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Abstract

Two important objectives when designing a
specification for a reusable software component are
understandability and utility. For a typical component
defining a new abstract data type, a significant common
factor affecting both of these objectives is the choice of a
mathematical model of the (state space of the) ADT,
which is used to explain the behavior of the ADT’s
operations to potential clients. There are subtle
connections between the expressiveness of this
mathematical model and the functions computable using
the operations provided with the ADT, giving rise to
interesting issues involving the two complementary
system-theoretic principles of “observability” and
“controllability”.  This paper discusses problems
associated with formalizing intuitively-stated
observability and controllability principles in accordance
with these tests. Although the example we use for
illustration is simple, the analysis has implications for the
design of reusable software components of every scale
and conceptual complexity.

1. Introduction

Specifying the behavior of a software component —
especially one that is meant to be reused — is a challen-
ging task. Some important “quality” objectives of design
in this area include avoiding implementation bias [10] and
achieving understandability for potential component
clients [16]. How can the specifier’s design space be
limited so high quality reusable component designs are
allowed while low quality ones are ruled out? And how
can proposed design principles be made effectively
checkable and not merely slogans?

Surely no general guidelines can succeed completely,
but experience shows that some do constrain the design
space in the right ways. In prior work we surveyed
several specification principles that were intuitively
described in the literature and proposed practical tests for
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compliance [18]. In this paper we report on some
interesting problems associated with two of these
principles, observability and controllability, which deal
with the relationship between the expressiveness of the
mathematics used in a specification and the computational
power of the specified component. Informally, they

(together) provide a test for “minimality” of the specified

state space of an ADT.

Our contributions here are:

* We show why it is important to make careful and
unambiguous definitions of these principles, because
superficially reasonable interpretations of the
informal definitions can easily lead to compliance
tests that admit poor designs.

¢ We illustrate unexpected difficulties in making
careful and unambiguous definitions.

*  We lay out a road map of possible ways to formalize
observability and controllability. At each fork in the
road (marked in the text with y) this paper takes a
particular branch in concert with folklore about
specification design, leading toward and beyond
fairly specific principles proposed in the literature
[18]. This gives a depth-first view of the landscape
of Figure 1. A more comprehensive future paper will
discuss the paths we do not follow here.

1.1. The Principle of Observability

One of the most important design decisions facing a
reusable component specifier is the selection of an
appropriate mathematical model (also called “conceptual
model” or “abstract model” or “mental model” [14]) for
the state space of values for variables (or “objects”) of a
new abstract data type (ADT) [3, 8, 17, 18, 20]. This
model is used to explain the abstract behavior of a
component’s operations, so the choice of model directly
influences the understandability of the concept and the
ease of reasoning about its implementations and clients
that are layered on top of it [4, 16]. Typically, the
specification designer must consider a variety of
candidate mathematical models before identifying the



“pest” one(s). There are many options because both stan-
dard and newly-conceived mathematical models — and
compositions and combinations thereof — are candidates.

L7 Define “computationally” based on some
implementation of the component, or all?

some all

v, : Use “relative” versions of definitions,
absolute versions, or something else?

relative other

absolute

Figure 1 — Major Decision Points in
Formalizing Observability and Controllability

An intuitively pleasing ideal that limits the design
space in this dimension is the principle of observability:
0¢ A specification S defining the program type ADT is

observable iff every two unequal values in ADT’s

state space are “‘computationally distinguishable”

using some combination of operations-of S.

An appropriate way to view observability is in terms
of the connection between the structure of the state space
imposed on it by its mathematical operators and
predicates, and the computational structure imposed on it
by the specified programming operations. Observability
dictates that the model should define a state space which
makes distinctions that are just sufficient to specify the
intended behavior of the operations — and no more; i.e.,
the model does not distinguish values that are
indistinguishable by the programming operations. One
predicate that is available in nearly every useful
mathematical state space is equality. Basing observability
on equality makes the principle generally applicable,
although it is possible to refine it to other predicates
particular to individual mathematical theories.

