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Abstract. The correctness of a component-based software system de-

pends on the component client's ability to reason about the behavior

of the components that comprise the system, both in isolation and as

composed. The soundness of such reasoning is dubious given the current

state of the practice. Soundness is especially troublesome for component

technologies where source code for some components is inherently un-

available to the client. Fortunately, there is a simple, understandable,

teachable, practical, and provably sound and relatively complete rea-

soning system for component-based software systems that addresses the

reasoning problem.
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1 Introduction

Both the object-oriented literature and common sense suggest that component-

based software development, and the resulting software reuse, should improve

programmer productivity and software quality because:

{ less new code must be written to produce the same results, and

{ o�-the-shelf components should be \well-seasoned" and therefore more reli-

able than code written from scratch.

Both these observations are basically valid. But they are not the main rea-

son why component-based software has the potential to dramatically improve
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software engineering practice. The key feature of well-designed software compo-
nents is that they|or more speci�cally, the mathematical models used to explain
them|can help you understand, and reason soundly about, the execution-time
behavior of component-based software systems. Don Knuth emphasizes the
importance of such reasoning in an interview in Byte magazine [8]:

[People in the object computing realm] haven't yet built a reliable way
to reason about these programs, that is, we still lack the mathematical
proofs to ensure a program will work. With object oriented programs,
we have much less of an understanding of how we would ever prove that
they don't have bugs. This is a huge gap. If people can understand OOP,
they ought to be able to prove that the programs are correct.

How can this problem be addressed, especially when some components in the
program are not available in source form? In this paper we describe how to use
mathematical modeling to explain and to reason about software-component be-
havior, i.e., the computational states reached during execution. We also demon-
strate why you must use appropriate mathematical models if you expect to be
able to reason about the composite behavior of software systems built from such
components.

2 The Reasoning Problem

Any robust software-development paradigm must provide an answer to the rea-
soning problem [12, 17]; namely, how can you reason soundly about the behav-
ior of a statement without actually executing it on a computer? The argument
for this claim is straightforward. Suppose you could not reason abstractly about
what a statement does, that you had to run it on a computer to see what hap-
pens. Then how would you choose a statement to ask the computer to execute?
Trial-and-error is a surprisingly common approach for newcomers to computing,
but it cannot work for software professionals because clearly there are just too
many possible statements to try them all. You must be able to do some reasoning
just to prune the options. A practical solution to the reasoning problem must
be e�ective and reliable, not mere guesswork|even if you never try to \prove"
anything about your programs.

Consider a common built-in programming type such as Integer. How, for
example, do you reason about the e�ect of code involving objects (variables1) of
type Integer? A hardware engineer might view the value of an Integer object as
a boolean vector, and the high-level-language operators \+" and \{" as macros
that stand for hardware control sequences which manipulate boolean vectors.

1 We use the word \object" throughout this paper to emphasize that the techniques
illustrated apply to object-oriented programs involving inheritance, etc., as well as
to the \object-based" program fragments that constitute this paper's examples. For
instance, [17] shows how the approach works with component-based C++ software;
see also http://www.cis.ohio-state.edu/~weide/sce/now.
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\Boolean vector" is an example of a mathematical model for the value of an
Integer object, i.e., something that de�nes a mental image for the object's value
and provides a machine-processable notation that supports formal reasoning
about that object's behavior.

The boolean vector model for programming type Integer works well for the
hardware designer who is implementing arithmetic circuits. But it is at best
unnecessarily complex for the software engineer who is a client of that hardware.
For a software engineering task, you normally view the value of an Integer object
according to a more appropriate mathematical model: a mathematical integer.
You also picture Integer operators such as \+" and \{" as performing additions
and subtractions of mathematical integers. You don't think about Integer objects
in terms of internal representations, but in terms of their representation-neutral
(i.e., \abstract") mathematical models.

