designed and optimized for scien-
tific and engineering workloads. A major challenge of studying architectural
effects on the performance of a commercial workload is the lack of easy
access to large-scale and complex database engines running on a multi-
processor system with powerful I�O facilities. Experiments involving case
studies have been shown to be highly time-consuming and expensive. In this
paper, we investigate the feasibility of using queuing network models with the
support of simulation to study the SMP architectural impacts on the perfor-
mance of commercial workloads. We use the commercial benchmark TPC-C
as the workload. A bus-based SMP machine is used as the target platform.
Queueing network modeling is employed to characterize the TPC-C work-
load on the SMP. The system components such as processors, memory, the

doi:10.1006�jpdc.2000.1710, available online at http:��www.idealibrary.com on

609 0743-7315�01 �35.00
Copyright � 2001 by Academic Press

All rights of reproduction in any form reserved.

1 This work is supported in part by the National Science Foundation under Grants CCR-9400719 and
CCR-9812187, by the Air Force Office of Scientific Research under Grant AFOSR-95-1-0215, and by the
Office of Naval Research under Grant ONR-95-1-1239. The work was done when Xing Du was with the
Department of Computer Science, College of William and Mary.

memory bus, I�O buses, and disks are modeled as service centers, and their
effects on performance are analyzed. Simulations are conducted as well to
collect the workload-specific parameters (model parameterization) and to
verify the accuracy of the model. Our studies find that among disk-related
parameters, the disk rotation latency affects the performance of TPC-C most
significantly. Among I�O buses and number of disks, the number of I�O buses
has the deepest impact on performance. This study also demonstrates that
our modeling approach is feasible, cost-effective, and accurate for evaluating
the performance of commercial workloads on SMPs, and it is complementary
to the measurement-based experimental approaches. � 2001 Academic Press

Key Words: commercial workload; performance evaluation; queueing network
model; symmetric multiprocessor (SMP); TPC-C.

1. INTRODUCTION

Symmetric multiprocessor systems (SMPs) have become a standard parallel
processing platform for various applications. One important usage of such systems
is the execution of commercial workloads, which represent one of the most rapidly
growing market segments. Commercial workload applications range from airline
reservation systems to wholesale systems. Multiprocessor systems are used to increase
the throughput of the commercial workload and to reduce the response times for
each client.

Improving the performance of commercial workloads on SMPs is a hot research
topic interesting to both academia and industry. Commercial applications differ
dramatically from scientific, numeric-intensive, and engineering applications. They
contain more sophisticated system software activities and use relatively slow I�O
devices. Performance of commercial workloads is determined by so many factors
(both hardware and software) that it is hard and time-consuming to evaluate.
Based on an intensive experimental study conducted at Western Research Lab at
DEC, Barroso et al. [1] recently summarized the challenges and difficulties of the
performance evaluation of commercial workloads��the lack of experimental resources.
It is difficult and expensive to have a large-scale and complex database engine running
on a multiprocessor system with powerful I�O facilities for performance evaluation. In
addition, the experiments for case studies have been shown to be highly time-consuming.

If performance models are sufficiently accurate for the evaluation of commercial
workloads, it is certainly cost-effective and complementary to the measurement-
based experiments. In this paper, we investigate the feasibility of using queuing
network models with the support of simulation to study the SMP architectural
impacts on performance of commercial workloads. We characterize commercial
workloads and model their performance on SMPs. Using our model, we further
quantitatively evaluate the architectural impacts of SMPs on the performance of
commercial workloads. In detail, we use the TPC Benchmark C (TPC-C) [18], a
standard commercial workload benchmark, as the workload. A bus-based SMP
system with modern disk drives is used as the target machine. A queueing network
model is employed to evaluate performance of the TPC-C workload running on

610 DU ET AL.

such a machine. The model is verified by program-driven simulation and is found
to be accurate. We quantitatively analyze the impacts of processors, memory, and
disks using the TPC-C metric tpmC (transaction-per-minute) as well. Experimental
and modeling results show that among disk-related parameters, the disk rotation
latency affects performance of TPC-C most significantly. Among I�O buses and
number of disks, the number of I�O buses has the most significant impact on perfor-
mance. Our study also demonstrates that queueing network modeling is a feasible,
cost-effective, and accurate way to evaluate the performance of commercial workloads
on SMPs, and is complementary to the measurement-based experimental approaches.

The rest of the paper is organized as follows. Section 2 gives an overview of the
workload benchmark TPC-C and the architecture of SMP. In Section 3, we use the
queueing network model to characterize the behavior of TPC-C on an SMP.
Section 4 discusses the model parameterization and simulation environments.
Architectural impacts on the performance of TPC-C are quantitatively evaluated in
Section 5. Section 6 discusses related work. We give our conclusions and future
work in the Section 7.

2. TPC-C WORKLOAD AND SMP ARCHITECTURE

2.1. TPC-C Overview

The Transaction Processing Performance Council (TPC) is a nonprofit organiza-
tion founded to define commercial workload benchmarks and to disseminate its
benchmark performance data to the industry. Its benchmarks are widely used by
computer manufacturers and database providers to test, evaluate, and demonstrate
the performance of their products. Currently, there are two benchmarks in the TPC
benchmark suite: TPC-C and TPC-D, which represent two major categories of
commercial applications: those supporting business operations and those supporting
business analysis. TPC-C is an on-line transaction processing (OLTP) benchmark. It
is a mixture of read-only and update intensive transactions that simulate a complete
computing environment where a population of terminal operators executes transac-
tions against a database. TPC-D is a benchmark which represents a broad range
of decision support applications that require complex, long running queries against
large complex databases. Examples of such applications are data mining and
predictive data modeling. TPC-C and TPC-D represent completely different
application domains. This paper focuses on investigating the performance of TPC-C
applications.

Benchmark TPC-C contains representative transactions of an industry which
must manage, sell, or distribute a product or service. Specifically, TPC-C simulates
a wholesale company with a number of geographically distributed warehouses and
their sale districts. Customers call the company to place a new order or request the
status of an existing order. Orders are composed of 10 order lines (ordering 10
items at one time on the average). One percent of all order lines are for items which
are not in stock at the regional warehouse and must be supplied by another
warehouse. The system is also used to enter payments from customers, process
orders for delivery, and to examine stock levels to identify potential supply shortages.

611TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 1

Database Tables and Transactions Statistics of TPC-C

Database table Transaction

New-Order Payment Order-Status Delivery Stock-Level
Name Size (I) (II) (III) (IV) (V)

Warehouse (1) W J (0.02) U, S (0.19)
District (2) W*10 S, U (0.04) U, S (0.19) S (0.33)
Stock (3) W*100k S, U (0.45) J (0.33)
Item (4) 100k S (0.21)

Customer (5) W*30k J (0.02) S, U (0.53) S (0.78) U (0.16)
Orders (6) W*30k+ I (0.02) S (0.11) S, U (0.28)

New-Order (7) W*9k+ I (0.02) S, D (0.28)
Order-Line (8) W*300k+ I (0.21) S (0.11) U, S (0.28) J (0.33)

History (9) W*30k+ I (0.09)

Note. W is the number of warehouses, k=1000, S, I, J, U, D represent the database queries select,
insert, join, update, and delete, respectively). The number in each transaction type column is the
probability for that type of transaction to access a database table.

Technically, the benchmark is composed of nine individual database tables:
Warehouse, District, Customer, Order, New-Order, Order-Line, Stock, Item, and
History. We represent them in Tables 1 to 9, respectively. Five types of transactions
are defined, which operate on these tables. They are New-Order, Payment, Order-
Status, Delivery, and Stock-Level. We use Roman numerals I to V to denote them,
respectively. To implement the transactions, the following database queries are used:
select, insert, update, join, and delete. We summarize the database tables,
the transactions, and how the transactions operate on database tables in Table 1, where
W is the number of warehouses and k is 1000. The probability for a transaction type
to access a database table is listed in parentheses as well. For example, the probability
for transaction I (New-Order) using select(S) and update (U) operations to access
database Table 3 (Stock) is 0.45, which means 450 of the database operations are
performed on database Table 3.

The transactions are generated using emulated users. An emulated user selects a
transaction type, inputs a transaction of that type (keying), waits for the output of
the transaction, and thinks after getting the output on the screen. This procedure
is shown in Fig. 1.

Transaction selection occurs at random but is based on a minimum mixed
percentage for each transaction type. Actually, the TPC-C benchmark requires an
emulated user to execute at least one III, one IV, and one V transaction for every
10 I and 10 II type transactions. The minimum mixed percentage is listed in Table 2.
There is no minimum for the New-Order transaction as its measured rate is used
as the reported throughput. We will discuss it later. For each transaction type, the
think time is taken independently from a negative exponential distribution and is
computed from

Tthink=ln(r)_Tmean&think ,

612 DU ET AL.

FIG. 1. The four steps taken by an emulated user to execute a transaction.

where Tthink is the think time, r is a random number uniformly distributed between
0 and 1, and Tmean&think is the mean think time. The minimum mean think time and
minimum keying time for different transaction types are defined in the benchmark
as well. Table 2 lists these requirements.

