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1. Introduction

For over twenty years programmers have dreamed of developing software systems that are
engineered like traditional physical systems.  The vision of a software industry resembling the
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piece-part component industries supported by electrical and mechanical engineering is generally
credited to (McIlroy, 1976) in remarks at a 1968 NATO conference.  Much as their counterparts
use standard integrated circuits, gears, or nuts and bolts, software engineers might design and build
programs from standard reusable software components.  A similar view based on “software ICs
(integrated circuits)” has been popularized more recently by (Cox, 1986).

Despite certain progress in this direction, most software systems are not developed from reusable
components.  In part this is because some software engineers have not accepted component-based
software technology as a worthwhile goal.  Moreover, for many years we have been urged by
influential people (e.g., professors) to use “top-down” analysis and design.  Software design
based on reusable components demands more than a modicum of “bottom-up” thinking
throughout the development cycle.

1.1Electronics Engineering vs. Software Engineering

A simple example illustrates the difference in viewpoint between the electronics and software
industries.  Suppose a customer approaches a representative of ABC Electronics Company with a
request for a chip implementing a 13-bit adder circuit.  The reply is likely to be, “We’ll be happy to
sell you two 8-bit adders that can be cascaded to do 16-bit addition.  That will probably meet your
needs, and we can deliver tomorrow at a bargain price.”  Only a particularly ambitious (or naive)
salesperson might continue, “Now I’m sure our engineers can develop a 13-bit adder if that’s what
you really want.  It will cost you a lot more and take six months, though.”  The response is based
on the observation that this customer’s apparent requirements do not match precisely what the
company has to sell.  Historically, the default view in electronics engineering has been that
requirements should be adapted to fit what off-the-shelf components are able to do.  The
electronics salesperson offers a variant of what the customer asks for.

Faced with an analogous request from a customer for a piece of software, a representative of XYZ
Software Company is likely to reply, “No problem!  There’s no customer need we can’t meet.”
The response is based on the same observation about the customer’s apparent requirements.  The
difference, of course, is that historically the default view in software engineering has been that
software is by definition “soft” and can be made to do virtually anything.  Programs, not customer
requirements or expectations, are what should be adapted.  The software salesperson offers to do a
custom job.

Either point of view might be sensible, depending on the circumstances.  Indeed the electronics and
software design communities appear to be moving toward a middle ground.  For example, the
former has been relying more — but far from exclusively — on custom and semi-custom VLSI
circuits for critical but special-purpose applications (Gu and Smith, 1989).  The fact that software
systems should be designed using a combination of top-down and bottom-up thinking has also
become more widely recognized (Fairley, 1985).

Certainly there are cases where software should be considered as a malleable, highly customizable
commodity just as it has been in the past.  In many other circumstances, though, the desired
characteristics should be generality, reusability, and parameterizability.  How to achieve these
qualities in software components is the focus of this chapter.

There are, of course, well-documented non-technical impediments to adopting the electronics
engineering metaphor for software even where it is clearly appropriate: management resistance,
incentive problems, psychological barriers such as the “not invented here” syndrome, and many
others.  This chapter does not consider such issues, which have been surveyed elsewhere, e.g.,
(Tracz, 1987; Biggerstaff and Perlis, 1989).  Frankly, there are not too many specific advances to
report on this front in any case.  There also remain surprisingly serious technical impediments to
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taking advantage of reusable software components.  Study of these problems is important because
without solutions to them, all the best intentions of managers, programmers, and users cannot make
reuse a reality (Booch, 1987; Meyer, 1987; Tracz, 1987; Meyer, 1988).  Furthermore, in the
technical arena specific progress can be identified.

1.2Objective and Overview

The primary objective of this chapter is to review and consolidate important recent technical
advances that should help make reusable software components more routinely feasible in the future.
A secondary objective is to identify serious technical problems that demand further attention in
order to be solved satisfactorily.  A reader with modest background and experience in software
design and development should have no trouble following the presentation and appreciating the
issues.

There are so many approaches to software reuse that all could not possibly be discussed in a single
chapter, nor could even the major issues all be covered adequately.  Fortunately, there are recent and
accessible treatments of the overall area that paint a nice broad-brush view, such as (IEEE, 1984;
Biggerstaff and Perlis, 1989).  One indisputable fact that emerges from the reuse literature is that
software must be designed for reuse (Tracz, 1990a).  The focus here is therefore on the current
state of the art and practice relative to the design of reusable software components.  We concentrate
on two main questions:

• How can the behavior of reusable software components be explained so a user can
understand what it does without knowing how it does it?

• What specific guidelines can help a software engineer to design components that are
highly reusable?