Some designers (e.g., one of the referees of this
paper) argue that observability is not an appropriate
objective in the first place. For example, consider a
simple statistical calculator that provides operations to
enter a number and to compute the mean and variance of
all numbers entered so far. An intuitively “natural” state
space seems to be a multiset of all values entered. But a
specification with only the above operations is not
observable if based on this state space because many
different multisets of numbers can have the same mean
and variahce. A state space leading to an observable
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specification for this simple calculator is the number of
numbers entered so far, their sum, and the sum of their
squares. However, one might argue against this minimal
state space on the grounds that it does not support adding
a new operation, say, to return the median of the numbers
entered so far.

This argument might seem persuasive for traditional
software design where one must add such an additional
operation using cut-and-paste of source code. But it is
inapplicable to a “black-box” component reuse
technology such as we are discussing [18]. The simple
statistical calculator with only mean and variance
operations cannot be used to compute the median without
breaking under the covers of the calculator to change its
internal representation. This fact demonstrates that the
proposed simple calculator is simply not an appropriate
reusable component if the requirement is to find the
median of a set of numbers. This client should choose a
more powerful calculator component.

A prime motivation for demanding observability as a
property of truly reusable components is a psychological
one. In trying to understand a specification, a client
naturally assumes that distinctions in the state space are
important. If a specification makes distinctions (two
model values are unequal mathematically) without
differences (variables with those two distinct values are
computationally indistinguishable), confusion is
inevitable. The conceptual model the specifier is trying to
give the client fails to convey the true situation, and the
client is likely to look for another model of the
component’s behavior and to translate mentally between
the official specification and this alternate view [14]. The
simple calculator above is a good example of this effect.
If the state space is a multiset of numbers, the client is
inclined to think it should be possible to use the compo-
nent to find the median of the numbers entered. This
client’s initial expectation first will turn to confusion
about the perceived incompatibility between the large
state space and the limited power of the provided opera-
tions to observe it, and ultimately to disappointment that
the com ponent is not really reusable in the new situation.

1.2. The Principle of Controllability

A complementary objective to understandability is
utility: a reusable component should be useful to a variety
of clients whose particular needs for variants of a basic
functionality are perforce unknown at component design
time. Another way to view this notion of utility is in
terms of “functional completeness”. This suggests that
the combination of operations being specified should be at
least powerful enough to construct any value in the state
space defined by the model.



An intuitive statement of this property is the principle
of controllability:

Co A specification S defining the program type ADT is
controllable iff every value in ADT’s state space is
“computationally reachable” using some combination
of operations of S.

A prime motivation for seeking controllability is
technical, although it might be argued that observability is
technically even more crucial. An example illustrates
their combined importance. Suppose a client programmer
using the specified component S wants to show that a
code segment preserves the abstract value of some ADT
variable. This means the segment has no net effect on the
value of that variable, although the value may be changed
temporarily within the segment. If S is not both
observable and controllable then generally it is impossible
to argue that any code segment does this — either because
it is impossible to predictably reconstruct the original
value before the end of the segment (e.g., because the
original value resulted from non-deterministic behavior of
some operation that is not repeatable due to lack of
controllability), or because it is impossible to know that a
proposed reconstructed value is really equal to the original
and not simply computationally indistinguishable from it
(due to lack of observability).

1.3. The Need for Practical Compliance Tests

How are observability and controllability applied in
practice? Typically a designer has an informal notion of
what basic functionality is sought. An initial set of
operations is postulated, and the next question is what
model to use to explain the state space over which these
operations work. The principles of observability and
controllability lead the designer to seek a state space for
the specified behavior without redundant values that
cluster into non-singleton congruence classes of compu-
tationally indistinguishable points, and without values that
are not even reachable. A first attempt at specifying the
operations is made using a “natural” model that is thought
(hoped) to lead to a specification which is both observable
and controllable. But sometimes it is not, in which case
there are two repair strategies: try another model, or
modify the behavior of some operations and perhaps add
and/or remove some. In this paper we use an example
that illustrates only the second approach. But in either
case the designer checks again for observability and
controllability. With luck, the process eventually termi-
nates with a design that satisfies both of these design prin-
ciples (and presumably others of simultaneous interest).

In order to carry out this iterative process, then, a
designer has to have effective practical tests for whether a
specification complies with the two principles. This
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requires making clear, unambiguous definitions of the
principles, which is the focus of this paper.