3 Reasoning with Software Components

Component-based software development aggravates the reasoning problem be-
cause it signi�cantly widens the semantic gap between the kinds of real-world
information you can write programs to process, and the bits that computer hard-
ware ultimately is able to process. Appropriate mathematical models have long
since been adopted for the built-in types provided by programming languages.
But in component-based software development you use not only these built-in
types|which are one or two levels removed from the hardware|but also much
higher-level types de�ned by o�-the-shelf software components with powerful op-
erations whose exact behavior can be complex, and even mysterious if it is not
very carefully described. What are appropriate mathematical models for these
types?

The burgeoning popularity of component technologies, from the early Booch
components [2] through such distributed object technology contenders [10] as
CORBA, DCOM, and Jini, makes it imperative that reasoning diÆculties with
component-based software be dealt with before they lead to a software disaster.
Fortunately, software components present an opportunity along with the reason-
ing challenge. Every programming type gives you something to \wrap" with an
appropriate mathematical model. In fact, researchers have already used this idea
to tie formal mathematical models to some popular-technology components [9].
The models involved are more complex than simple mathematical integers. But
they are far less complex than the underlying bits used in computer representa-
tions and the code that transforms them, which must remain the last resort for
understanding program behavior.

Mathematical modeling also provides guidance when trying to identify and
design new domain-speci�c software components. Textbooks on the subject usu-
ally stop short of detailed component designs. They assume that the domain-
speci�c concepts identi�ed by analysis, if named appropriately, will be intrinsi-
cally understandable to domain experts through intuitive or metaphorical mod-
els (e.g., \a stack is like a stack of cafeteria trays"). But in complex domains
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where system correctness is very important|such as air-traÆc control|the pre-
cise behavioral details of software components must be so well-understood that
speci�cation by wishful naming and content-free explanations such as \a stack
is like a stack" cannot suÆce.

Moreover, the software objects in a system often do not correspond one-to-one
with actual physical objects, making it impossible to explain the behavior of some
software objects by appealing to physical analogies. Implementations of complex
domain-speci�c components usually are layered over other complex components,
making it practically impossible to understand their behavior by sifting through
their implementation code. Finally, in many component technologies no source

code is available for some or all components.

4 An Example: \List"

We might have used a software component from a domain such as air-traÆc
control as an example of selecting and using appropriate mathematical models.
But the point is clear (perhaps even clearer) when the component in question
deals with something most software engineers seem to know and \understand"
very well. So consider this piece of code that uses List objects, where List is a
programming type de�ned by an o�-the-shelf software component:

procedure Reverse ( updates s: List )

begin

variable temp: Item

if Length (s) > 0 then

Remove (s, temp)

Reverse (s)

Insert (s, temp)

end if

end Reverse

Assuming you understand informally that the intended behavior of Reverse
is to \reverse" a List object, how do you reason soundly about whether this
body actually accomplishes that? You need to know exactly what a List object
is, exactly what each of the operations Length, Remove, and Insert does, and
exactly what Reverse is supposed to do. Mathematical modeling seems like an
obvious approach.

But is this answer really so obvious? To see how such a question might be
answered in traditional documentation for clients of a \List" component, we
examined several descriptions of o�-the-shelf components involving \List" and
\Insert". We found a wide range of explanations ranging from the content-free
to the cryptic to the implementation-dependent to the nearly acceptable (i.e.,
the best we could �nd). Here, quoted directly but without attribution, are a few
of the explanations we found for the behavior of an Insert operation for a List:

{ a new item is inserted into a list
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{ postcondition: the list = the list + the item
{ insert adds the item to the beginning of the pointer \pre" [accompanied by

a �gure showing a typical con�guration of a linked list representation with
a \pre" pointer, among others]

{ put v at ith position... ensures insertion done: i th(i) = v [accompanied by
a separate de�nition of another programming operation called \i th": item
at ith position]

Evidently, if you want to know exactly what Insert does and does not do,
you need to understand a speci�c linked list representation and the code for the
body of the Insert operation. Then you need to apply the same sledgehammer to
understand what Remove does. Finally, you can \manually execute" the Reverse
code on multiple inputs, at which point you might make an educated guess
about whether Reverse works as intended. Without an explicit mathematical
model that abstractly speci�es the state of a List object and the behavior of List
operations, reasoning about List objects is reduced to speculation and guesswork.