Multiple emulated users may generate transactions concurrently to work against
the same database through a client-server mode. The TPC-C performance metric
measures the total number of transactions of type I (New-Order) completed per
minute in the server. It is expressed and reported in the unit of transactions-per-
minute C (tpmC).

2.2. SMP Architecture

Bus-based symmetric multiprocessors (SMPs) are by far the most popular server
products for commercial applications. One typical SMP architecture is shown in
Fig. 2. Generally speaking, an SMP consists of several identical processors. Each
processor has its own cache and is connected to the shared main memory by a
memory bus. The number of processors varies from 2 to 8 for small-scale SMPs.

TABLE 2

Transaction Mix and Minimum Time Constraints (Adopted from the TPC-C Specification)

Minimum mixed Minimum keying Minimum mean
Transaction type percentage time (s) think time (s)

New-Order (I) n�a 18 12
Payment (II) 43.0 3 12

Order-Status (III) 4.0 2 10
Delivery (IV) 4.0 2 5

Stock-Level (V) 4.0 2 5

Note. The minimum mixed percentage for New-Order is not defined (n�a) because New-Order is
used as the reported throughput.

613TPC-C WORKLOAD AND SMP ARCHITECTURE

FIG. 2. The SMP architecture consists of a couple of CPU�cache pairs which are interconnected
with the main memory and with I�O systems through a shared memory bus.

For multiprocessors with a small number of processors and large caches, the bus
and the single memory can only satisfy a limited memory demand from each
processor. I�O buses such as PCI or SCSI are used to connect I�O devices. An
adaptor links the memory bus and an I�O bus. The memory bus is used both by
processors when they access memory and by I�O devices when they transfer data
between memory and I�O devices [5].

Disks are the I�O devices we consider in the paper. To improve performance,
modern disks usually release I�O buses when they are waiting for the disk heads to
reach the expected disk sectors. Specifically, for such a disk drive to read data,
when the disk is searching for the required data on a specific track and sector, it
releases its I�O bus for other disks on the same bus to use. When the disk head
reaches its location, it reads the data from the disk to the disk cache. After that, the
disk tries to regain the I�O bus and then transfer the data from the disk cache to
memory. Contention may occur when regaining the I�O bus. The release-and-regain
of I�O buses increases the average disk access time for an individual read because
of the release-and-regain overhead and I�O bus contention. However, it improves
I�O bus utilization by the use of concurrency. For write operations, some disk
drives support ``immediate-reporting,'' which means that as soon as the data is
written to the disk cache, it is reported as complete. But because of volatile write-
cache problems, we do not consider such drives in the study. We assume all writes
are ``not immediate-reported'' and are completed only when the data are written to
the disk media, not just the write cache. Ruemmler and Wilkes [13] give a detailed
description of these typical disk drives. To simplify the discussion, we further
assume that all disks are of the same type and of the same size.

This is a typical, noncustomized SMP architecture, which is often used as
departmental servers to run medium-size, transaction-based applications represented
by the benchmark TPC-C.

614 DU ET AL.

3. ANALYTICAL MODEL

Analytical modeling provides a quick and approximate performance analysis
and evaluation in comparison with simulation and measurements. The queueing
network model [9] is a simple and efficient way to analyze system performance. It
has been widely used in various applications (e.g., [7, 17, 20]). In this section, we
derive a queueing network model for the SMP architecture and use the exact
solution for closed queueing network models, the Mean Value Analysis (MVA), to
compute the performance of workload TPC-C on SMPs.

3.1. Queueing Network Models

The queueing network model is used to characterize a computer system as a
network of queues to be evaluated analytically. A network of queues is a collection
of service centers, which represent system resources, and customers, such as users
or transactions. Analytical evaluation is performed by using numerical methods to
efficiently solve a set of equations induced by the network of queues and its parameters.

Based on the number of service centers involved, a model system can be classified
as either a single service center system or a multiple service centers system. Two
important parameters regarding a service center are the workload intensity and the
service demand (the average service requirement of a customer, sometimes called
the service time). For specific parameter values, we may obtain performance measures
such as utilization, residence time, queue length, and throughput by solving simple
equations derived from a set of fundamental laws and rules such as Little's Law and
the Forced Flow Law [9].

The workload intensity may be classified into two major types: transaction
workload and terminal workload. The transaction workload has its intensity
specified by a parameter *, indicating the rate at which requests (customers) arrive.
It has a population (customers) that varies over time. The terminal workload has
its intensity specified by two parameters: N, indicating the number of terminals
(customers), and Z, indicating the average time for customers to use terminals
between interactions (``think'' time). Models with transaction workload are some-
times referred to as open models, since there is an infinite stream of arriving
customers. Meanwhile, models with terminal workload are referred to as closed
models, since a fixed number of customers repeatedly request services. Algorithms
used to evaluate open models differ from those used for closed models. In addition,
models can be classified as either single class models or multiple class models
depending on whether or not customers are indistinguishable from one another.

Queueing network models have become important tools in the design and
analysis of computer systems. For many applications, it achieves sufficient accuracy
at relatively low cost. Detailed descriptions of queueing network models can be
found in the literature, such as [9].

3.2. Modeling TPC Benchmark on SMPs

The TPC-C benchmark is a terminal workload where a fixed number of customers
(emulated users) request services, think about results, and start another transaction

615TPC-C WORKLOAD AND SMP ARCHITECTURE

FIG. 3. A single class, closed model of the TPC-C workload on an SMP system.

again.2 This process is repeated. The customers are indistinguishable, and have the
same type of behavior. So the TPC-C workload is considered as a single class terminal
workload. In principle, an SMP can be viewed as a service center with several terminals
requesting services from it. In practice, an SMP is composed of multiple subordinate
service centers as shown in Fig. 3. The service centers that we are interested in are
CPUs, the memory bus, the memory, I�O buses, and disks. We include the cache
along with its corresponding CPU and do not consider its effect separately for two
reasons. First, there has been literature available on investigating cache behavior of
commercial workloads (e.g., [3, 11]). This paper focuses on other architectural
impacts. Second, compared with the average memory access latency and disk access
latency, the average cache access latency is extremely small. In terms of accuracy
and efficiency, it is reasonable not to characterize it individually in the model.
However, we include its effects in CPU centers.

The model notations are given in Table 3.
Based on the TPC-C specification, the think time, Zi , of a TPC-C transaction

type i (i=I, ..., V), is composed of menu response time, keying time, and transac-
tion think time. Usually, the minimum values for these times are used in order to
maximize the tpmC. Thus, we have

Zi=min(menu response timei)+min(keying timei)+min(transaction think timei).

So the average (weighted mean) think time for a terminal, which is a mix of five
transaction types, is

Z= :
V

i=I

ZiPi .

616 DU ET AL.

2 Note: the term transaction used in the TPC-C context is different from that used in queueing network
models.

TABLE 3

Model Notations

r The service center: CPUs, the memory bus, the memory, an I�O bus, or a disk

(IOBus, i) the j th I�O bus.
(DISK, i, j) the j th disk on the i th I�O bus.
L the number of I�O buses.
K the number of disks per I�O bus.
N the number of terminals.
Z the average think time for a terminal.
R the average response time of the system.
X the throughput of the system.
Dr the service time at center r.
Qr the waiting time at center r.
Rr the response time at center r. We have Rr=Dr+Qr .
Ur the utilization of the resource r.
Pi the probability of a transaction of type i (i=I, ..., V).
Vr the number of visits to service center r.
Sr the average service time of service center r per visit.

Note. Regarding K, the number of disks per I�O bus, we assume the number of disks on each I�O
bus is equal (symmetric). The total number of disks are K_L.

According to the TPC-C specification, at least 900 of all menu selections must
have a menu response time of less than 2 s. Thus, we set min(mean response
timei)=0. Using the above formula and the values in Table 2, we have 9.63 s for the
minimum keying time, and &11.36ln(r) s for the minimum transaction think time,
where r is a random variable uniformly distributed between 0 and 1 (r # [0, 1]).
Thus, we have

Z=9.63&11.36_ln(r). (3.1)

The five transactions have different database operations working on different
database tables. Transaction I (New-Order) consists of entering a complete order
through a single database transaction. It is the metric of the benchmark. It operates
on eight database tables using standard data management functions such as join,
select, insert, and update. We use J(t1, t2) to denote the operation to join
two tables t1, and t2, S(t), I(t), U(t), and D(t) to denote to select a tuple from,
insert a tuple to, update a tuple in, and delete a tuple from table t, respectively.
Here t, t1, and t2 are generic terms for database tables numbered from 1 to 9. Its
operations are listed in Table 4, where o� ol� cnt is the item number in an order
which varies from 5 to 15 and has the average value of 10.