We begin in Section 2 by reviewing related work and
outlining a working example. In Section 3 we discuss
ambiguities in, and possible formalizations of, O ¢ and
Cyg; then in Section 4 we explain how these definitions
break down when applied to parameterized components
that typify reusable software components (e.g., Ada
generic packages and C++ class templates). Finally, in
Section 5 we draw conclusions and again relate the path
of this paper to the road map in Figure 1.

2. Background and Working Example

The principles of observability and controllability, as
defined here, are meaningful only in the context of model-
based specifications where mathematical theory and
program specification are separate, as in Larch [8] and
RESOLVE [3]. The question addressed by observability
and controllability is essentially whether the mathematical
model of an ADT is in some sense “minimal” in size and
structure for specifying a programming concept. This is
not a well-formed question for true algebraic specifica-
tions, in which a mathematical theory and a programming
component being specified are treated as inseparable. The
closely related taxonomy of mathematical functions of a
theory into “observers” and “constructors” (e.g., [8, 13])
is clearly related in spirit, but these notions are one level
removed as they pertain to the design of mathematical
theories and not to the design of model-based specifica-
tions that use those theories.

A related issue that received much attention in the
late 1970’s in the algebraic specification community is
when two mathematical values should be considered
equal. Some authors [6, 12] considered two values to be
different unless demonstrably equal based on the axioms.
Others [7] considered two values to be equal unless
provably different. While the first group took a traditional
view and insisted that the smallest congruence relation
defined by the axioms be used, the latter group allowed
any congruence relations (including the smallest)
consistent with the axioms. In general, for well-defined
theories that are typically used as models (e.g., the Larch
set trait [8]) the two notions converge. Our consideration
of observability and controllability is independent of this
question, because we simply assume equality in the
mathematical spaces as a given predicate with the
requisite properties.

The most closely related work we know about (also
the most practical in terms of development of design
principles) deals with “expressiveness” of the operation
set of an ADT [11]. This work is similar to ours in that
the authors explore a “distinguishability” relation and take
a formal approach to try to minimize ambiguity in



definitions and principles. However, their specification
system is algebraic, and the results apply only to
immutable types and to programming operations that are
total and have functional behavior. Our investigation
reveals that some of the more interesting theoretical and
practical questions involve relationally-defined opera-
tions and operations with non-trivial preconditions —
situations that routinely arise in the design of practical
reusable components. The ultimate difference between
their design principles and ours is visible in our respective
recommended “good” designs for a Set ADT (compare
[11, page 149] with its “max” or “min” operation, and our
Figure 2 with the Remove_Any operation of Section 4.2).
Our design does not require an ordering on the Set ele-
ments. Our design also admits high performance imple-
mentations (e.g., hashing) that are inappropriate and inef-
fective with the ordering requirement. Indeed our Set
ADT can be layered on any implementation of their Set
ADT without a performance penalty, but not vice versa.

There are other papers dealing with issues similar to
observability in other papers from the theoretical
algebraic specification literature, e.g., {1]. However, the
authors do not discuss implications of their work for
practical design, even for algebraically-specified software
components. To our knowledge, the more practical
model-based specification community has not
systematically considered the problem of choosing an
appropriate mathematical model for specifying an ADT.
There is the notion of an “unbiased” or “sufficiently
abstract” or “fully abstract” model [10], which is similar
to observability in the sense that it is defined almost
exactly like O¢. But this informal definition leaves open
the possibility of various interpretations, along the lines
suggested in Sections 3 and 4. This is precisely the
confusion we wish to clear up.

To illustrate these difficulties we use the example in
Figure 2 of a possible specification for a Set ADT. Here
the appropriate mathematical model seems clear. The
question is what operations need to be provided in order
to achieve observability and controllability. The specifi-
cation language is RESOLVE [2, 3, 15], but the issues
arise in any model-based specification language [20].