How should objects and their operations be explained, given that a basic
objective of software engineering is to be able to reason about and understand
the software? The next section illustrates an answer to this fundamental question
using the List example. The issue at hand is one that you must address no
matter which programming language or paradigm you use. But it is especially
important for component-based software development, where source code for the
components used often is not available to the client programmer.

5 Explaining the Values and Behavior of Lists

To arrive at an appropriate mathematical model that explains the behavior of
a List object, we start by considering exactly what values (states) and state
changes we are trying to model. Figure 1 shows a common singly linked list data
structure consisting of a sequence of nodes chained together by next pointers.
New nodes can be added to or removed from the sequence just after the node
referenced by cur pos. Other operations allow the sequence of data items to
be traversed by following next pointers. Evidently, in Figure 1, a traversal has
already visited the consecutive nodes containing items 3, 4, and 5, and has yet
to visit the remaining nodes containing items 1 and 4.

What is the essence of the information captured in this data structure, in-
dependent of its representation? We claim that it is simply the string2 of items
already visited, namely h3; 4; 5i, and the string of items yet to be visited, namely
h1; 4i. That is, you can view the value of a List object as an ordered pair of math-
ematical strings of items.

As the Integer-as-boolean-vector example suggests, mathematical modeling
does not by itself guarantee understandable speci�cations or ease of reasoning.

2 A string is technically simpler than a \sequence" because it is �nite and does not

explicitly involve the notion of a position. But thinking of a string as a sequence will

not lead you astray.
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data

next

start
cur_pos

3 4 5 1 4

null

Fig. 1. A typical singly linked list representation

Choosing a goodmathematical model is a crucial but sometimes diÆcult task. For
example, you might choose to think of the value of a List object as a single string
of items (e.g., h3; 4; 5; 1; 4i) along with an integer current position (e.g., 3); as a
function from integer positions to items, along with a current position; or even as
a complex mathematical structure that captures the links and nodes of the above
representation. Selection of a good mathematical model depends heavily on the
operations to be speci�ed, the choice of which should be guided by considerations
of observability, controllability, and performance-in
uenced pragmatism [4, 16].
The pair-of-strings model suggested above leads (in our opinion) to the most
understandable speci�cation of the concept and makes it easy to reason about
programs that use List objects, as we will see.

Figure 2 shows the speci�cation of a List component in a dialect of the RE-
SOLVE language [13]. List Template is a generic concept (speci�cation tem-
plate) which is parameterized by the programming type of items in the lists. As
just stated, each List object is modeled by an ordered pair of mathematical
strings of items. The operator \*" denotes string concatenation; \hxi" denotes
the string consisting of a single item x; and \jsj" denotes the length of string s.

Conceptualizing a List object as a pair of strings makes it easy to explain the
behavior of operations that insert or remove from the \middle". A sample value
of a List Of Integers object, for example, is the ordered pair (h3; 4; 5i; h1; 4i).
Insertions and removals can be explained as taking place between the two strings,
i.e., either at the right end of the left string or at the left end of the right string.

The declaration of the programming type List introduces the mathematical
model and says that a List object initially (i.e., upon declaration) is \empty":
both its left and right strings are empty strings. Each operation is speci�ed by
a requires clause (precondition), which is an obligation for the caller; and an
ensures clause (postcondition), which is a guarantee from a correct implementa-
tion. In the postcondition of Insert, for example, #s and #x denote the incoming
values of s and x, respectively, and s and x denote the outgoing values. Insert
has no precondition, and it ensures that the incoming value of x is concatenated
onto the left end of the right string of the incoming value of s; the left string is
not a�ected. Notice that the postcondition describes how the operation updates
the value of s, but the return value of parameter x (which has the mode clears)
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concept List Template (type Item)

type List is modeled by

(left: string of Item,

right: string of Item)

exemplar s

initialization ensures

|s.left| = 0 and |s.right| = 0

operation Insert ( updates s: List, clears x: Item )

ensures s.left = #s.left and

s.right = <#x> * #s.right

operation Remove ( updates s: List, replaces x: Item )