Transaction II (Payment) supports two ways to input a payer (customer): the
customer identifier number or the customer's last name. Assume there are
name� cnt customers having the same last name. When the customer is selected by
his�her last name, on average, it will take name� cnt�2 times select operations
(retrieve and check them one by one) to get the exact customer. In addition, if the
customer's credit type is ``BC'' (Bad Credit) rather than ``GC'' (Good Credit), some

617TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 4

The Database Operations of the Five Transaction Types

Transaction Database operations

New-Order (I) J(5,1)+S(2)+U(2)+I(6)+I(7)+o�ol�cnt_(S(4)+S(3)+U(3)+I(8))
Payment (II) U(1)+S(1)+U(2)+S(2)+Pname_(S(5)+name�cnt�2_S(5))+Pid_S(5)

+PBC_(S(5)+U(5))+PGC_U(5)+I(9)
Order-Status (III) Pname_(S(5)+name�cnt�2_S(5))+Pid_S(5)+S(6)+S(8)

Delivery (VI) dist�per�ware_(S(7)+D(7)+S(6)+U(6)+U(8)+S(8)+U(5))
Stock-Level (V) S(2)+J(8,3)

Note. J, S, U, I, D stands for database operations join, select, update, insert, and delete, respectively.
We use numbers 1 through 9 to denote each of nine database tables, respectively.

additional information must be retrieved and appended to database Table 5. The
second line in Table 4 gives the average operations where Pname and Pid are
probabilities of customers selected by ``name'' and by ``id'', respectively, and PBC

and PGC are probabilities of a customer to have the credit type of ``BC'' and ``GC''
respectively.

The III transaction (Order-Status) queries the status of a customer's last order.
It is a read-only database transaction. As with transaction II, the customer can be
selected either by his�her last name or by his�her identifier number.

The IV transaction (Delivery) processes new orders which have not been
delivered yet for each district within the same warehouse. The number of districts
in a warehouse is denoted by dist� per� ware. The fourth line in the table
gives the operations of this transaction, which consists of both read and write on
databases.

The V transaction (Stock-Level) determines the number of recently sold items
that have a stock level below a specified threshold. It is a read-only transaction and
only works against three database tables.

The average distribution for a database access to a database table is the ratio of
the number of accesses of the table to the number of accesses of all tables during
a specific time interval. It is computed based on the transaction type distribution in
Table 2 and the access patterns to database tables for each transaction type defined
in Table 4.

The service centers used by a TPC-C transaction in an SMP include CPUs, the
memory, the memory bus, and I�O systems. Thus, the average response time (R)
of an SMP for one transaction can be estimated as

R=RCPU+RMBus+RMem+RI�O . (3.2)

Multiple CPUs form a special load dependent service center whose service time
is not constant but depends on the number of requests queued at the center. Suppose
there are two CPUs and they are identical. A request needs time t for a CPU to process.
If there is no request in the waiting queue, the service time for the request is t. However,
when there are one or more independent requests in the queue, the average service

618 DU ET AL.

time3 becomes t�2. This kind of center is called a flow equivalent service center (FESC).
We model the multiple CPUs and their caches as an FESC. Thus the average response
time for the center to process a TPC-C transaction is determined not only by the
number of requests in the queue but also by the probability of that number of
requests in the queue. Therefore, the average response time of the CPU center for
a transaction is

RCPU=VCPU :
n

j=1

j
+(j)

P(j&1 | n&1), (3.3)

where VCPU is the number of visits to the CPU center per transaction, +(j) is the
average service rate (per cycle) when there are j transactions, and P(j | n) is the
probability of j transactions presenting in the queue when the number of transac-
tions in the model is n. It varies from 0 to N when applying the MVA algorithm
to iteratively compute the throughput of the whole system. P(j | n) can also be
regarded as the queue length distribution for the CPU center and is computed by

P(j | n)={
X(n)
+(j)

P(j&1 | n&1)

1& :
n

i=1

P(i | n)

j=1, ..., n

j=0.
(3.4)

All other service centers in the model are load independent. Their response times
can be computed based on the service times. The service times of the memory bus
(MBus), the memory (Mem), and I�O buses (IOBus) for a TPC-C transaction can
be established in terms of the number of visits (V) per transaction and the average
service time per visit (S).

To effectively utilize the bandwidth of memory buses, modern SMPs usually
employ the split-transaction protocol, which splits a memory access activity into
two components: a memory request component and a reply component to allow
the memory bus to be released for other uses between the request and reply stages
[6]. Consequently, the service time of the memory bus, DMBus , for a transaction
consists of two parts: time for requests and time for replies. Thus, we have

DMBus=VMbus_(SMBusRequest+SMBusReply),

where VMBus is the number of memory bus visits per transaction, SMBusRequest and
SMBusReply are the bus service times for request and reply stages, respectively. In
addition, we know that the number of memory bus visits equals to the sum of the

619TPC-C WORKLOAD AND SMP ARCHITECTURE

3 In real applications, requests are, to some extent, dependent on each other because of factors such
as synchronization. So it results in a higher average service time, and a slightly complicated computation
as we will discuss below.

number of CPUs' visits to the memory (VCPU&Mem) and the number of disks' visits
to the memory (VDiskMem). Therefore, the above service time is rewritten as

DMBus=(VCPU&Mem+VDisk&Mem)_(SMBusRequest+SMBusReply). (3.5)

Assume SMBus is the average service time per visit for a non-split-transaction bus.
We then have

SMBus>SMBusRequest+SMBusReply ,

so the memory bus service time is reduced by using the split-transaction bus.
However, the split-transaction bus protocol increases the average memory access

latency because the memory bus must be acquired twice and contention for the bus
exists for the second time the bus is acquired. As with the memory bus, the memory
is accessed by visits from both CPU and disk operations. Logically, the data trans-
ferred between the memory and disks are in the unit of a disk block (page), whose
size is an integer factor of the data size transferred between the memory and CPUs
(cache line). Physically, the transfer of a disk block is accomplished by transferring
a sequence of cache-line-size sub-blocks because of the physical features of the
memory modules and the width of the data line of the memory bus. Assume VDisk

is the number of visits to disks for a transaction, clearly we have

VDisk&Mem=
Disk block size

Cache block size
_VDisk .

The memory service time for a request from disks for a cache-line-size subblock is
the same as the memory service time for a request of the same data size from CPUs.
Consequently, the service time of the memory for a transaction is calculated as

DMem=VMem _(SMem+ContentionMBus)

=(VCPU&Mem+VDisk&Mem)_(SMem+ContentionMBus),

where VMem is the number of visits to the memory in a transaction, which includes
the number of memory visits from CPUs (VCPU&Mem) and the number of memory
visits from disks (VDisk&Mem), and SMem is the memory service time per visit.
ContentionMBus is the waiting time for the memory bus because of contention.
According to the principles of the mean value analysis, the contention time for the
memory bus can be approximated by the product of the memory bus service time
for a request and the number of bus requests from other sources encountered by
this request. The weighted mean of the memory bus service time is

SMBusRequest+SMBusReply

2
.

620 DU ET AL.

The latter is determined by

UMBus&UMBus(Mem)
1&UMBus

where UMBus is the utilization of the memory bus and UMBus(Mem) is the utiliza-
tion of the memory bus caused by accesses from memory (not disks). Combining
the above equations, we have the equation for the average memory service time:

DMem=(VCPU&Mem+VDisk&Mem)

_\SMem+
SMBusRequest+SMBusReply

2
_

UMBus&UMBus(Mem)
1&UMBus + . (3.6)

Clearly, the split-transaction bus requires the memory system to be sophisticated
enough to handle multiple overlapping memory access activities. Multiple memory
modules should be available for concurrent accesses. The use of multiple memory
modules will decrease the average service time (SMem). Since the number of
memory accesses incurred by TPC-C transactions are much larger than the number
of memory modules available, we assume the memory access distribution among
memory modules is uniform and independent. Thus, the effect of multiple memory
modules can be modeled by adjusting the memory service time (SMem) based on the
number of memory modules.

I�O buses are exclusively used by disk accesses. The service time for the i th bus
is computed as

DIOBus, i=VIOBus, i_SIOBus ,

where VIOBus, i is the number of visits to the ith I�O bus per TPC-C transaction, and
SIOBus is the service time per visit (we assume that all I�O buses have the same
service time per visit). However, the number of visits to an I�O bus equals to the
sum of the numbers of visits caused by visits to all disks attached to that I�O bus,
so we rewrite the above equation as

DIOBus, i= :
K

j=1

VDisk, i, j_SIOBus ,

where VDisk, i, j is the number of visits per transaction to the j th disk on the i th I�O
bus. However, as we discussed before, the read and write operations work differently.
The read operation's I�O bus service time is

SIOBusReq+SIOBusRep ,

while the write operation's I�O bus service time is

SIOBus+Sseek+Slatency+Stransfer

621TPC-C WORKLOAD AND SMP ARCHITECTURE

because it holds the I�O bus when it seeks, waiting, and transferring data to disks.
SIOBusReq and SIOBusRep are the I�O bus service times for requesting a disk and
replying to the data, respectively. So we modify the above equation to get

DIOBus, i= :
K

j=1

(V read
Disk, i, j_(SIOBusReq+SIOBusRep)

+V write
Disk, i, j_(SIOBus+Sseek+Slatency+Stransfer)), (3.7)

where V read
Disk, i, j and V write

Disk, i, j are the number of read and write operations on disk
(Disk, i, j), respectively.