In RESOLVE, the mathematical model of an ADT is
defined explicitly, as with finite set; or by reference to a
program type, as with math[Item], which denotes the
mathematical model type of the program type Item.
Every program type in RESOLVE carries with it
initialization and finalization operations (invoked in a
client program through automatically-generated calls at
the beginning and end of a variable’s scope, respectively),
and a swap operation (invoked in a client program using
the infix “:=:" operator). The effect of initialization is
specified in the initialization ensures clause. The effect
of finalization usually is not specified because it has no

65

abstract effect; in any event this aspect is unimportant
here. The effect of swapping is to exchange the values of
its two arguments.

Operation specifications are simplified by using
abstract parameter modes alters, produces, consumes,
and preserves [9]. An alters-mode parameter potentially
is changed by executing the operation; the ensures clause
says how. A produces-mode parameter gets a new value
that is specified by the ensures clause, which may rot
involve the parameter’s old value (denoted using a prefix
“#”) because it is irrelevant to the operation’s effect. A
consumes-mode parameter gets a new value that is an
initial value for its type, but its old value is relevant to the
operation’s effect. (The rationale for using this mode for
the item inserted into a Set is discussed elsewhere [9].) A
preserves-mode parameter suffers no net change in value
between the beginning of the operation and its return,
although its value might be changed temporarily while the
operation is executing.

The example is simple but it helps to illustrate the
nature of the problems facing a specification designer. Is
the specification in Figure 2 observable and controllable?
What does it mean for two Set values to be “computa-
tionally distinguishable”, or for a Set value to be “compu-
tationally reachable”?

concept Set_Template
context
global context
facility Standard_Boolean Facility
facility Standard_Integer_Facility
parametric context
type Item
interface
type Set is modeled by finite set of
math([Item]
exemplar s
initialization
ensures s = empty_set
operation Insert (
alters s: Set
consumes x: Item)
requires x is not in s
ensuregs s = #s union {(#x}
operation Remove (
alters s: Set
preserves x: Item)
requires x is in s
ensures s = #s - {x}
operation Is_Member (
preserves s: Set
preserves xX: Item): Boolean

ensures Is_Member iff (x is in s)
operation Size (
preserves s: Set): Integer
ensures Size = |s|

end Set_Template

Figure 2 — Possible Specification of a Set ADT



3. Formalizing the Principles

In this section we consider possible interpretations of
Og and Cg, hoping to pin down the phrases “computation-
ally distinguishable” and “computationally reachable”.

3.1. Stating the Principles More Precisely

A big problem with the informal definitions Og and
Cg has to do with the possibility of relationally-specified
behavior. Although every operation in Figure 2 has
functional behavior — the results of each operation are
uniquely determined by its inputs — there are many
situations where it is appropriate to define an operation so
its post-condition can be satisfied in more than one
possible way [19]. A correct implementation might
exhibit functional behavior, but a client of the
specification cannot count on any particular function
being computed — only on the results of each operation
satisfying the relation specified in the post-condition.

The practical difficulty this causes in applying Og
and Cg is that code layered on top of such a component
appears to be non-deterministic, in the sense that it might
do something with one implementation of the component
but quite another with a different implementation. This is
so even when the layered operation is specified to have
functional behavior; among other things, the code
implementing the layered operation might always
terminate with some implementations of the underlying
component, but not with others.

Y1 When we say “computationally distinguishable” or
“computationally reachable”, do we mean for some
imple mentation of the component, or for all?

A strong version of observability is that it should be
possible to write a client program that can decide equality
of two variables for every implementation of the
underlying component specification; similarly for
controllability. We can formalize this by stipulating the
total correctness of certain code layered on top of the
specified concept. An implementation of specified
behavior is totally correct if it is partially correct (i.e.,
correct if terminating) and terminating, for any totally
correct implementations of the components it uses.

We select this path because it leads to the principles
identified in earlier work [18], and we thereby come to the
following possible formalization of observability:

01 A specification S defining the program type ADT is
observable iff there is a totally correct layered

implementation of:
operation Are Equal (
preserves x1l: ADT
preserves x2: ADT): Boolean

ensures Are_FEqual 4ff (x1 = x2)
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Controllability is slightly different in flavor, since as
expressed in Cg it seems to say something about an entire
family of operations. It might be formalized as follows:
€1 A specification S defining the program type ADT is

controllable iff for every constant ¢: math{ADT],

there is a totally correct layered implementation of:
operation Construct_c (
produces x: ADT)
ensures X =C

3.2. Making the Principles Symmetric

A hint that something lurks below the-surface here is
the disturbing asymmetry between the definitions O 1 and
C1, the first involving a two-argument program operation
and the second a quantified mathematical variable and a
one-argument program operation.
¥ Should observability and controllability be defined in

terms of relationships between two program

variables, or in terms of a program variable and a

universally quantified mathematical variable, or

perhaps in some other way?