The organization of the presentation is as follows.  Section 2 establishes a framework and
terminology in which the above questions can be phrased more precisely.  It starts with the
description of a general model of software structure, then uses that model to clarify several key
ideas, including “software component.”  The model leads to a natural vision of the likely scope of
a mature software components industry, similar in many respects to that postulated by McIlroy, and
illuminates the technical issues that are considered in greater detail in Sections 3, 4, and 5.

Section 3 reviews recent work on software specification, i.e., description of the behavior of software
that respects the fundamental principles of information hiding and abstraction.  Section 4 discusses
several general guidelines that have been proposed as rules-of-thumb in design for reuse and
introduces some more specific corollaries that are useful to a designer of practical components.
Section 5 briefly considers two other important questions: parameterization of behavior and
certification of correctness of component implementations.

It is impossible to separate completely questions about the design of reusable components from the
specification and implementation languages used to express those designs.  It is equally impossible
in the space of this chapter to survey in depth the plethora of languages that incorporate features
that might be considered to support software reuse.  We therefore concentrate on a few recent
languages that potentially could serve as the basis for a future software components industry.
These include Ada (Ada, 1983), C++ (Stroustrup, 1986), and Eiffel (Meyer, 1988).  Our own
REusable SOftware Language with Verifiability and Efficiency, a.k.a. RESOLVE (Hegazy, 1989;
Harms, 1990; Sitaraman, 1990), consolidates recent advances toward reusable components into a
uniform framework and includes what we have found to be the best features of other languages for
this purpose.  The dialect of RESOLVE used in this chapter reflects the ideas of the language but is
slightly more compact than the full syntax, which is designed to support more complex designs
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than can be discussed in the available space.  The forerunners and relatives of these languages
include Simula-67 (Birtwistle et al., 1973), Alphard (Shaw, 1981), CLU (Liskov et al., 1981),
Smalltalk (Goldberg and Robson, 1983), Objective-C (Cox, 1986), and many others.

2. Framework

The purpose of this section is to consider a component-based reuse technology for software
engineering that parallels that of the traditional engineering disciplines.  We conclude that in the
future an economically significant portion of all software development activity will fall into the
realm of a software components industry.  The remainder of the chapter addresses issues related to
development of a mature industry of this kind.

2.1A Model of Software Structure

Fig. 1 shows how we consider a software system to be structured.  The circles denote abstract
components and the rectangles denote concrete components.  A thin arrow from an abstract
component to a concrete component means the latter implements the former.  A thick arrow from a
concrete component to an abstract component means the latter is directly used by the former.
Throughout the chapter we occasionally consider this small window on a much larger software
system from the point of view of a representative concrete component called “Client.”

Client

A1 A2

C11 C12 C21 C22 C23

A3 A4 A5

C31 C32 C41 C51 C52

FIG. 1.   Software Model with Abstract (A) and Concrete (C) Components.

There are many possible interpretations of the words in the previous paragraph, and the figure
makes sense for just about any of them.  In fact, it makes sense as a model of general system
structure even outside the software arena.  We choose to give the figure a particular meaning:  A
component is (in programming language terms) a module, package, or class, typically providing an
abstract data type and associated operations.  It comprises an abstract part to explain behavior along
with a concrete part to implement that behavior.  In the previous paragraph these two pieces are
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called abstract and concrete components, respectively, because it is important to distinguish between
them and to consider them as separate but related entities for most purposes.

For example, suppose Client is a piece of code that uses stacks and queues.  Then A1 might be a
stack abstraction and A2 a queue abstraction.  C11 might be code that implements stacks by
representing a stack as an array with a top index, while C12 implements the same abstract interface
by representing a stack as a list of nodes.  They key idea — by now well-known to software
engineers (Parnas, 1972) — is that in order to program Client one should need to understand only
the abstract components describing the visible behavior of stacks and queues (i.e., A1 and A2).  In
order to execute Client, however, one also must choose concrete components that implement stacks
and queues (i.e., one of C11 or C12, and one of C21, C22, or C23).  In fact, one must choose
concrete components implementing these concrete components’ abstract constituents, and so forth
down through the hierarchy to the machine level.

As a result of working group discussions at the Reuse in Practice Workshop in July 1989, a
common vocabulary has been proposed to facilitate discussion of issues related to software having
this kind of structure (Tracz and Edwards, 1989; Tracz, 1990a).  Subsequent elaboration by the
members of the group at the Workshop on Methods and Tools for Reuse in June 1990 (Latour et
al., 1990; Edwards, 1990; Tracz, 1990b) has given the “3C reference model” the potential to
become the accepted basis for discourse on reusable software components among members of the
reuse community.  We adopt the model here in order to support this trend toward a much-needed
common intellectual and terminological framework.

The 3C model defines and distinguishes three ideas:

• Concept: a statement of what a piece of software does, factoring out how it does it;
abstract specification of functional behavior.

• Content: a statement of how a piece of software achieves the behavior defined in its
concept; the code to implement a functional specification.