To access a block in a disk, the disk head first moves to the cylinder where that
block is located (the seek operation), it then waits there for the block to arrive, and
finally, when the block is rotated under the disk head, it accesses it (the transfer
operation). We use Sseek , Slatency , and Stransfer to denote the time spent on the above
three steps, respectively. Based on the discussion of disk drives in Section 2.2, the
disk read and write operations work differently. In addition to seeking, waiting, and
transferring, a read operation spends some time waiting for its I�O bus (to regain
it) after it has finished the transfer of data from disk to disk cache. Consequently,
the average service time for read operations is

Dread
Disk, i, j=V read

Disk, i, j (Sseek+S latency+Stransfer+SDcache+ContentionIOBus, i),

where ContentionIOBus, i is the waiting time for the I�O bus i. As with the computa-
tion of contention time for the memory bus, we have

ContentionIOBus, i=(PwSIOBus+Pr(SIOBusReq+SIOBusRep))_
UIOBus, i&UIOBus, i (j)

1&UIOBus, i
,

where Pw and Pr are the probabilities of I�O operations to be write and read,
UIOBus, i is the utilization of I�O bus i, and UIOBus, i (j) is the utilization of I�O bus
i caused by disk j on it.

In contrast, the write operation does not have disk cache and contention over-
head, and its service time is

Dwrite
Disk, i, j=V write

Disk, i, j (Sseek+S latency+Stransfer).

Consequently, the average disk service time for the jth disk on the i th I�O bus per
transaction is estimated by

DDisk, i, j=Dread
Disk, i, j+Dwrite

Disk, i, j . (3.8)

We have obtained the service time for each I�O bus and disk. However, because
the disks can be running in parallel, it makes the computation of the whole service
time for the I�O system a little complicated. Since a disk releases its I�O bus when
it searches and transfers the required data between disk and disk cache, disks may

622 DU ET AL.

run in parallel. However, an I�O bus cannot be in operation in parallel with other
I�O buses because operations of an I�O bus will involve the use of the memory bus,
and in the system there is only one memory bus. They are performed sequentially.
Consequently, the service time for the I�O system is

DI�O= :
L

i=1

DIOBus, i+DDisk , (3.9)

where DDisk is the average response time for all disks for a transaction. For a trans-
action, its disk operations are performed sequentially because they are requested
after the previous operation has finished even though some of them are performed
on different disks and may be executed in parallel. When several transactions are
executed concurrently, this parallelism is exploited. As a result, the average service
time for the whole disk system is determined by the way in which disk operations
are distributed among all disks. Clearly, we have

max
i=L, j=K

i=1, j=1
DDisk, i, j�DDisk� :

i=L, j=K

i=1, j=1

DDisk, i, j .

The approximate value for DDisk is computed based on the probabilities (utiliza-
tions) of disks working in parallel and�or sequentially. The following expression
gives an example about how to calculate the average disk service time for a two-
disk system:

U1U2 max(D1 , D2)+U1(1&U2) D1+U2(1&U1) D2 .

The two disks have utilizations U1 and U2 , and service times D1 and D2 , respec-
tively. A similar computation is employed to get the average disk service time for
I�O systems consisting of more than two disks.

There are two kinds of mappings in the system: allocations of database tables to
the available disks, and connections of the disks to the available I�O buses. Here
are the notations for the two mappings f and F that define the data allocation and
disk connections of the system:

f : [1, 2, 3, 4, 5, 6, 7, 8, 9] � [disk1 , ..., diskK_L]

F : [disk1 , ..., diskK_L] � [IOBus1 , ..., IOBusL].

Function f describes how the 9 database tables are allocated to K_L disks, and
function F describes how K_L disks are connected to the L I�O buses. Based on
those two mappings, the total number of accesses to disks, and the database access
distribution table (Table 5), we compute the number of visits to each disk. The two
mapping f and F affect the value of DDisk . By changing the mappings f and F, we
can evaluate disk configuration and data allocation effects on performance.

We apply the MVA algorithm [9] for the single class closed model. The com-
putation is started by initiating both the terminal population n and the queue

623TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 5

Access Distributions to the Nine Database Tables

Database table 1 2 3 4 5 6 7 8 9

Probability 0.0907 0.1129 0.2157 0.1108 0.2937 0.0246 0.0202 0.1278 0.0036

length Q to be 0. First, the response times for all service centers except for the CPU
center are computed based on

Ri=Di (1+Qi)

using Eqs. (3.5), (3.6), and (3.9), where i is MBus, Mem, and I�O respectively. The
response time for the CPU center is given in Eq. (3.3). Second, Little's Law is
applied

X=
n

Z+� Ri

to compute the throughput for that number of terminals (n), where i is CPUs,
MBus, Mem, and I�O, respectively. The waiting time for each center is computed
as

Qi=XR i ,

and the utilization of each center is obtained through

Ui=XDi .

Next increase n by 1, and compute the response time for each center again. This
process is repeated N times until finally we get the throughput X for a system
consisting of N terminals. This is the throughput for the SMP running N TPC-C
terminals. The average TPC-C benchmark metric tpmC is computed as

tpmC= :
1�i�N

X i, I=PI :
1�i�N

Xi=PIX, (3.10)

where Xi, I is the throughput of transaction I on terminal i, and Xi is the throughput
of all types of transactions on terminal i. The probability of transactions of New-
Order (PI) comes from Table 2. Based on Eq. (3.10), we compute the measure of
TPC-C benchmark (tpmC) on an SMP system.

4. PARAMETERIZATION AND MODEL VERIFICATION

4.1. Simulator

We built the SMP simulator for two purposes: (1) to run the TPC-C benchmark
on it to collect the benchmark's parameters required by the model. Examples of
such parameters are the numbers of visits to memory, disks, and others; (2) to

624 DU ET AL.

FIG. 4. The simulation environment consists of an SMP simulator, database system POSTGRES,
and the TPC-C workload.

verify the model by comparing the simulation results with the model results. We
used simulation rather than measurements to verify the model because of the lack
of instrumenting and monitoring tools in a physical SMP machine to get the model
parameters, and the financial difficulty to get a sufficient number of different SMP
configurations.

The simulator we built consists of two parts: multiple processors and their
memory system, and I�O buses and disks. In the model study, we include the effects
of cache in the CPU center. In the simulator, for correctness, we simulate the cache
behavior. In detail, a MINT-based [19] memory simulator was built to simulate
the bus-based cache coherent cache�memory system. The disks and I�O buses are
simulated using the disk simulator [8] implemented at Dartmouth. The database
system running on the simulator was POSTGRES [14], which was developed by
the University of California at Berkeley. We modified MINT, the disk simulator,
and POSTGRES and integrated them. The work includes writing a back-end for
MINT to simulate the memory system, attaching the disk simulator to MINT, modify-
ing POSTGRES to collect disk access traces, and finally compiling POSTGRES using
non� shared option to generate codes that can be run on the MINT-based simulator.
We implemented the TPC-C benchmark based on the specification using C and
POSTGRES's SQL. Without loss of generality, we scaled down the database size
of TPC-C 100 times to reduce the simulation time. We also reduced the cache and
memory sizes accordingly. The software structure is shown in Fig. 4.

4.2. Parameterization

First, the simulator was used to collect the TPC-C benchmark parameters which
are required by the queueing network model. They are the number of visits to

625TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 6

The Number of Visits to CPUs, the Memory, and Disks of the Five Types of
TPC-C Transactions

Transaction CPU Memory read Memory write Disk read Disk write

New order 22847137 4405731 3177453 150 570
Payment 13849985 2691023 1885840 116 38

Order status 8407681 1639657 1141375 105 0
Delivery 42757246 8469415 5874990 183 692

Stock level 7698052 1487017 1051811 99 0

service centers such as CPUs, the memory system, and disks. Table 6 gives these
numbers of CPU accesses, the memory read�write number, and the disk read�write
number for each TPC-C transaction type. We collected these values by running
each transaction on an SMP with one processor, one I�O bus and one disk. Other
parameters such as the numbers of visits to the memory bus and I�O buses can be
derived directly from those values.

The values of architectural parameters of the model, most of which are the
service times at service centers, are adopted from modern SMP systems and based
on [4]. Table 7 lists the average service times in cycles for CPUs, memory, and
disks. Other architectural parameters used by the simulator are listed in Table 8.
The disk parameters are given based on the disk and I�O bus configuration values
reported in [13].