Here we choose the first path, which we took in
deriving the principles published earlier [18] and which a
priori seems as reasonable as any other. The revision
needed for controllability, however, makes it clear that the
definition is contingent, or relative, in the following sense.
“Computationally reachable” does not mean (as in Cj)
that every value in the state space can be constructed from
scratch, i.e., starting from an initial value of the ADT. It
means that every value in the state space can be reached
from every other — even if the given starting point could
not itself have been constructed from scratch. The mean-
ing of C2 is now apparently quite different from that of
C1, which is an “absolute” notion of controllability in that
there is only one variable involved. So we add the modifi-
er “relatively” in defining both principles as follows:

O3 A specification S defining the program type ADT is
relatively observable iff there is a totally correct
layered implementation of:

operation Are Fqual (
preserves x1: ADT
preserves x2: ADT): Boolean
ensures Are Equal @ iff (x1 = x2)

C2 A specification S defining the program type ADT is
relatively controllable iff there is a totally correct
layered implementation of:

operation Get_Replica (
preserves x1: ADT
produces x2: ADT)
ensures x2 = x1

These definitions match practical compliance tests of
prior work [18]. But they still have some technical
problems, which we explore next.



3.3. Making the Principles More Independent

By definitions Q2 and C2, relative observability is
not entirely independent of relative controllability, since it
demands that the arguments to Are_Equal should be
preserved and this apparently requires some degree of
controllability. Similarly, the first argument to Get_Rep-
lica must be preserved and proving this seemingly re-
quires observability, as noted in Section 1.2. Is it possible
to define the principles so they are not so evidently
connected? The heart of the problem is that both defini-
tions 02 and C2 involve preservation of operation argu-
ments. We are, therefore, led to consider this variation:
03 A specification S defining the program type ADT is

relatively observable iff there is a totally correct

layered implementation of:
operation Were_Equal (
alters x1: ADT
alters x2: ADT): Boolean
ensures Were Equal iff (#x1 = #x2)

This definition is a bit curious because, technically in
RESOLVE, a function operation may have only
preserves-mode parameters; but a violation here seems
justifiable for ease of explanation. The parallel definition
for relative controllability is:

C3 A specification S defining the program type ADT is
relatively controllable iff there is a totally correct
layered implementation of:

operation Move (
alters xl: ADT
produces x2: ADT)
ensures x2 = #x1

3.4. Relationships Among the Above Definitions

Definitions O3 and C3 make the principles no
stronger than with definitions O3 and C2, in the sense that

any specification that is relatively observable
(controllable) by O2 (respectively, C2) is equally so by
O3 (respectively, C3). The reason is that it is trivial to
layer an implementation of Were_Equal (Move) on top of
Are_Equal (respectively, Get_Replica). Furthermore, if a
specification is relatively observable by definition O3 and
relatively controllable by definition C2, then it is
relatively observable by definition O2 because we can

layer Are_Equal on top of Get_Replica and Were_Equal:
operation Are_Equal (
preserves x1: ADT
preserves x2: ADT):
" local context
variables copyl, copy2: ADT
begin N
Get_Replica (x1, copyl)
Get_Replica (x2, copy2)
return Were_Equal (copyl, copy2)
end Are_Equal

Boolean
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Also note that every RESOLVE specification is
relatively controllable by definition C3, since every type
comes with swapping. Here is a universal implementation
of Move in RESOLVE:

operation Move (
alters x1: ADT
produces x2: ADT)
begin
x1l :=:
end Move
In effect, a move is half a swap. This is one reason
we previously suggested the guideline of testing the
stronger criteria 02 and C2 [18]. For components in
other languages, however, C3 is a non-trivial criterion.
For example, consider an Ada package defining a Stack
ADT as a limited private type (no assignment operator),
along with operations Push, Pop, and Is_Empty having the
usual meanings. This is relatively controllable by C3 —
but not because a primitive data movement operator for
Stacks is trivially assumed. Without any one of the three
operations it would not be relatively controllable by C3.
The relationships among the definitions in this
section are depicted in the Venn diagram of Figure 3,
where we take the liberty of labeling sets of specifications
with the labels of the definitions under which their
member specifications qualify.
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Figure 3 — Relationships Among Definitions