requires |s.right| > 0

ensures s.left = #s.left and

#s.right = <x> * s.right

operation Advance ( updates s: List )

requires |s.right| > 0

ensures s.left * s.right = #s.left * #s.right and

|s.left| = |#s.left| + 1

operation Reset ( updates s: List )

ensures |s.left| = 0 and

s.right = #s.left * #s.right

operation Advance To End ( updates s: List )

ensures |s.right| = 0 and

s.left = #s.left * #s.right

operation Left Length ( restores s: List )

returns length: Integer

ensures length = |s.left|

operation Right Length ( restores s: List )

returns length: Integer

ensures length = |s.right|

end List Template

Fig. 2. RESOLVE speci�cation of a List component
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remains otherwise unspeci�ed; clears means it gets an initial value for its type.
For example, an Integer object has an initial value of 0.

RESOLVE speci�cations use a combination of standard mathematical models
such as integers, sets, functions, and relations, in addition to tuples and strings.
The explicit introduction of mathematical models allows the use of standard
notations associated with those models in explaining the operations. Our expe-
rience is that this notation, while precise and formal, is nonetheless fairly easy
to learn, even for beginning computer science students.

We leave to the reader the task of understanding the other List Template

operations. List Template is just an example chosen to illustrate the features of
explicit mathematical modeling as a speci�cation approach. Other o�-the-shelf
RESOLVE components include general-purpose ones de�ning queues, stacks,
bags, partial maps, sorting machines, solvers for graph optimization problems,
etc.; and more complex domain-speci�c components.

6 Reasoning About Reverse

Shown below is one possible formal speci�cation of Reverse, i.e., this is what we
intend to mean by \reversing" a List object:

operation Reverse ( updates s: List )

requires |s.left| = 0

ensures s.left = reverse (#s.right) and |s.right| = 0

The only new notation here is reverse, a built-in mathematical function in
the speci�cation notation. Formally, its inductive de�nition is:

reverse (empty string) = empty string

reverse (a * <x>) = <x> * reverse (a)

Informally, its meaning is that, if s is a string (e.g., h1; 2; 3i), then reverse (s)
is the string whose items are those in s but in the opposite order (e.g., h3; 2; 1i).

Let's reconsider the reasoning question raised earlier (where Length has been
replaced in the code with Right Length to match exactly the component inter-
face de�ned in Figure 2). Is the following implementation correct for the above
speci�cation of Reverse?

procedure Reverse ( updates s: List )

decreasing |s.right|

begin

variable temp: Item

if Right_Length (s) > 0 then

Remove (s, temp)

Reverse (s)

Insert (s, temp)

end if

end Reverse
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You can reason about the correctness of this code with varying degrees of con-
�dence through testing (computer execution on sample inputs), tracing (hu-
man execution on sample inputs), and/or formal symbolic reasoning (proof
of correctness). But all of these must be based on mathematical modeling of
Lists.

Table 1. A tracing table for Reverse

State Facts

0 s = (<>, <3, 4, 6, 2>) and

temp = 0

if Right Length (s) > 0 then

1 s = (<>, <3, 4, 6, 2>) and

temp = 0

Remove (s, temp)

2 s = (<>, <4, 6, 2>) and

temp = 3

Reverse (s)

3 s = (<2, 6, 4>, <>) and

temp = 3

Insert (s, temp)

4 s = (<2, 6, 4>, <3>) and

temp = 0

end if

5 s = (<2, 6, 4>, <3>) and

temp = 0

Although testing is clearly important, here we illustrate only the latter two
approaches to show the power of mathematical modeling for human reasoning
about program behavior.

Tracing. Tracing is sometimes part of code reviews, walkthroughs, and for-
mal technical reviews [5]. It is helpful to use a conventional form when conducting
a trace. Table 1 shows a tracing table for Reverse where the incoming value of
the List Of Integers s is (h i; h3; 4; 6; 2i). The Facts column of this table records
the values of objects in the corresponding state of the program listed in the State
column. States are the \resting points" between statements at which values of
objects might be observed.