4.3. Model Verification

Before we verified the model, we first collected the average effective service rates
(per cycle) for CPU centers. The CPU centers that we are interested in are a one-
CPU center, a two-CPU center, a three-CPU center, and a four-CPU center. We

TABLE 7
Average Service Times (in Cycles) for CPUs, the Memory, I�O Buses, and

Disks Where M =106

Name Value Description

CPI 1 SCPU , Processor speed=200 MHz
Memory latency 100 SMem

Memory bus request latency 2 SMBusRequest

Memory bus reply latency 10 SMBusReply

I�O bus latency 5120 SIOBus , SCSI 2 bus
I�O bus request latency 120 SIOBusReq

I�O bus reply latency 4850 SIOBusRep

Disk cache latency 150 SDcache

Disk seek time 1 M Sseek Average seek time
Disk rotation latency 1.5 M Slatency , Average rotation latency

Disk transfer time 42000 Stransfer , Disk sector size=256 bytes

626 DU ET AL.

TABLE 8

Architectural Parameters of an SMP System

Name Value

Processor speed 200 MHz
Max. number of processors 4

Cache block size 32 bytes
Cache size 16 Kbytes

Memory size 256 Kbytes
Disk sector size 256 bytes
Disk cache size 128 Kbytes

Max. number of I�O buses (L) 2
Max. number of disks (K) 2

collected the effective service rates from the simulation. The simulator was set to
simulate those four types of SMPs. Each system with a different number of CPU
centers has one I�O bus and one disk. The effective service rate functions are shown
in Fig. 5. The function values beyond 16 are very close to the values when the
number of requests is 16, so we do not show those values in the figure. We use them
in the model analysis of different I�O configurations.

We compare the modeling results with the simulation results on nine SMP con-
figurations, where the number of terminals is 48 (N=48). The nine configurations
are given in Table 9.

The comparative model and simulation results are presented in Fig. 6. The model
results of tpmC for all configurations are slightly larger than the simulation results.
The possible reasons are: Our queueing network model does not precisely model

FIG. 5. Effective service rate functions (+) for one-CPU, two-CPU, three-CPU, and four-CPU
centers. This measures the number of services per cycle. The function values beyond 16 are very close
to the values when the number of requests is 16. They are not included in the figure.

627TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 9

SMP Configurations for Model Verification and Performance Analysis

SMP configuration

Configuration name No. of CPUs No. of I�O buses No. of disks Note

C1 1 1 1 base configuration
C2 2 1 1
C3 2 1 2
C4 2 2 2 1 disk on each I�O bus
C5 2 1 4
C6 2 2 4 2 disks on each I�O bus
C7 4 1 2
C8 4 1 4
C9 4 2 4 2 disks on each I�O bus

the cache behavior, but the simulator does. In the model, we only apply a rule of
thumb on the cache hit rate (900 of memory accesses are cache hits). Even though
the actual cache hit rate may be larger than 900 in the simulation, the cache
coherence overhead may affect performance negatively. Another contributing factor
is synchronization. We model it through the effective service rates of the CPU
centers, which are obtained from an SMP with one I�O bus and one disk. However
the actual values for other SMP configurations may vary. The third factor is the
mean value analysis itself. It is only a mean value modeling approach. But the
quantitative difference between the model and simulation results is within a range
of 11.20 and is acceptable. The POSTGRES we used for experiments is POSTGRES
4.2. We modified the POSTGRES in order to collect the I�O access profiles. Before
each I�O calls, we added code to write the requested data addresses and their
lengths to a trace file. One disadvantage of POSTGRES 4.2 is that it only supports

FIG. 6. Comparisons between model and simulation results for nine SMP configurations.

628 DU ET AL.

data locking at the level of tables, which limits the concurrency. (Newer releases of
PostgresSQL 6.5 or above supports data locking at tuple levels.) We have tried to
minimize the locking effect by reducing the TPC-C table sizes to a factor of 100,
which makes the results with locking at the table level close to the results with lock-
ing at the tuple level. The model itself does not cover the synchronization overheads
between transactions. This is another reason why the modeled results are somewhat
better than the simulated results (see Fig. 6).

To verify whether the model and simulation results are close to a real system, we
measured performance of TPC-C on a 4-CPU SMP machine. The machine is a
SUN SPARCstation 20 with four 100 MHz hyperSPARC processors. It has one
I�O bus and one disk. We set the architectural parameters of the model to the same
values as the SPARCstation, and we compared the measurement results with the
model results. The difference between them is close (15.30). This indicates that the
model results are sufficiently accurate to characterize the behaviors of SMP systems
in terms of simulation and measurements.

5. PERFORMANCE ANALYSIS

In this section, we quantitatively analyze the architectural effects of SMPs on
performance of TPC-C based on tpmC. The architectural factors we consider
include the number of CPUs, the memory system latency and the I�O bus latency,
the disk seek time, and the disk rotation latency. The data allocation effect is also
investigated. The objectives of the analysis are to apply the model to provide
insights into architectural impacts of TPC-C on performance and to find which
architectural parameters affect the performance of a commercial workload most
significantly. The evaluation results can be used as inputs to the design of future
SMPs and other types of multiprocessors running commercial workloads.

To ease discussions and comparisons of performance of TPC-C on various SMP
configurations, an SMP with one CPU, one I�O bus, and one disk is used as the
baseline SMP configuration. Its architectural parameters are shown in Table 7.
Performance of other SMPs are compared with that of the baseline SMP. The
relative performance improvement is used as the metric throughout the analysis. It
is defined as a ratio in the form of

tpmC(C)&tpmC(C1)
tpmC(C1)

_1000,

where C is any SMP configuration, and C1 is the baseline SMP.

5.1. Effects of Multiple Processors

We first analyze the effects of multiple processors on the performance of TPC-C.
In this evaluation, a one-I�O bus and one-disk architecture is used. The CPU center
is adjusted by changing the number of CPUs. It is reflected by the effective service
rate + of the center. We use the four rate functions defined in Fig. 5, which represent
the service rates of one-CPU, two-CPU, three-CPU, and four-CPU centers respectively.

629TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 10

CPU Center Effects on tpmC

CPU center +1 +2 +3 +4

tpmC 24.6 (00) 47.2 (91.90) 51.9 (110.00) 53.5 (117.50)

Note. The relative improvement ratios are given in the parenthesis.

Table 10 gives the performance of workload with N=48, and their relative improve-
ment ratios. The largest improvement happens when the CPU center changes from
a single CPU to a dual CPU center. It yields an improvement by a factor of 91.10.
However, after that, with the increase of the number of CPUs, the improvements
are moderate and become smaller and smaller. From this analysis, we find that only
increasing the processing power (by increasing the number of processors) of a
system will not significantly improve the performance of the TPC-C commercial
workload on an SMP when the number of CPUs is more than 2. The reason for
this is that I�O subsystems are not scaled up proportionally to the increase of the
number of processors. The four-CPU configuration has the same amount of I�O
capability as those with one, two, and three CPUs. When the I�O subsystems are
saturated, increasing the number of CPUs does not improve the overall performance.

5.2. Effects of Memory System Latencies and I�O Bus Latencies

The memory system latency measures the access delay to the memory bus and
the access delay to the memory. We used a 2-CPU SMP as the platform, whose
service rate function is +2 , and which has one I�O bus and one disk. The total load
on the memory system will not be changed by different combinations of CPU, disk
and I�O bus for a given N (we set N=48). Table 11 shows the variance of tpmC
when we reduce the memory latency (SMem) from 100 cycles to 50 cycles and reduce
the memory bus reply latency (SMBusRep) from 10 to 5 cycles. We also give its
relative improvement ratios (inside parentheses). Performance of the SMP with 100
cycles of memory bus latency has a 91.90 relative improvement over that on the
baseline SMP. When we reduce the memory service time to 90 cycles and the
memory bus reply latency to 9 cycles, its relative tpmC improvement increases to

TABLE 11

Memory Bus Latency Effects on tpmC

SMem 100 90 80 70 60 50
SMBusRep 10 9 8 7 6 5
SMBusReq 2 2 2 2 2 2

tpmC 47.2 (91.90) 52.9 (115.00) 56.7 (130.50) 58.3 (137.00) 59.1 (140.20) 59.6 (142.20)
UIOBus 40.30 45.60 53.40 60.80 67.70 67.90

Note. The relative improvement ratios are given in parentheses. The I�O bus utilizations are also
given to explain the behavior of the system.

630 DU ET AL.

115.00. But when the latency is reduced to 70 cycles or less, only a slight perfor-
mance improvement is observed. This observation indicates that when the memory
service time becomes 70 cycles or less and the memory bus reply latency becomes
7 cycles or less, the memory system is no longer the bottleneck of this SMP system
and will not improve the performance of the workload even if we continue to
reduce the latency. This is verified by the I�O bus utilizations. When the latency is
100 cycles, its I�O bus utilization is only a little more than 400. However, it jumps
to more than 600 after the memory service time reduces to less than 70 cycles. The
utilization of more than 600 indicates that the I�O bus is becoming the new system
performance bottleneck.

The effects of I�O bus latencies may vary with different I�O bus configurations.
We evaluate the effects of I�O bus latencies on five SMP configurations. They are
C2, C3, C5, C4, and C6 listed in Table 9. We present results of typical data alloca-
tion mappings. The mappings, f, used for one, two and four disks are defined as

1 disk: f1(x)=1 x=1, 2, 3, 4, 5, 6, 7, 8, 9 (5.11)

2 disks: f2(x)={1 x=1, 3, 5, 7, 9
2 x=2, 4, 6, 8

(5.12)

4 disks: f4(x)={
1 x=1, 3
2 x=2, 4
3 x=5, 7, 8
4 x=6, 9.