4. Parameterized Components

At first the above definitions seem clear and
unambiguous. But suppose we try to apply those
definitions to the Set_Template specification of Figure 2.
It seems the specification in Figure 2 should be deemed
not observable by O because there is no practical way to
enumerate the elements of a Set, and this should be
crucial in computationally distinguishing between two
unequal Sets. It seems the specification should be deemed
controllable by C(, however, because starting from an
empty set it is easy to construct any finite set by repeated
Inserts. Does this intuition match what the proposed
definitions say? We discuss in detail only O 3,
considerations for the other definitions being similar.



4.1. Type Parameters and Modular Proofs

There is a reasonable way to interpret O3 that makes
the Set_Template specification observable. The key
features that permit this view are that O3 defines relative
observability in terms of the existence, not the
practicality, of an implementation of Were_Equal; and
that there is no restriction on the assumptions an
implementer of Were_Equal may make about the
available operations on Items.

We start by noting that the mandated existence of “a
totally correct layered implementation” of the
Were_Equal operation for Set_Template means, in
RESOLVE terms, the existence of a totally correct
implementation of the following concept:

concept Set_Were_Equal_Capability
context
global context
facility Standard Boolean Facility
concept Set _Template
parametric context
type Item
facility Set_Facility is
Set_Template (Item)
interface
operation Were Equal (
alters sl: Set
alters s2: Set): Boolean
ensures Were Equal 4iff
end Set_Were_Equal_Capability

This formulation makes clear that the implementation
of Were_Equal must be layered, since an instance of
Set_Template is a parameter to the concept. Moreover, it
makes clear that the implementation must work for any
type Item for the Set elements, since Item also is a
parameter. What it does not make clear, however, is what

(¥#s1 = #s2)

other components and services an implementation might

use and depend on.

In the absence of restrictions, presumably any such
services may be assumed — a rather liberal interpretation
of O3. But now what prevents an implementer of
Were_Equal from simply assuming the existence of a
(possibly thinly disguised) operation that tests equality of
Sets of Items, and layering on top of that? Nothing.

So we might wish to use a less liberal interpretation
of O3. For example, suppose we insist that an allowable
implementation of Were_Equal may not use any opera-
tions with Set parameters other than those from Set_Tem -
plate itself. Unfortunately, this does not solve the prob-
lem either. For example, below is a possible algorithm for
Were_Equal, which is built on top of Set_Template and
an “enumerator” concept for Items. In RESOLVE’s
modular proof system, total correctness is defined in such
a way that the following code is a totally correct
implementation of Were_Equal, because we assume there
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is a totally correct implementation of the enumerator
interface and the total correctness of the Set_Template
implementation — and because all Sets are finite. As a
result we claim that Set_Template is relatively observable
even by this less liberal interpretation of O3.
operation Were Equal (
alters sl: Set
alters s2: Set): Boolean
local context
variables x: Item

begin
if (Size (sl) = 0 and Size (s2) = 0)
then return true
else

let x = any Item value not
previously enumerated during the
top level call of Were Equal
if Is _Member (sl, x)
then
if Is Member (s2, x)
then
Remove (sl, x)
Remove (s2, x)
return Were Equal (sl,
else return false
end if
else
if Is_Member (s2, x)
then return false
else return Were_Equal
end if
end if
end if

end Were_ Equal

This illustrates the power of a modular proof system
[5]. There might be Items for which it is impossible to
implement the enumerator interface, but this does not
influence the total correctness of Were_Equal. At the
mathematical level, if the state space math[Item] is
effectively enumerable then in principle there exists an
implementation of the enumerator interface.” But only if
the specification of the actual program type Item is at least
controliable, by a reasonable definition, should we expect
to be able to implement the enumerator interface for it.