There are two states in Table 1 where the recording of facts calls for some
explanation. The facts at state 2 are based on the postcondition of the Remove

operation. However, you can assume the postcondition of Remove only if the
precondition of Remove is satis�ed before the call, i.e., in state 1. In this case,
object values at state 1 can be seen by inspection to satisfy the precondition
of Remove, so appealing to the postcondition of Remove to characterize state
2 represents valid reasoning. Also, the facts at state 3 use the postcondition of
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Reverse. Assuming the postcondition of Reverse when tracing Reverse would
represent circular, invalid reasoning without �rst verifying that the recursion is
\making progress". In this case, progress is evident because the length of s.right,
at state 2, is less than the length of s.right at state 0. Again you can see this
by inspection. The justi�cation for appealing to the postcondition of Reverse

in state 3 is, then, mathematical induction. (Note also that the precondition of
Reverse holds at state 2.)

Details of the remaining entries of the table are straightforward. Examination
of the facts at state 5 reveals whether this implementation of Reverse is correct
for the speci�c input value s = (h i; h3; 4; 6; 2i). You should be able to see from
this trace and the speci�cation that it is not correct.

Formal Symbolic Reasoning. This is a powerful generalization of tracing
where the names of objects stand for arbitrary values of the mathematical models
of their types, not for speci�c values. For example, instead of tracing Reverse

using the speci�c values #s:left = h i and #s:right = h3; 4; 6; 2i, you simply let
#s:left and #s:right denote some arbitrary incoming value of s.

Our approach to symbolic reasoning is called natural reasoning, a veri�ca-
tion technique proposed by Heym [7], who also proved conditions for its sound-
ness and relative completeness. The general idea is called natural reasoning, like
natural deduction in mathematics, because it is an operationally-based approach
that is intuitively appealing to computer science students and experienced soft-
ware engineers alike. It lets you formally represent the informal reasoning used by
the author of the code, e�ectively encoding why he/she thinks the code \works".

Heym compared his natural reasoning system with classical program veri�ca-
tion techniques based on Hoare logic, and with two earlier proposals for similar
reasoning methods (which lacked soundness proofs and, as it turned out, were
actually unsound). We do not digress here to discuss this related theoretical
work; see [7] for details. Some other features of natural reasoning are:

{ Programs with loops are handled through the use of traditional loop invari-
ants or loop speci�cations, which are not illustrated in the present example.

{ The techniques used in our List Reverse example generalize to cover reason-
ing about the correctness of data representations (e.g., to decide whether a
proposed List Template implementation is correct), also not illustrated here.

{ The soundness of natural reasoning depends on the absence of aliasing in
the client code. In RESOLVE, we eliminate aliasing by using the swapping
paradigm [6] as the basis for component design, implementation, and use.
The consequences of this decision are illustrated in the detailed design of
List Template, most notably in the way Insert works (note in Figure 2 the
parameter mode for x).

Natural reasoning about code correctness can be viewed as a two-step process:

1. Record local information about the code in a symbolic reasoning table,
a generalization of a tracing table.

2. Establish the code's correctness by combining the recorded information into,
and then proving, the code's veri�cation conditions.
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Step 1 is a symbol-processing activity no more complex than compiling. It can
be done automatically. Consider an operation Foo that has two parameters and
whose body consists of a sequence of statements (Figure 3). You �rst examine
stmt-1 and record assertions that describe the relationship which results from it,
involving the values of x and y in state 0 (call these x0 and y0) and in state 1 (x1
and y1). You similarly record the relationship which results from executing stmt-

2, i.e., involving x1, y1, x2, and y2; and so on. You can do this for the statements
in any order because these relationships are local, involving consecutive states
of the program.