• Context: aspects of the software environment relevant to the definition of concept or
content that are not explicitly part of the concept or content; additional information (e.g.,
mathematical machinery and other concepts) needed to write a behavioral specification,
or additional information (e.g., other components) needed to write an implementation.

For variety we use the terms “concept” and “abstract component” interchangeably; similarly,
“content” and “concrete component.”  The notion of “context” is a bit harder to pin down
because there is separate context for concept and content.  Section 5.1 clarifies the idea and
suggests how different aspects of context can be separately related to concept and content.

2.2Reusable Software Components

The 3C model of software structure makes no commitment as to whether any component is reused.
Fig. 1 illustrates reuse because there are abstract components with multiple thick arrows directed
inward (indicating that an abstract component is directly used by more than one concrete
component), but it is possible to envision a tree-structured diagram rather than the directed acyclic
graph shown here.  The model also makes no commitment as to the source of the components, i.e.,
whether they are purchased piece-parts or leftovers from the last company project or developed as
custom components for the current project.  The model thus provides a framework in which
reusable components can be studied but it does not mandate reuse.
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Furthermore, among the vast array of techniques for reuse and the artifacts that could be reused, the
model makes no judgments about which should be reused.  Various authors emphasize reuse of
high-level “domain analysis” across several entire projects within an application area (Prieto-Diaz,
1990).  Others concentrate on “code” reuse, but there is no general agreement on precisely what
this means.  Some envision components being reused by explicit composition.  Others look to
automatic program generation techniques to convert high-level specifications into executable
programs (Biggerstaff and Perlis, 1989).  For example, a concrete component may be purchased in
object-code form from a software parts supplier or it may be generated when needed by a program
transformation tool.  The 3C model is neutral with respect to this distinction.

In this chapter we are interested in studying the particular approach in which components are reused
by explicit programming that composes them with other components.  A component must be part
of a larger program in order to be considered “reused.”  A stand-alone program that is simply
executed over and over is not a reusable component by this definition.

What distinguishes the 3C model from the usual picture of software based on information hiding
and abstraction principles?  Obviously it is rooted in this philosophy, but it is more definitive in
several important ways.  The key features of the model from the standpoint of understanding
reusable software components are the following:

• The abstract functional behavior of a piece of software is explicitly separated from the
implementation of that behavior; i.e., concept is separated from content.

• For a particular abstract behavior there may be multiple implementations that differ in
time/space performance or in price, but not in functionality; i.e., a given concept may
have more than one content that realizes it.

• The external factors that contribute to the explanation of behavior are separated from
that explanation; i.e., the context of concept is separated from the concept itself.

• The external factors that contribute to the implementation of behavior are separated from
implementation code; i.e., the context of content is separated from the content itself.

Reuse can occur in several ways.  Concepts are directly reusable abstract components.  If there are
multiple thick arrows into an abstract component then that concept is being reused within the
program illustrated in the figure.  A concept also can be reused in other programs, of course.
Content can be reused indirectly, in that a concept can be reused and some of its many clients may
choose the same concrete component to implement the concept.  Finally, the various factors that
make up the context of both concept and content (including mathematical theories and other abstract
and concrete components) can be reused indirectly.

2.3A Software Components Industry

If software is explicitly structured according to the 3C model, and reuse is practiced, what will a
software components industry look like?  All software activity will not fit into the scenario
presented below, but there should be an economically significant fraction of all software design and
development that will be based on this notion of reusable software components.

A mature software components industry will resemble the current electronic components industry.
A client programmer will have one or more catalogs of standard reusable abstract components
(concepts).  As in electronics, these catalogs will be offered by different manufacturers or suppliers
of reusable parts. Each abstract component in a catalog will have a formal description of its
structural interface and functional behavior sufficient to explain what it does and how it might be
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incorporated into a client’s system.  It will also contain information about the performance and
price of a particular concrete component (content) to implement it, which can be purchased from
that supplier.

Many of the parts in a typical catalog will be standard in the sense that they will have the same
structural interfaces and functional behaviors as corresponding parts in other manufacturers’
catalogs.  The rights to such standard concepts will be licensed from their original designers or will
be in the public domain.  The concrete components sold by different manufacturers generally will
differ in implementation details and therefore in performance or price, however.  A client will be
able to substitute freely a concrete component provided by one supplier for a corresponding one
provided by another, possibly with variations in function and/or performance available through
parameterization (context).

This vision of a software components industry, on the surface so similar to McIlroy’s of two
decades ago, has many interesting implications.  For one thing, it does not coincide with a possible
world in which concrete components are assumed to be available in source code form.  It seems that
source code generally will not be sold under the above scenario.  A reusable concrete component
will be provided to clients in the form of object code (or some form not meant to be readable by
humans).1  No doubt this situation will seem distasteful to some, e.g. (Weiser, 1987), because
source code availability does have some apparent advantages.  For instance, when a program written
for execution on a sequential machine is to be run on an architecture with vector processing units, it
may be possible to parallelize some loops if source code is available.  In-lining of procedures and
optimization across procedure boundaries is another use for source code.  Nonetheless, it is
difficult to imagine a viable software components industry that is based on source-code reuse.