So perhaps we should insist that the underlying
components actually should be implementable. Bt then
should the mere possibility of instantiating Set_Were_-
Equal_Capability with an Item for which the enumerator
cannot be implemented be enough to render the
Set_Template specification not observable? And does
“possibility” here mean the library of components
actually contains such a type, or that in principle it might
contain such a type? Suppose, for example, that in the
specification language it is simply impossible to specify a
program type whose state space is not enumerable.
Should this situation — which might be reasonably
attributed to inexpressiveness of the specification lan-
guage and not to a problem with the design of Set_-

s2)

(sl,s2)



Template — be the deciding factor as we attempt to apply
the observability test to Set_Template?

If we use an interpretation in which the above
implementation of Were_Equal is acceptable, so Set_-
Template is deemed relatively observable, then it is
interesting to see where variants of Set_Template lie in
Figure 3. In Figure 4, we have placed some of them to
illustrate the limited discriminating power of the
definitions. For example, Get_Replica for Sets can be
layered on top of Are_Equal for Sets using only Swap and
Insert: systematically generate candidate Sets by
enumerating Items and inserting them into empty Sets
— first one Set with one Item, then two Sets with one
Item and two Sets with two Items, and so forth —
stopping when the Set to be copied and the current
candidate Are_Equal. There is no need for Remove,
Is_Member, or Size.
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Figure 4 — Variants of Set_Template Assuming
math[item] is Enumerable

It should be clear that these definitions are not really
“right”, in the sense that even if they do capture some
sense of observability and controllability they do not rule
out patently poor specifications. For example, Set_Tem-
plate itself (even without Swap) is both relatively obser-
vable and relatively controllable by the strong definitions
02 and C3, despite providing no practical way to enum-
erate the elements of a Set. Even Set_Template without
Remove is relatively observable and relatively control-
lable, as it is with just Swap, Insert, and Are_Equal.

4.2, Handling Parameterized Components

The difficulties in Section 4.1 are traceable to the
prospect of having specifications that are parameterized
by another type Item, and to the absence of restrictions on
the assumptions an implementation may make about the
actual Item type. Even allowing an implementation of
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Were_Equal to rely only on the assumption that the state
space of Item is enumerable weakens the definitions so
much that they are practically worthless.

Some features of RESOLVE permit us to easily
clarify and strengthen the previous definitions to deal with
parameterized modules, so the observability of a
parameterized type is unaffected by properties of the
arbitrary type by which it is parameterized. Each
realization (implementation) of a concept may require
additional parameters beyond those of the concept, and
these appear in the realization “header” [2]. This mech-
anism lets us require that the implementation of an
operation Were_Equal for type Set may only count on the
always-present initialization, finalization, and swapping
for Items, and on a similarly-defined Items_Were_Equal
operation. Any allowable realization of the concept
exporting Were_Equal should have a realization header in
which this one operation is the only realization parameter.

This leads to a refined definition of relative
observability (the others being similar):

Oz A specification S, parameterized by the program
type Item and defining the program type ADT, is
relatively observable iff there is a totally correct
implementation of:

concept S_Were_Equal_Capability
context
global context
facility Standard_Boolean Facility
concept S
parametric context
type Item
facility S_Facility is S (Item)
interface
operation Were_Equal (
alters x1: ADT
alters x2: ADT): Boolean
ensures Were_Equal iff
(#x1l = #x2)
end S_Were Equal_Capability
whose realization context makes only the following
additional mention of Item:
realization header Allowed
for S_Were Equal_Capability
context
parametric context
operation Items_Were Equal (
alters x1: Item
alters x2: Item): Boolean
ensures Were_Equal iff
(#x1 = #x2)
end Allowed

In applying this definition to Set_Template, we find
there is no way for the realization body of Set_Were_-
Equal_Capability to use any externally-provided
operations involving Items, other than Items_Were_Equal.
This rules out impractical but technically correct
implementations like the one in Section 4.1.