operation Foo (x, y)

requires

pre [x, y]

ensures

post [#x, #y, x, y]

procedure Foo (x, y) is

begin

// state 0

stmt-1

// state 1

stmt-2

// state 2

stmt-3

// state 3

stmt-4

// state 4

end Foo

state 0

state 1

state 2

state 3

state 4

stmt-2

stmt-3

stmt-4

stmt-1

Fig. 3. Relationships in symbolic reasoning

In addition to those arising from the procedure body statements, step 1
produces two special assertions. One is a fact (an assertion to be assumed in step
2 of natural reasoning): the precondition of Foo holds in state 0, i.e., pre[x0; y0].
Another is an obligation (an assertion to be proved in step 2): the postcondition
of Foo holds in state 4 with respect to state 0, i.e., post[x0; y0; x4; y4]. Intuitively,
this says that if you view the e�ect of the operation from the client program,
as control appears to jump directly from state 0 to state 4, the net e�ect of the
individual statements in the body is consistent with the speci�cation.

Step 2 of natural reasoning involves combining the assertions recorded in
step 1 to show that all the obligations can be proved from the available facts.
This task is generally an intellectually challenging activity in which computer-
assisted theorem proving helps, but, given the current state-of-the-art, it is far
from entirely automatic.

The assertions recorded in step 1 arise from three questions about every state:

{ Under what condition can the program get into this state?

276 Murali Sitaraman  et al.



{ If the program gets into this state, what do we know about the values of the
objects?

{ If the program gets into this state, what must be true of the values of the
objects in order that the program can successfully move to the next state?

Table 2 shows a completed symbolic reasoning table for Reverse. The columns
to the right of the State column contain the answers to the above questions for
a given state. Column Path Conditions records the condition under which
execution reaches that state. Column Facts records assumptions (generally the
postconditions of called operations) that can be made in that state. Column
Obligations records assertions (generally the preconditions of called operations)
that need to be true in that state in order for execution to proceed smoothly to
the next state.

Table 2. A symbolic reasoning table for Reverse

State Path Facts Obligations

Conditions

0 |s0.left| = 0 and

is initial (temp
0
)

if Right Length (s) > 0 then

1 |s0.right| > 0 s1 = s0 and |s1.right| > 0

temp
1
= temp

0

Remove (s, temp)

2 |s0.right| > 0 s2.left = s1.left and |s2.left| = 0 and

s1.right = <temp
2
> * |s2.right| < |s0.right|

s2.right

Reverse (s)

3 |s0.right| > 0 s3.left = reverse

(s2.right) and

|s3.right| = 0 and

temp
3
= temp

2

Insert (s, temp)

4 |s0.right| > 0 s4.left = s3.left and

s4.right = <temp
3
> *

s3.right and

is initial (temp
4
)

end if

5a |s0.right| = 0 s5 = s0 and s5.left = reverse

temp
5
= temp

0
(s0.right) and

5b |s0.right| > 0 s5 = s4 and |s5.right| = 0

temp
5
= temp

4

In Table 2, si.left and si.right are the symbolic denotations of values for
object s in state i; similarly for object temp. The facts at state 0 are obtained
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by substituting the symbolic value of object s at state 0, namely s0, into the
precondition of Reverse, and by recording initial values for all local objects. The
obligation at state 5 is obtained by substituting the symbolic values of s at state
0 and at state 5 into the postcondition of Reverse. This is the goal obligation:
when it is also proved, the correctness of Reverse is established.

Notice how the path condition js0:right j > 0 for states 1{4 records when
these states are reached. Facts recorded for states 1{5 are based on the postcon-
ditions of operations and on the 
ow of control for an if statement. Obligations
arise in state 1, because of the precondition of Remove, and in state 2, because
of the precondition of Reverse and because Reverse is being called recursively.
Natural reasoning includes a built-in induction argument here so recursion is
nothing special, except that before a recursive call there is an obligation to show
termination: the recursive operation's progress metric has decreased, in this case,
js2:right j < js0:right j. A progress metric, like a loop invariant, is a claim that
must be supplied by the programmer of a recursive body; hence, the decreasing
clause in the body of Reverse. A proof obligation just before any recursive call
is that the claim holds, i.e., that execution is making progress along this metric.