There are three main arguments for this conclusion.  First, in the analogous electronic components
industry, manufacturers do not publish or sell to clients the masks for their implementations of
standard ICs, even though they literally give away catalogs containing interface specifications.
Suppliers generally sell only sealed packages into which a client need not and should not look.  We
expect a software components industry to follow suit, assuming any technical barriers to this
approach are conquered.

Second, providing source code to clients violates long-standing principles of information hiding and
abstraction.  It is a lot like explaining to a driver the gear-shift mechanism in his or her car by
showing the blueprint for the transmission — except that revealing source code is more dangerous.
Because software is so easily changeable, a user with access to source code seems to face an almost
irresistible temptation to modify it.  This leads to management difficulties, reliability problems,
version control hassles, finger-pointing when technical support is requested, and so on.

Finally, identifying the fundamental differences between “source code” and “object code” is an
important legal as well as technical issue.  The legal dilemma facing a potential software
components industry in this regard is serious.  Internal data structures used by a component
provider to represent various types and objects, as well as the algorithms to manipulate them, are not
patentable under current law.  Therefore, it has recently become common for companies to register
copyrights for object-code versions of their programs and to maintain that the source code contains
separately protected trade secrets (Tomijima, 1987).  It is possible that such secrets could lose their
protected status if provided to a client in a clearly revealed form, e.g., as source code (Samuelson,

                                                
1 We use the term “object code” in the general sense of a program code that is not meant to be human-readable.

Whether it is actually an intermediate form or executable code obtained as a result of compiler translation of
source code is unimportant.  An encrypted version of source code would also qualify under this definition, for
instance.
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1988).  If this legal view prevails, there will be a significant economic risk for a manufacturer to sell
source code for any but the most trivial components.

On the other hand, recent rulings have indicated that some courts consider the secrets in source
code to be proprietary even if revealed to a client who paid for that source code (Samuelson, 1988).
If this legal view prevails, there will be a significant economic risk for a client to buy source code
because of the possibility of future litigation to prevent the independent use by the client of
algorithms or data structures that are visible in purchased components.

During the period when neither legal position has clearly triumphed, source code sales are risky for
both seller and buyer.  Ultimately it will be hazardous for either or both.  We therefore consider it
unlikely that a mature software component industry will develop around source code reuse.  The
only realistic and economically viable situation is one in which abstract components are sold,
licensed, or given away, and concrete components are sold by multiple suppliers in object-code
form.

3. Defining a Reusable Concept

The years since McIlroy’s proposal for a component-based software industry have brought
significant advances toward realizing that vision.  It is indeed surprising that we still seem so far
from it, given the rate of technical progress.  This may lead an uncritical observer to conclude that
the major remaining impediments to widespread software reuse are non-technical ones.  However, it
should be apparent by the end of Sections 3, 4, and 5 that the technical front is not yet secure either.

We begin our analysis of design for reuse by considering how the behavior of an abstract reusable
component can be defined.

3.1Specification of Behavior

What could be worse than not reusing software?  This question, posed by (Krone, 1988), has
several possible answers.  For one thing, an inappropriate component might be chosen — one
whose actual behavior is misunderstood by the client programmer.  This sort of mistake puts a
damper on component reuse by reinforcing the “not invented here” syndrome.  Furthermore, in a
mature software component industry there will be several concrete components for any abstract
component, giving a client the flexibility to choose price/performance characteristics that are
compatible with the needs of the application.  Interchangeable concrete components really must
have the same functional behavior, so there can be no doubt about what that behavior is.

These observations suggest the following criteria for a behavioral specification and for a
specification language, i.e., a language used to define reusable concepts:

• The specification of an abstract component must be clear, unambiguous, and
understandable to a potential client and to a potential implementer.

• The specification of an abstract component must be free of implementation details in
order to support a variety of concrete components that implement it.

We use the word specification to mean an explanation of both the structure and the behavior of a
software component, i.e., its syntactic interface and its semantics.  Occasionally, the same word is
used elsewhere used to denote the syntactic interface alone.  Ada uses it this way in the term
“package specification.”
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The externally visible behavior of software is normally explained (if at all) by one of three
techniques: comments embedded in code, informal metaphors, or formal mathematics.  Source code
comments have an obvious shortcoming with respect to the second criterion above.  They also make
no sense in the absence of the source code, a situation that will be inevitable in a mature software
components industry.  The other two methods are more reasonable.  Both are abstract in the sense
that they can be used to explain observable behavior in terms that factor out — and are neutral with
respect to — the implementation details of any particular concrete component.