(5.13)

Up to 4 disks and up to 2 I�O buses are used in this study. When there are 4
disks and 2 I�O buses, we assume disks 1 and 2 are connected to I�O bus 1 and
disks 3 and 4 to I�O bus 2. The mapping function f1 in (5.11) means that all 9
database tables are allocated to a single disk, while the mapping function f2 in
(5.12) means database tables 1, 3, 5, 7, and 9 are allocated on disk 1, and database
tables 2, 4, 6, and 8 are on disk 2. Similarly, f4 allocates database tables in four
disks. We start with the utilizations of the memory bus, I�O buses, and disks.
Table 12 lists these utilizations. For all configurations, we observe that the I�O bus

TABLE 12

Disks, I�O Buses, and the Memory Bus Utilizations for Five SMP Configurations

UDisk UI�OBus

Configuration 1 2 3 4 1 2 UMBus

C2 63.40 �� �� �� 40.30 �� 58.70

C3 41.20 25.70 �� �� 31.50 �� 62.60

C5 20.70 10.20 19.60 15.90 33.50 �� 68.60

C4 41.20 �� 25.70 �� 12.30 17.50 68.20

C6 20.70 10.20 19.60 15.90 14.00 18.30 70.50

Note. In some configurations, certain disks and�or I�O bus 2 are not available. The symbol (��)
means that the device is not available for that configuration.

631TPC-C WORKLOAD AND SMP ARCHITECTURE

utilizations are lower than the sum of all disk utilizations. This is because the disk
seek and disk rotation latency are the major times for a disk access. Meanwhile,
during this period of time, the I�O bus is released. The memory bus is used not only
by processors but also by I�O operations when they require data transfer, so its
utilizations are higher than that of I�O buses. When there is only one disk and one
I�O bus, the disk utilization is very high (63.40). Increasing the number of disks
on one I�O bus does not seem very effective. But when the number of I�O buses
increases to 2, the workload on I�O buses is balanced between the two, and can be
executed concurrently. The response time of a disk access is reduced, and conse-
quently, the memory bus utilizations increase.

Table 13 lists tpmC values and their relative performance improvement ratios
(inside parentheses) on different SMP configurations (C2, C3, C4, C5, and C6) by
reducing I�O bus latency 512 cycles a time. The results indicate that reducing I�O
bus latencies in most cases moderately increases the throughput because it reduces
the I�O bus waiting times. For example, on C6, when we reduce the latency to
3072, it gains 141.10 relative performance, which is 8.40 better than that of the
latency of 5120. For configurations consisting of one bus (C2, C3, and C5), increas-
ing the number of disks gains less performance than reducing I�O bus latencies. For
a given latency, a configuration with more disks only slightly outperforms the con-
figuration with fewer disks. A similar situation occurs in the 2-bus cases, but 2-bus
configurations outperform 1-bus counterparts significantly because their workload
is balanced on two buses. In terms of the impact significance on performance of the
TPC-C workload, our study ranks the following parameters from the most signifi-
cant to the least significant: the I�O bus latency, the number of I�O buses, and the
number of disks.

5.3. Effects of Disk Parameters

The disk-related architectural parameters are disk seek time, disk rotation latency
(the average time for the disk head to reach the required sector after the head has been
on the track where the sector is), and disk transfer time. In this section, using the model
results, we show how those parameters affect the performance of TPC-C.

The SMPs we used are C2, C3, C4, C5, and C6. All used a 2-CPU center with
the service rate function +2 and the number of terminals was set to N=48. We

TABLE 13

Effects of I�O Bus Latencies on tpmC for Five SMP Configurations

I�O bus latency C2 C3 C5 C4 C6

3072 56.8 (130.90) 57.4 (133.30) 57.6 (134.20) 58.9 (139.40) 59.3 (141.10)
3584 55.3 (124.80) 55.9 (127.20) 56.7 (130.50) 57.0 (131.70) 57.1 (132.10)
4096 53.6 (117.90) 54.1 (119.90) 55.0 (123.60) 56.4 (129.30) 56.4 (129.30)
4608 50.1 (103.70) 51.7 (110.20) 52.4 (113.00) 55.2 (124.40) 55.9 (127.20)
5120 47.2 (91.90) 48.3 (96.30) 49.6 (101.60) 52.3 (112.60) 54.7 (122.40)

Note. The improvements in comparison with the base SMP configuration are given in parentheses.
The relative improvement ratios are given in parentheses.

632 DU ET AL.

TABLE 14

Disk Seek Time Effects on tpmC for Five SMP Configurations

Disk seek C2 C3 C5 C4 C6
time 1 bus, 1 disk 1 bus, 2 disks 1 bus, 4 disks 2 buses, 2 disks 2 buses, 4 disks

0.6M 52.3 (112.60) 52.6 (113.80) 53.1 (115.90) 60.4 (145.50) 60.9 (147.60)
0.7M 51.4 (108.90) 52.0 (111.40) 52.7 (114.20) 59.4 (141.50) 60.1 (144.30)
0.8M 49.6 (101.60) 51.4 (108.90) 52.1 (111.80) 58.2 (136.60) 59.3 (141.10)
0.9M 48.3 (96.30) 50.9 (106.90) 51.3 (108.50) 57.9 (135.40) 58.9 (139.40)
1M 47.2 (91.90) 48.7 (98.00) 50.1 (103.70) 56.3 (128.90) 57.1 (132.10)

Note. The disk seek time is increased by 0.1 Million cycles on each line. The disk rotation latency
and disk transfer time are fixed, and their values are 1.5M and 42000 cycles, respectively. The relative
improvement ratios are given in parentheses.

reduced the value of each disk related parameter by a constant quantum of time:
0.1 million cycles for the disk seek time, 0.15 million cycles for the disk rotation
latency, and 4200 cycles for the disk transfer time. Tables 14�16 summarize the
results. From the tables, we see that among all disk related parameters, disk rota-
tion latency (Table 15) affects performance most significantly (up to 157.30 in
comparison with the baseline SMP configuration). Regarding disk rotation latency,
each of the three SMPs has only one I�O bus (C2, C3, and C5). Reducing the rota-
tion latency affected performance on C2 most significantly (16.70 in comparison
with its counterpart having disk rotation latency of 1.5M). It affected C3 by 13.30,
and C5 by 10.50. The reason is that on C2, all workloads are allocated on the
single disk, and any improvement will result in significant reduction of its response
time. But for the configurations of two and four disks, its effects are not as signifi-
cant as that on one disk SMP. For the configurations of two buses (C4 and C6),
the improvement is not as significant as that on the one bus SMP. This can be seen
from the relative improvement compared with those having the original rotation
latency (=1.5M), which are 11.0 and 10.90 for C4 and C6, respectively.

We observed similar behavior when reducing the disk seek time, but the perfor-
mance improvement is moderate (Table 14). The disk transfer time plays the least

TABLE 15

Disk Rotation Latency Effects on tpmC for Five SMP Configurations

Disk rotation C2 C3 C5 C4 C6
latency 1 bus, 1 disk 1 bus, 2 disks 1 bus, 4 disks 2 buses, 2 disks 2 buses, 4 disks

0.9M 55.1 (124.00) 55.2 (124.40) 55.4 (125.20) 62.5 (154.10) 63.3 (157.30)
1.05M 54.6 (122.00) 54.9 (123.20) 55.0 (123.60) 61.3 (149.20) 62.5 (154.10)
1.2M 51.3 (108.50) 51.7 (110.20) 52.9 (115.00) 60.1 (144.30) 61.4 (149.60)
1.35M 48.7 (98.00) 49.5 (101.20) 51.8 (110.60) 58.2 (136.60) 58.7 (138.60)
1.5M 47.2 (91.90) 48.7 (98.00) 50.1 (103.70) 56.3 (128.90) 57.1 (132.10)

Note. The disk rotation latency is increased by 0.15 Million cycles on each line. The disk seek time
and disk transfer time are fixed, and their values are 1M and 42000 cycles, respectively. The relative
improvement ratios are given in parentheses.

633TPC-C WORKLOAD AND SMP ARCHITECTURE

TABLE 16

Disk Transfer Time Effects on tpmC for Five SMP Configurations

Disk transfer C2 C3 C5 C4 C6
time 1 bus, 1 disk 1 bus, 2 disks 1 bus, 4 disks 2 buses, 2 disks 2 buses, 4 disks

25200 50.3 (104.50) 51.1 (107.70) 51.5 (109.30) 58.6 (138.20) 58.7 (138.60)
29400 50.1 (103.70) 50.6 (105.70) 51.2 (108.10) 58.4 (137.40) 58.5 (137.80)
33600 49.2 (100.00) 49.5 (101.20) 51.0 (107.30) 58.0 (135.80) 58.1 (136.20)
37800 48.7 (98.00) 48.9 (98.80) 50.6 (105.70) 57.6 (134.10) 57.7 (134.60)
42000 47.2 (91.90) 48.7 (98.00) 50.1 (103.70) 56.3 (128.90) 57.1 (132.10)

Note. The disk transfer time is increased by 4200 cycles on each line. The disk seek time and disk
rotation latency are fixed, and their values are 1M and 1.5M cycles, respectively. The relative improve-
ment ratios are given in parentheses.

role (at most 138.60) in the performance improvement. For example, for C2, the
performance improved only by 6.50 when the transfer time was reduced by 400,
while when reducing the rotation latency by 400, it yields 16.70 improvement for
C2. It indicates that disks spend most of their time on seeking and locating the data
rather than transferring them.