Once all these assertions are recorded, you solve the reasoning problem by
composing them appropriately to form the veri�cation conditions and then show-
ing that each of these conditions is satis�ed. There is one veri�cation condition
for each obligation, of the form:

assumptions implies obligation

The soundness of natural reasoning depends upon using only the following
assumptions in the proof of the obligation for state k:

{ (path condition for state i) implies (facts for state i), for every i satisfying
0 � i � k, and

{ path condition for state k.

So, in order to discharge the proof of the obligation in state 1 of Table 2, i.e.,
js1:right j > 0, you may assume:

(true implies (|s0.left| = 0 and is initial (temp
0
)) and

(|s0.right| > 0 implies (s1 = s0 and temp
1
= temp

0
)) and

|s0.right| > 0

The �rst two conjuncts are the assumptions of the �rst form for states 0 and
1, respectively, and the third is the assumption of the second form for state 1.

The proof of the obligation in state 1 is easy for humans who have had a
bit of practice with such things. Assuming that js0:right j > 0, you conclude
from the second line that s1 = s0 and, therefore, s1:right = s0:right . Then since
js0:right j > 0 you conclude by substitution js1:right j > 0, i.e., the assertion to
be proved. In a similar manner, you can easily prove the obligation at state 2.

Is Reverse correct? Table 1 shows a counterexample to a claim of correctness;
indeed the obligation at state 5 cannot be proved from the allowable assumptions.
If the code were correct, however, tracing could not show this whereas symbolic

278 Murali Sitaraman  et al.



reasoning could. Fixing the program is left as an exercise for the reader, as we
would leave it for our students.

7 Experience

We routinely introduce mathematical modeling and the important role of spec-
i�cations in reasoning, using the RESOLVE notation, in �rst-year CS course
sequences at The Ohio State University (OSU) and West Virginia University
(WVU). We have conducted formal attitudinal and content-based surveys as
well as essay-style evaluations to assess the impact of teaching these principles.
A detailed summary of the results to date is beyond the scope of this paper.
But the evaluations with a sample size over 100 allow us to reach at least the
following interim conclusions:

{ Most students can learn to understand mathematical modeling as the basis
for explanations of object behavior. This is illustrated by their ability to
select reusable components and to act as clients of components, without any
knowledge of those components' implementations. It is con�rmed by their
performance on exam questions asking them to write operation bodies and
test plans, given only formal speci�cations (often involving quanti�ers).

{ After the course sequence, a statistically signi�cant number of students have
changed certain attitudes about programming. They tend to believe at the
end of the sequence (but not before starting it) that natural language de-
scriptions are inadequate descriptions of software components, and that it is
possible to show that a software component works correctly without running
it on a computer.

A prototype implementation of the tracing and natural reasoning systems
described in this article is part of the Software Composition Workbench tool
being developed by the Reusable Software Research Groups at WVU and OSU.3

The tool generates symbolic reasoning tables automatically. It then uses the PVS
theorem prover [11] to discharge the veri�cation conditions. The prover typically
requires human intervention and advice in this process.

8 Formalism: Necessity and Scalability

This section addresses two questions that we often get concerning the necessity
for and scalability of formal mathematical modeling and formal natural reason-
ing.

The �rst of these involves necessity: Given that non-trivial component-based
software systems are routinely built and deployed without using mathemati-
cal models for describing component behavior, is such precision and care really

3 For examples of symbolic reasoning tables generated by this system, see
http://www.csee.wvu.edu/~resolve/scw.
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necessary? There is little doubt that component designers, implementers, and
clients generally agree on certain unwritten conventions to go along with informal
natural-language component documentation. The result is that usually compo-
nents are used where they will not \break". In other words, most component-
based software is written under wishful usage assumptions that more or less
hold|but not always. An example of such a situation involves the inadvertent
introduction of aliasing through repeated arguments, as noted in [3]:

The most obvious forms of aliasing are similar to those found in any
system involving references, pointers, or any other link-like construct.
For example, in the matrix multiplication routine:

op matMul(lft: Matrix, rgt: Matrix, result: Matrix);

It may be the case that two or more of lft, rgt, and result are actually
connected to the same matrix object. If the usual matrix multiplication
algorithm is applied, and result is bound to the same matrix as either of
the sources, the procedure will produce incorrect results.