An example of a metaphorical description is “stacks are like piles of cafeteria trays.”  This
metaphor can be used to explain the visible effects of operations on stacks such as push and pop.2
The general approach is to imagine a parallel in the physical world that acts as a model of an object
in the computer.  A metaphorical specification is the other side of the coin from the fundamental
idea of object-oriented design (Cox, 1986; Meyer, 1988) in which a software object is considered to
model a physical object.  In either case it is important to establish a one-to-one mapping between
physical and software objects, and this mapping can be interpreted in either direction.  Just as a
stack can be explained in terms of cafeteria trays, so might a program simulating cafeteria trays use
a stack.  A well-known use of a metaphorical explanation of software behavior is the Macintosh®

desktop and toolbox.  Metaphors are used not only to explain Macintosh applications to end-users,
but to explain the behavior of many of the underlying reusable components upon which application
programs are built (Apple, 1985).

A metaphorical description of software behavior is attractive because it is easy to read, but it is also
inherently ambiguous because it is based on natural language (Liskov and Zilles, 1975; Meyer,
1985).  By the first criterion above, it is therefore inappropriate as the sole specification of the
behavior of an abstract reusable component.  A natural language description may be part of an
acceptable reusable component specification but it cannot do the job alone.

The remaining alternative is formal mathematical specification of abstract behavior.  Here, a
software object is modeled not by a real-world physical object but by an abstract mathematical
object.  This permits a specifier to write extremely precise statements about component behavior in
a formal language such as predicate calculus, and it has the added advantage of making the
specification amenable to machine processing.

It is imperative that a specification be comprehensible to a typical client programmer or
implementer.  Formal specifications do not have a reputation for being particularly understandable,
but the “read-mostly” nature of reusable component specifications suggests some characteristics
of a formal approach and a language to help mitigate this problem.  The specification author may be
assumed to be an expert in writing formal specifications, but the potential client or implementer may
not be so well-versed in formal methods.  Therefore, a specification approach that supports
intuition, and a specification language that tends to be verbose rather than cryptic, seem desirable.

The first major technical question that must be addressed, then, is how to specify a concept in a way
that has the two required properties of clarity and abstractness — which together imply formality
(Wing, 1990).  Two major approaches to formal specification have been developed: algebraic
                                                
2 Using stacks to illustrate reuse ideas makes some critics uneasy because stacks seem too simple.  Most of the

fundamental ideas in this paper are illustrated with the stack example, even though they have been applied to the
design of much more sophisticated abstractions.  Stacks are ideal for pedagogical purposes and, as will be seen,
are hardly as trivial as might be assumed.  In fact, (Meyer, 1988) writes, “The stack example has been used over
and over again to the point of becoming a cliché, but since this is because it is excellent, there is no reason to
have any second thoughts about using it once more.”

® Macintosh is a registered trademark of Apple Computer, Inc.
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specification (Guttag et al., 1985; Wing, 1987) and model-based specification (Bjørner et al., 1987;
Spivey, 1989).  Both are based on the idea that abstract component behavior can be explained
through mathematical modeling of program objects by mathematical objects.  The methods are
virtually identical in spirit; the essential difference from the standpoint of specification is one of
style.  We use the traditional example of stacks to illustrate this distinction.  Section 5.2 points out
that there are other differences when it comes to using algebraic vs. model-based specifications for
certifying that an implementation correctly meets its specification.

Fig. 2 shows a case where the abstract component being specified captures the idea of stacks.  The
intuitive behavior of stacks — the middle of the “Informal” column in Fig. 2 — is initially
understood only informally by the designer, whose objective is to create a formal specification of it,
as denoted by one of the gray rounded rectangles in Fig. 2.

Mathematical
Stacks

PROGRAMMING
IDEAS

(FORMAL)

MATHEMATICAL
IDEAS

(FORMAL)

INTUITIVE
IDEAS

(INFORMAL)

Stacks
as Initially

Understood
by Specifier

Mathematical
Strings

Program
Stacks

Program
Stacks

Intuitive
Mathematical

Stacks

Intuitive
Mathematical

Strings

Algebraic Specification

Model-Based Specification

FIG. 2.   Algebraic and Model-Based Specification of Stacks.

Both an algebraic and a model-based specification have two pieces.  The first is a formal description
of mathematical theories that define some mathematical objects, and the second is a formal
description of a program interface where the manner in which the mathematical objects model the
program objects is explained.  In Fig. 2 the two pieces of each specification are separated by the
thin vertical line between mathematical and programming ideas.