Figure 5 is the counterpart of Figure 4, with the
refined definitions. Now Set_Template is not relatively
observable by Op' or by O3, nor relatively controllable
by C2'. However, by adding the following operation (or
something similar) it becomes relatively observable and
relatively controllable even by Ot and Co':

operation Remove_Any (
alters s: Set
producesg xX: Item)

requires s /= empty set

ensures (x is in #s) and (s = #s - {x})

Remove_Any (s, x) removes an arbitrary element of
the original s and returns it in x. Now there is a practical
way to enumerate the elements of a Set, leading to
obvious implementations of the required layered
operations that assume no more than the ability to do with
Items what the layered operation is doing to Sets.
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Figure 5 — Variants of Set_Template With
Section 4 Definitions

Figure 5 shows what happens to the variants of
Set_Template previously displayed in Figure 4 (circles 1-
7). Two new variants help to illustrate the discrimination
power of the new definitions. Set_Template with
Remove_Any (circle 8) — a good design — passes both
of the stronger compliance tests O and Cp'. Set_-
Template with Remove_Any but without Insert (circle 9)
— plainly not a good design — still passes both weaker
tests O3 and C3' but neither stronger one. So the
definitions used for Figure 5 seem better than those used
for Figure 4. But again even O2' and C2 clearly are not
“right” in that they still do not rule out patently bad
specifications. It is easy to circumvent their intent by
attacking the symptoms and not the disease: just add
Are_Equal and Get_Replica as primary operations. In
fact, Set_Template with just Are_Equal and Get_Replica
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and no other operations whatsoever sits in precisely the
same place in Figure 5 as Set_Template with
Remove_Any, despite clearly not satisfying C1. Fixing
these problems apparently requires taking a different path
altogether, as we discuss in the conclusions below.

5. Conclusions

A fundamental question facing the designer of a
model-based specification of an ADT is the appro-
priateness of the chosen conceptual model. We have
discussed some of the technical problems in carefully
defining two principles that provide the specifier with
criteria for appropriateness: Does the chosen model
interact with the specified operations in a way that makes
the specification observable and controllable? A negative
answer on either count suggests that the specifier needs to
look harder, or be prepared to justify non-compliance on
the basis of other requirements. A positive answer on
both counts gives a certain confidence, though among
satisfactory specifications some may be “better” than
others (e.g., more understandable or more flexible).
However, it hardly guarantees that the specification is
“good” in any reasonable and absolute intuitive sense:

We mentioned alternate paths that might be followed
to formalize observability and controllability. Here are
some conclusions from preliminary exploration of these
paths—conclusions not justified in the body of this paper.
Yy When we say “computationally distinguishable”
or “computationally reachable”, do we mean for some
implementation of the specified component, or for all?

Defining the principles using an existential quantifier
over implementations is largely unexplored territory.
However, there is reason to believe it might be attractive.
Consider, for example, the specification of an ADT called
Computational_Real modeled as a real number. The
operations have relationally-defined behavior. The Add
operation, for example, ensures that the result of adding
two Computational_Reals is a Computational_Real whose
model lies within some small interval around the sum of
the models of the addends. Based on'a cardinality argu-
ment, it is clear there is no way the specification can be
deemed controllable if we insist that every implementation
of it must support reaching every real number. However,
the obvious Computational_Real operations (which mirror
the usual mathematical operators for reals) are powerful
enough to allow that every real number might be
reachable in some implementation, since the union of the
allowed intervals over all computations with these
operations just has to cover the reals. The power of
relationally-specified behavior is evident here, but the full
implications of defining observability and controllability
as suggested are not.



172 Should observability and controllability be defin-
ed in terms of relationships between two program vari-
ables (“relatively”), or in terms of a program variable and
a universally quantified mathematical variable, or perhaps
in some other way?

Defining both principles the second way leads to
interesting phenomena and to other interesting questions
involving the expressiveness of the mathematics and the
relationships between those definitions and the ones in
this paper. Observability basically becomes a test of
whether, for every point in the state space, it is possible to
tell whether a program variable Was_Equal to it.
Controllability is more properly termed “constructability”,
using something like definition C1. These alternate
definitions cut through diagrams like Figures 3-5 in a
surprising way, since there are specifications that are
observable and/or controllable by the alternate definitions
but not by Op and/or Cp', and vice versa. So such
definitions might offer distinct useful tests which should
be applied in tandem with the ones described here, when
evaluating a proposed specification.
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