The reason for using explicit mathematical modeling, and for adhering to
a formalized reasoning method whose conditions for soundness have been es-
tablished, is to limit or eliminate this dependence on wishful usage assumptions.
Where the consequences of software failures are signi�cant enough, the economics
justify the added expense of more careful modeling and more careful reasoning.

This brings us to the second question, regarding that expense and the re-
sulting trade-o�, which is often phrased in terms of scalability: Even granting
that it is (sometimes) necessary, can formal mathematical modeling and formal
natural reasoning scale up to handle practical, large, and complex components
and systems?

The �rst answer is that the techniques of using mathematical modeling for
precise description of component behavior, and of using natural reasoning to
predict the behavior of software built from such components, are independent of
the complexity of the components and the size of the systems built from them. In
fact, we (and many others) have developed formal speci�cations for quite a few
components that are far more complex than Lists; e.g., see [1]. Such examples,
however, clearly have required a serious amount of modeling and speci�cation
e�ort. Admittedly, the fact that such work appears in research papers (which
is appropriate, given the current state of the art) does little to raise con�dence
that formal mathematical modeling and formal natural reasoning are practical
approaches usable by \real programmers."

A second answer can be obtained by revisiting the premise behind the �rst
question: Somehow, the same people whose ability to reason formally about soft-
ware system behavior is being questioned, manage to build and deploy complex
component-based software systems all the time. How do they do it? (A simi-
lar question can be asked about reverse engineering of large, complex software
systems [15].) Somehow they must be reasoning|most of the time correctly|
about the behavior of systems using some informal method based on some in-
formal mental models of the components' behaviors and the behaviors of their
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compositions. The Invariance Theorem [14] implies that every describable object
(e.g., a particular model of component behavior, a particular argument about
why a program works correctly, a method for reasoning about program behav-
ior) has an intrinsic complexity that is independent of the means of description.
So, whatever models and reasoning methods allow software engineers to develop
large, complex systems now, if they can be described in the usual natural lan-
guage of discourse of software professionals then they can be described in the
formal language of mathematics without substantial impact on the complexity of
description. Perhaps the notations involved in the formal models and reasoning
method will be initially unfamiliar to those who have not yet been educated to
understand them. But our experience with CS1/CS2 students suggests that this
is not an inherent impediment to making the approach practical.

Our claim for the scalability of formal mathematical modeling and formal
natural reasoning, then, is that they are simply formalizations of the informal
mental models and informal reasoning processes software professionals routinely
use. If the resulting reasoning is unsound, then it just shouldn't be used! If it is
sound, then in principle, encoding the same reasoning into formal mathematics
need not add to the intrinsic complexity.

Our speci�c contribution in this area is that added con�dence comes from
formalizing the natural reasoning method and then establishing conditions un-
der which it is sound. Recall from Section 6 that two prior attempts to do this
resulted in formal systems that were unsound. Ultimately, the practical impor-
tance of having a sound formal reasoning approach that mirrors how people think
depends heavily on the ability to support it with machine-processable notation
such as we have introduced, and on veri�cation and/or proof-checking tools. The
latter present a longer-term challenge.

9 Conclusion

Mathematical modeling is essential for reasoning about component-based soft-
ware. Without precise descriptions based on mathematical models, the bene�ts
of component-based software development are unlikely to be fully realized be-
cause clients who use existing components will be unable to understand those
components well enough to reason soundly about non-trivial programs that use
them.

Perhaps this situation is tolerable if software components are to be used only
for prototyping and non-safety-critical applications. But for \industrial strength"
software systems where there can be serious consequences to software failures,
the ability to reason soundly about software behavior is undeniably critical.
The implications of unsound reasoning for productivity and quality|the very
attributes component-based software is supposed to improve|are ominous. For-
tunately, introductory CS students can learn to read and use speci�cations based
on mathematical modeling and can appreciate the signi�cance of appropriate
modeling in developing correct software. With open minds, a bit of continuing
education, and tool support, software professionals also should be able to under-
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stand and appreciate this important technique and know how to use it to reason

about software system behavior.
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