3.2Algebraic Specification

The top portion of Fig. 2 illustrates the nature of an algebraic specification of stacks.  The idea is to
define mathematical objects whose behavior is identical, or at least very close, to that of the
corresponding program objects.  The proximity of “Mathematical Stacks” to “Program Stacks”
in Fig. 2 is meant to convey this close connection.  An algebraic specification defines mathematical
stack theory and then explains that program stacks act just like mathematical stacks.  The modeling
of program objects by mathematical ones is often defined implicitly through the identification of
mathematical and program names of objects and functions.  In fact, (Meyer, 1988) points out that
not all authors even recognize the distinction between program objects and the mathematical objects
that model them.  Here we keep them distinct and given them different names.
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An algebraic specification of stacks might start with the following definition of a theory of
mathematical stacks.  The text below is depicted by the block labelled “Mathematical Stacks” in
Fig. 2.  The language used is a compact dialect of RESOLVE, which includes constructs for formal
specification using either the algebraic or model-based style.

theory STACK_THEORY_TEMPLATE (type T)
type STACK
functions

NEW: -> STACK
PUSH: STACK x T -> STACK
POP: STACK -> STACK
TOP: STACK -> T

domain conditions
POP (s): not (s = NEW)
TOP (s): not (s = NEW)

axioms
(1) not (PUSH (s, x) = NEW)
(2) POP (PUSH (s, x)) = s
(3) TOP (PUSH (s, x)) = x

end STACK_THEORY_TEMPLATE

This part of the specification defines a schema for a family of mathematical theories, one for each
type of item that can be in a stack.  The generic theory — really a template for a family of parallel
theories — is instantiated by providing a particular type for T.  Mathematical type STACK is
defined by axioms relating the mathematical functions NEW, PUSH, POP, and TOP, whose
signatures are defined using standard notation for functions.  NEW and PUSH are total functions,
while POP and TOP are partial functions whose domains are characterized by the conditions stated.
The axioms shown here are statements in predicate calculus (with equality, which is considered a
built-in predicate for every mathematical type).  Free variables in the axioms are assumed to be
universally quantified.  Here, the first axiom says the result of PUSH is never a NEW STACK; the
second says the composition of PUSH and POP applied to a STACK gives the original STACK;
and the third says any value of type T that is passed to PUSH is recovered if TOP is applied to the
result of PUSH.

Writing the program interface portion of the specification is now a matter of declaring that program
stacks behave like mathematical stacks.  As noted above, this may be done by the default method
that consists of using the same names for program types and operations as for the mathematical
types and functions that model them and that define their behavior.  Because NEW, PUSH, POP,
and TOP are mathematical functions, though, implementation of this direct-definition interface in
anything other than a functional programming language may prove troublesome.  Consider a
language such as Ada with procedures that can have side-effects on their arguments.  In such a
language the program interface specification must relate the mathematical functions to the behavior
of a program module in which, for example, pushing and popping are done by procedures.

Here is how such a program interface might be explained in RESOLVE.  The naming convention
used here (not a language convention) is that mathematical names are in all upper-case, while
program names have only the first characters of each word capitalized.  This text is depicted by the
block labelled “Program Stacks” in the algebraic specification portion of Fig. 2.

concept Stack_Template
context

parameters
type Item

mathematics
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theory STACK_THEORY is STACK_THEORY_TEMPLATE (math [Item])
interface

type Stack is modeled by STACK
operation New (s : Stack)

ensures s = NEW
operation Push (s : Stack, x : Item)

ensures s = PUSH (#s, #x) and x = #x
operation Pop (s : Stack)

requires not (s = NEW)
ensures s = POP (#s)

operation Top (s : Stack) returns x : Item
requires not (s = NEW)
ensures x = TOP (s)

end Stack_Template

The concept definition begins with a description of its context.  This consists of a type parameter
Item that is supplied by a client to define Stacks of whatever kinds of values are needed.  The
concept is generic — it defines a family of related program concepts just as the theory template
defines a family of mathematical theories.  Type Item, however, is a program type.  Like all program
types it has a mathematical type that is used to model it, known as math [Item], which is used to
instantiate STACK_THEORY_TEMPLATE.  The particular theory of STACKS over this
mathematical type (declared here to be named STACK_THEORY) is then used to explain the
program interface.

The rest of the concept defines the syntax and semantics of the program interface to this abstract
component.  It states that program type Stack is modeled by mathematical type STACK.  Program
operations are defined through preconditions and postconditions, introduced respectively by the
keywords requires and ensures.  The meaning of this kind of specification is that, if the
precondition is true when the operation is invoked, then the postcondition is true when it returns.
Preconditions and postconditions are assertions in predicate calculus with equality in which the
variables are the mathematical models of the operation’s formal parameters.