From this study, we know that among all disk-related architectural parameters,
the disk rotation latency plays the most important role in performance improve-
ment, while the disk seek time is the second, and the disk transfer time is the least
factor.

5.4. Effects of Data Allocation

Using the model, we also evaluate the performance of TPC-C on an architecture
with a given number of disks and I�O buses but with different data (database table)
allocations. Since a 4-disk and 2-I�O bus configuration provides many alternatives
to allocate data, we use it as the platform to study the data allocation effects. The
number of CPUs is 2, and the number of terminals is 48.

For a system of 4-disk and 2-I�O bus architecture, there are several ways to allocate
the data among four disks. Table 17 lists some candidates, and their relative perfor-
mance improvement ratios. Allocation A distributes the database tables almost evenly
(based on the number of database tables) among all disks. Allocation B intends to
distribute all data of database tables approximately evenly among disks (with
W=1). Allocations C and D distribute data on a configuration with one disk on
each I�O bus. They are used to compare with those configurations (A and B) using
more than one disk on one I�O bus. Allocation E provides the best performance
among all our tested allocations in terms of tpmC. We will explain later why this
allocation yields better performance than any other allocation we investigated.

Utilizations of I�O buses and disks are presented in Table 18. For allocation A,
because the database tables 1, 2, and 3 are in the same disk, and they are the major
data accessed by the major transactions I and II, the result is a very high utilization
for I�O Bus 1 (72.70), and relatively high disk utilization for DISK 1 and 2 (58.3
and 45.40 respectively). On the other hand, the workload on I�O Bus 2 and its

634 DU ET AL.

TABLE 17

Five Data Allocation Candidates and Their Performance in tpmC and Relative Improvement
Ratios in Comparison with the Baseline SMP

I�O Bus 1 I�O Bus 2

Allocation DISK 1 DISK 2 DISK 3 DISK 4 tmpC

A [1 2 3] [4 5] [6 7] [8 9] 49.3 (100.40)
B [8] [1 2 4 7] [3] [5 6 9] 55.4 (125.20)
C [1 2 3 4 5] [] [6 7 8 9] [] 48.2 (95.90)
D [1 2 4 7 8] [] [3 5 6 9] [] 53.6 (117.90)
E [8 4] [9] [6] [1 2 3 5 7] 58.7 (138.60)

Note. The baseline SMP has only one disk and all data are put on that disk. The database tables
are numbered from 1 to 9.

disks are comparatively small. This gives about 100.40 increase of overall performance
in comparison with the baseline SMP with one I�O bus and one disk. Merging two
disks' data (allocation C) reduces the improvement to 95.90. In comparison with A,
the utilization of DISK 1 increases to 69.80. Since all accesses to the database tables
1�5 are conducted on DISK 1, there is no overlapping of the usage of I�O buses
and the disks. Consequently, the response time increases while the utilization of I�O
buses reduces. Even in such a case, it still outperforms by 95.90 compared with the
one with the single I�O bus. Allocation B distributes the data almost evenly among
the disks. But since the access probabilities for each data item are not equal, this
leads also to the imbalance of workload among disks and I�O buses. This is reflected
in Table 18. I�O Bus 1 is still the hot spot. However, compared with A, we find it
is much better balanced; thus it yields a 125.20 improvement. Allocation D is
similar to B. Allocation E has the most balanced database table allocation with
regard to both the amount of data and data access probabilities for each transac-
tion. Database table 8 is the largest one, while database table 9 is less frequently
accessed. Putting them on different disks but on the same I�O bus minimizes the
response time for accessing database table 8, which is beneficial for transactions I,
III, IV, and V. Less frequent accesses to database table 9 makes it possible to use
the idle cycles of I�O Bus 1 while DISK 1 is busy seeking blocks. Database table
6 is a relatively large and frequently accessed table. It is stored separately in a disk

TABLE 18

Utilizations of I�O Buses and Disks for the Five Types of Data Allocations

Allocation I�O Bus 1 I�O Bus 2 DISK 1 DISK 2 DISK 3 DISK 4

A 72.70 31.40 58.30 45.40 10.60 8.70

B 67.80 41.10 57.30 48.90 25.30 27.40

C 58.70 20.30 69.80 00 43.30 00

D 51.40 30.80 76.80 00 64.20 00

E 45.70 38.50 54.20 47.30 38.60 46.10

635TPC-C WORKLOAD AND SMP ARCHITECTURE

to reduce its effect on the access of other database tables. The remaining database
tables are in the fourth disk. This setting balances the data traffic flows among the
memory bus and I�O buses, thus yielding the best performance among all our tested
allocations. It improves the performance by a factor of 138.60 in comparison
with the baseline SMP and 24.30 in comparison with putting all data on one
disk.

Through this study, we find that given an SMP configuration, the performance
of TPC-C can be improved moderately by allocating the database tables properly.
This is because the access rates for different database tables are quite different.
Allocating frequently accessed tables on one disk or on disks on one I�O bus will
incur high disk or I�O bus utilization demand, thus making it become the bottleneck
of the system. In contrast, allocating them separately to balance the workload will yield
better performance. This is a relatively easy way to improve performance without
upgrading any hardware devices. Our experiments show this promise. In practice, some
hardware performance instrumenting and monitoring mechanisms can be used to
gather utilizations of all devices. Performance can be tuned based on adjusting data
allocations.

6. RELATED WORK

Maynard et al. [11] compare the cache�memory performance between scientific
and commercial workloads in a uniprocessor system through trace-driven simulations.
A large number of user processes, a high percentage of operating system activities, and
distinctive branch behavior make commercial data not cache efficient. The authors of
[11] also find that increasing the associativity of second-level caches can reduce
miss rates.

Trancoso et al. [16] investigate memory performance of decision support system
��a kind of commercial workload benchmarked by TPC-D��in cache-coherent
shared-memory multiprocessors. Three representative queries are selected from
TPC-D, and their memory performance is analyzed. For each query, sequential and
index accesses to the database data are evaluated. They find that both kinds of
accesses can exploit spatial locality and therefore can benefit from relatively long
cache lines.

Leutenegger and Dias [10] model the TPC-C benchmark for single-node and
distributed database management systems. Data access skew is quantified. A LRU
buffer is assumed to be used. They examine the effect of packing hot tuples into
pages and show the price�performance benefit as well.

There are also several papers concerning performance on specific SMP machines
with specific hardware supporting facilities. Piantedosi and Sathaye [12] evaluate
the performance of commercial workloads in DEC AlphaSevers using memory
channels. A memory channel is a special high speed network dedicated to the
data transfer between memory of several machines. It reduces significantly the
overhead needed to share memory resident data between computers, thus
decreasing the number of disk accesses, and improving the performance of the
workloads.

636 DU ET AL.

Similar to the conclusions reached by Maynard et al., Eickemeyer et al. [3] find
growing miss rates due to commercial applications. They evaluate the use of multi-
threaded uniprocessors for commercial applications in order to overlap the computa-
tion with the access to memory. So when a thread is blocked by a memory access caused
by a cache miss, another thread may take control of the processor to do some effective
computation. They observe that multithreading can provide significant improvements
for uniprocessor commercial computing environments.

Thakkar and Sweiger [15] evaluate the performance of an OLTP benchmark
TP1 (ancestor of TPC-A), which simulates a banking (deposit�withdraw) system
workload on a Sequent Symmetry system. Because the system bus is designed
specifically as a pipeline bus optimized for data transfer between CPU and memory,
cache-to-cache transfer has a higher overhead than cache-to-memory. Thus, when
cache is relatively large, and a process migrates from a processor to another, cache-
to-cache transfer is required, which may incur higher overhead and may affect the
overall performance of the system. The paper investigates the effects of two schedul-
ing schemes, affinity and nonaffinity, on the performance of TP1.

Compared with scientific applications, cache and memory plays a smaller role in
the performance of commercial workloads. As [11] states, about half (430 for
TPC-C) of the instructions of commercial applications executed involve disk I�O.
Consequently, memory and disks are the bottleneck of the system. Multiple processors
may reduce the execution time of computational parts of the workloads, but they do
not release any burden on I�O devices. It might affect positively or negatively the over-
all performance of workloads. Multiple disks usually provide more storage capacity for
the workloads. But if they are configured poorly, and data are allocated improperly,
they may affect the performance as well. The memory bus and I�O buses are other
critical resources and could easily become the bottlenecks of the system. Our
research differs from the above-cited work in several respects. We focus on

1. commercial workload performance on general symmetric multiprocessor
systems,

2. the architectural (especially I�O) impact on performance, and

3. the queuing network models supported by simulation.