In a requires clause, the values of the variables are those at the time of the call.  The absence of a
requires clause means that there is no precondition for calling the operation (equivalently, the
precondition is “true”), i.e., the operation can be invoked under any circumstances.  An ensures
clause relates the values of the variables upon return to the values at the time of invocation and, in
this way, explains the effect of the operation.  In an ensures clause the value of a parameter at the
time of the call is denoted by a mathematical variable with a “#” prefix before the parameter’s
name. For example, the assertion “s = PUSH (#s, #x)” means that the value of s upon return
from the Push procedure equals the result of applying the mathematical function PUSH to the
values of s and x that were passed to Push.

For a procedure operation (one without a returns clause) it is sometimes necessary to say that a
parameter is unchanged by the operation.  This is easily done by saying, e.g., “x = #x”.  For a
function operation such as Top, the fact that the parameters are unchanged is implicit and need not
be stated in the ensures clause.  (In some languages, function operations are permitted to modify
their arguments, but not in RESOLVE.)

3.3Model-Based Specification

The bottom portion of Fig. 2 illustrates one possible model-based specification of stacks.  Rather
than defining a new mathematical theory of stacks, the specifier chooses from among a small
collection of existing (and highly reusable) mathematical theories to define mathematical objects
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that can be used to model the desired program objects.  The “semantic gap” between these familiar
mathematical objects and the desired program objects is generally larger than it is for an algebraic
specification; hence the larger distance from “Mathematical Strings” to “Program Stacks” in Fig.
2.  The form of the specification is identical to that described above.  The difference is in the choice
of mathematical models.

Suppose we already have a formal definition of mathematical string theory in the same form as
shown above for stack theory.  This text is depicted by the block labelled “Mathematical Strings”
in Fig. 2.

theory STRING_THEORY_TEMPLATE (type T)
type STRING
functions

EMPTY: -> STRING
POST: STRING x T -> STRING

axioms
(1) not (POST (s, x) = EMPTY)
(2) POST (s1, x1) = POST (s2, x2) implies (s1 = s2 and x1 = x2)

end STRING_THEORY_TEMPLATE

The intended interpretation of these symbols is that a STRING is an ordinary (intuitive) string of
items of type T, with EMPTY meaning the string containing no items, and POST (s, x) denoting the
string obtained by appending the item x to the right end of string s.

The specifier in this case notes that a program stack can readily be modeled by a mathematical
string where the top item of the stack is (arbitrarily chosen to be) the rightmost item of the
corresponding string.  This text is depicted by the block labelled “Program Stacks” in the model-
based specification part of Fig. 2.

concept Stack_Template
context

parameters
type Item

mathematics
theory STRING_THEORY is STRING_THEORY_TEMPLATE (math [Item])

interface
type Stack is modeled by STRING
operation New (s : Stack)

ensures s = EMPTY
operation Push (s : Stack, x : Item)

ensures s = POST (#s, #x) and x = #x
operation Pop (s : Stack)

requires not (s = EMPTY)
ensures there exists x : math [Item], #s = POST (s, x)

operation Top (s : Stack) returns x : Item
requires not (s = EMPTY)
ensures there exists s1 : STRING, s = POST (s1, x)

end Stack_Template

A concrete component with this interface should behave in exactly the same way as one with the
interface specified in Section 3.2.  That is, the two specification methods have been used here to
define the same abstract behavior.
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3.4Language Issues

One of the notable missing pieces in three of the programming languages considered here (Ada,
C++, and Eiffel) is a sub-language for writing formal specifications.  C++ has no constructs
whatsoever for this purpose.  Eiffel permits “assertions” in a program, but they are intended
primarily to support debugging through run-time monitoring of the state of object representations.
Assertions can describe certain properties of program behavior but are not powerful enough to
support abstract specification in general.  The limitation can be seen by observing that Eiffel’s
assertions are simple boolean expressions involving program functions and procedures applied to
concrete representations of program objects.  They are not statements in predicate calculus
involving quantifiers or mathematical functions applied to abstract models of program objects.
Published classes from the Eiffel library are not specified in any formal language, although the code
contains some Eiffel assertions.

While Ada itself has no constructs for formal specification, an Ada extension in the form of an
annotation language called ANNA (Luckham et al., 1987) has been defined for this purpose.
Assertions in ANNA generally are comparable to those in Eiffel and (although it was created with
the objective of permitting formal specification and verification of Ada programs) ANNA has been
used primarily for run-time monitoring.  Such assertions generally cannot be used to specify
abstract behavior for the reason noted above.  ANNA also permits a designer to write “axioms”
about user-defined types, but it is not clear whether these are also intended to define directly the
behavior of program functions and procedures or the behavior of their mathematical models.
Specification with ANNA axioms syntactically resembles algebraic specification, but the semantic
underpinnings are not clear from the few published examples we have seen.

Some specification languages are not tied directly to an implementation language.  Two modern
specification languages of this kind support both the algebraic and the model-based style: Larch
(Guttag et al., 1985; Liskov and Guttag, 1986; Wing, 1987) and Z (Spivey, 1989).  Both permit the
specifier to define mathematical theories and then to define abstract program interfaces using those
theories.