7. CONCLUSIONS AND FUTURE WORK

Symmetric multiprocessors have become a popular parallel server for running
database-oriented commercial applications. Performance evaluation is the first step
toward improving the performance of commercial applications on SMPs. Experiment-
based evaluation requires significant computing resources and time. In this paper, we
investigate the feasibility of using a queueing network model supported by simulation
to characterize commercial workloads on SMPs. Although our modeling results may
not be as precise as the results from intensive simulation and measurements, they are
sufficiently accurate and acceptable for characterizing the TPC-C workload on SMPs
and revealing insights into SMP architectural effects on performance of commercial

637TPC-C WORKLOAD AND SMP ARCHITECTURE

workloads. A unique feature of this approach is its efficiency in terms of timing and
computing resources.

In summary, we have made the following contributions in this performance
study:

v We developed a queueing network model to characterize and analyze the
behavior of a commercial workload on SMP systems.

v We also built a MINT-based SMP simulator integrated with a disk simulator
and the POSTGRES database for the TPC-C execution. The simulation environment
was used to collect the input parameters for the model (parameterization) and to verify
the model. The simulation results show that the model is sufficiently accurate.

v Using the model, we quantitatively analyzed the SMP architectural impact
on performance of TPC-C. Our studies indicate that among disk-related param-
eters, the disk rotation latency affects performance of TPC-C most significantly.
Among I�O buses and number of disks, the number of I�O buses has the most
significant impact on performance.

We have also investigated the initial data allocation policies of TPC-C. We show
that performance could be effectively improved by allocating the database tables
among several disks based on utilizations of each table, of disks, and of I�O buses.
In a two-I�O bus and four-disk architecture, we achieved a performance improve-
ment by a factor of 24.30 using a selective allocation policy.

The use of parallel disks [2] in an SMP is an effective way to improve perfor-
mance because it reduces average disk rotation time and disk transfer time from
concurrent disk operations. Since the I�O bus latency plays an important role in
performance, accommodating faster I�O buses in SMPs is another way to improve
commercial workload performance. For a given configuration, employing proper
data allocation is also a promising approach for enhancing performance while not
upgrading any hardware. Our experiments only tested various allocations in the
units of database tables. An alternative method is to allocate the data in smaller
units, such as tuples, based on some semantics of the data. All those approaches are
static: data are allocated before execution. Dynamic allocation is another interest-
ing issue. The time spent on transferring data among disks is definitely the major
overhead, and it will offset performance gain. However, a reconfigurable connection
mechanism (rather than a simple I�O bus) between disks will provide low-cost
support for data redistribution and make this approach attractive. All those issues
are open and need further investigation. Disk buffers and database buffers also help
reduce the number of disk accesses. Currently, we are studying data access patterns
of commercial workloads. Several buffer management strategies are proposed and
evaluated for their effectiveness. Since scalability is a major limit on bus-based
shared memory multiprocessors, we are investigating other alternatives as well.
With the availability of high-speed networks and powerful workstations with large
disk storage capability, networks of workstations are a cost-effective candidate for
commercial applications. We are studying the performance of commercial
workloads supported by a distributed database management system on networks of
workstations.

638 DU ET AL.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive comments and suggestions on the paper.
We appreciate Z. Zhu's discussions and comments on this work. We are thankful to Neal Wagner for
reading the paper and for his comments.

REFERENCES

1. L. A. Barroso, K. Gharachorloo, and E. Bugnion, Memory system characterization of commercial
workloads, in ``Proceedings of the 25th International Symposium on Computer Architecture,'' June,
1998.

2. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, RAID: High-performance,
reliable secondary storage, ACM Comput. Surveys (June 1994).

3. R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squillante, and S. Liu, Evaluation of multi-
threaded uniprocessors for commercial application environments, in ``Proceedings of ISCA'96,''
pp. 203�212, 1996.

4. M. Heinrich et al., The performance impact of flexibility in the Stanford FLASH multiprocessor,
in ``Proceedings of the 6th ASPLOS,'' pp. 274�285, 1994.

5. J. L. Hennessy and D. A. Patterson, ``Computer Architecture: A Quantitative Approach,'' second ed.,
Morgan Kaufmann, San Francisco, 1996.

6. W. W. Hsu and J-K. Peir, Buses, in ``CRC Handbook of Computer Science and Engineering''
(A. B. Tucker, Ed.), pp. 427�446, CRC Press, Boca Raton, FL, 1997.

7. H. Jiang, L. N. Bhuyan, and J. K. Muppala, MVAMIN: Mean value analysis algorithms for multi-
stage interconnection networks, J. Parallel Distrib. Comput. 12 (1991), 189�201.

8. D. Kotz, S. B. Toh, and S. Radhakrishnan, ``A Detailed Simulation Model of the HP 97560 Disk
Drive,'' TR PCS-TR94-220, Department of Computer Science, Dartmouth College, 1994.

9. E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, ``Quantitative System Performance
��Computer System Analysis Using Queueing Network Models,'' Prentice�Hall, New York,
1984.

10. S. T. Leutenegger and D. Dias, A modeling study of the TPC-C benchmark, ``ACM SIGMOD'93,''
pp. 22�31, 1993.

11. A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski, Contrasting characteristics and cache
performance of technical and multi-user commercial workloads, in ``The Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems,'' pp. 145�156, October
1994.

12. J. A. Piantedosi and A. S. Sathaye, Performance measurement of TruCluster systems under the
TPC-C benchmark, Digital Tech. J. 8(3) (1996), 46�57.

13. C. Ruemmler and J. Wilkes, An introduction to disk drive modeling, IEEE Comput. (March 1994),
17�28.

14. M. Stonebraker and G. Kemnitz, The POSTGRES next generation database management system,
Comm. ACM 34(10) (1991), 78�92.

15. S. S. Thakkar and M. Sweiger, Performance of an OLTP application on symmetry multiprocessor
system, in ``Proceedings of ISCA'90,'' pp. 228�238, 1990.

16. P. Trancoso et al., The memory performance of DSS commercial workloads in shared-memory
multiprocessors, in ``The Third International Sympoisum on High-Performance Computer Architecture,''
pp. 250�260, February 1997.

17. D. Towsley, Approximate models of multiple-bus multiprocessor systems, IEEE Trans. Comput. 35(3)
(1986), 220�228.

18. Transaction Processing Performance Council, TPC Benchmark C, ``TPC Benchmark C Stanford
Specification, Revision 3.3.3,'' April 16, 1998.

639TPC-C WORKLOAD AND SMP ARCHITECTURE

19. J. E. Veenstra and R. J. Fowler, MINT: A front end for efficient simulation of shared-memory multi-
processors, in ``Proceedings of the Second International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,'' pp. 201�207, 1994.

20. Q. Yang and L. N. Bhuyan, A queueing network model for a cache coherence protocol on multiple-
bus multiprocessors, in ``Proceedings of International Conference on Parallel Processing,'' pp. 130�137,
1988.

XING DU received his B.S. and Ph.D. in computer science from Nanjing University, China, in 1986
and 1991, respectively. He is a software design engineer at Software and Systems Development Lab of
Hewlett-Packard Company. He worked at the Oracle Corporation between 1999 and 2000. He was a
research associate in the University of Texas at San Antonio and in the College of William and Mary
between 1995 to 1998. He worked as a research scientist at the University of Virginia between 1998 to
1999. His research interests are parallel�distributed systems and software engineering.

XIAODONG ZHANG is a professor of computer science at the College of William and Mary. He
received his B.S. in electrical engineering from Beijing Polytechnic University, China, in 1982, and his
M.S. and Ph.D. in computer science from University of Colorado at Boulder, in 1985 and 1989, respec-
tively. His research interests are parallel and distributed systems, computer memory systems and scientific
computing. He is an associate editor of IEEE Transactions on Parallel and Distributed Systems, and has
chaired the IEEE Computer Society Technical Committee on Supercomputing Applications.

YINGFEI DONG is a Ph.D. candidate in computer science at the University of Minnesota. He
received his B.S. and M.S. in computer science at Harbin Institute of Technology, in 1989 and 1992,
respectively. He was a research associate in the High Performance Computing and Software Lab at
the University of Texas at San Antonio from 1995 to 1997. His research interests are in the areas of
networking systems. He is a member of ACM.

LIN ZHANG is a member of the technical staff at LXB World Marketing Company in Canada. She
participated in the work on commercial workload evaluation of shared-memory systems in the High
Performance Computing and Software Lab at the University of Texas at San Antonio from 1996 to
1997. She received her B.S. in computer science from Nanjing University, China, in 1986.

640 DU ET AL.

	1. INTRODUCTION
	2. TPC-C WORKLOAD AND SMP ARCHITECTURE
	TABLE 1
	FIG. 1
	TABLE 2
	FIG. 2

	3. ANALYTICAL MODEL
	FIG. 3
	TABLE 3
	TABLE 4
	TABLE 5

	4. PARAMETERIZATION AND MODEL VERIFICATION
	FIG. 4
	TABLE 6
	TABLE 7
	FIG. 5
	TABLE 8
	FIG. 6
	TABLE 9

	5. PERFORMANCE ANALYSIS
	TABLE 10
	TABLE 11
	TABLE 12
	TABLE 13
	TABLE 14
	TABLE 15
	TABLE 16
	TABLE 17
	TABLE 18

	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