In Larch, a mathematical theory is written in the Larch Shared Language (Guttag et al., 1985;
Guttag and Horning, 1986a) and a program interface specification is written in an implementation-
language-specific Larch Interface Language (Wing, 1987).  Larch can be used to write
specifications in either the algebraic or the model-based style, but the main catalog of published
examples (Guttag and Horning, 1986b) clearly favors the algebraic style.  That is, a program
concept typically is explained by a mathematical model that is devised especially to explain it.
There is a library of reusable mathematical properties that reflect classical ideas, including binary
relations, partial orders, and groups.  There are also less-reusable theories of stacks, queues,
containers, priority queues, and binary trees.  The latter are used to define their program
counterparts, while the former are used primarily to explain constraints on the parameters to generic
concepts.

By contrast, published examples in Z such as those in (Spivey, 1989; London and Milsted, 1989)
emphasize model-based specification.  Z has been used to define a relatively small but powerful
library of mathematical theories for, e.g., sets and mappings.  Each program object is explained in
terms of some combination of these mathematical objects.  A specifier generally need not dream up
a new mathematical theory for each new concept, but instead identifies an appropriate mathematical
model for it from among alternatives in the library.

RESOLVE is similar to Larch and Z in that it has separate constructs for defining mathematical
theories and program interfaces.  However, the implementation language is assumed to be
RESOLVE.  This means it is possible to define a fixed set of proof rules that relate abstract
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components to concrete components, thereby supporting verification of correctness.  This
connection, which is missing in Larch and Z, is explained briefly in Section 5.2.

The main advantages of algebraic specification over model-based specification are the flexibility to
define new mathematics when necessary, and the inherently close connection between program
objects and their mathematical counterparts.  In a strictly model-based approach the explanation of
program objects uses only existing mathematical theories.  If a new program concept is exotic
enough, then this constraint might require the specifier to use a mathematical model that does not
define what might directly explain the program operations.  This may result in requires and ensures
clauses that are long and convoluted and, consequently, difficult to write and to understand.  The
program interface part of an algebraic specification should always be comparatively straightforward.
This difference is illustrated schematically in Fig. 2, where the distance between “Mathematical
Stacks” and “Program Stacks” in the algebraic specification is less than the distance between
“Mathematical Strings” and “Program Stacks” in the model-based specification.  Examination of
the two versions of the Stack_Template concept reveals only a slight advantage to the algebraic
approach in this case.  Our experience shows this is typical.

The major advantages of model-based specification over algebraic specification result directly from
the reuse of mathematical theories.  For one thing, the model-based specifier does not need to know
how to define mathematical theories — a non-trivial task at best.  In fact, much of the early work on
algebraic specification concentrated on methods for assisting the designer in demonstrating logical
properties of the custom-made theories used in algebraic specification (e.g., soundness, consistency,
relative completeness).  Defining a new theory remains a difficult chore.  An ill-advised definition
can lead to serious trouble, especially when proving properties about programs.  Fig. 2 also
illustrates this other side of the coin.  Because the specifier presumably already knows, understands,
and trusts the previously-defined theory of “Mathematical Strings,” it is a smaller step to
understand that theory than to define and show the required properties of the new theory of
“Mathematical Stacks.”

Perhaps most important from the standpoint of reuse, a model-based specification is probably
easier for a prospective client to understand than an algebraic specification.  We know of no
controlled experiments to support or refute this claim, but it is entirely plausible.  Clients, like
specifiers, can be expected to learn to interpret (and trust) a relatively small, fixed class of theories.
Most of the relevant mathematical ideas — integers, sets, functions — are already known to
programmers as a result of the normal educational process.  Other important ones can easily be
learned.  It is asking far more to expect a client to decipher a new mathematical theory in order to
understand each new abstract program component.  Fig. 2 suggests this difference with the length
of left-pointing dashed arrows in the “client understanding” direction: from formalism to intuition.

The total distance between “Program Stacks” and the client’s intuition is shown as about the same
for both approaches to specification because the client’s understanding of a specification includes
both an understanding of the mathematical theories and an understanding of the connection
between the mathematical and program objects.  That the two methods are about equal in this regard
is probably a fair characterization overall in the sense that some people feel more comfortable with
algebraic specification, others with model-based specification.  Our experience teaching both
undergraduate students and practicing software engineers in industry suggests that a model-based
approach is generally preferable.  This is the approach used in the remainder of the chapter.

4. Designing a Reusable Concept

Having a notation to express abstract component designs is a big step toward promoting reuse.  Of
course it is still necessary to design good reusable components, which has proved to be a
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surprisingly difficult quest.  Some reasons for this and some proposed guidelines to assist a
designer of reusable concepts are explored in this section.

4.1Efficiency and the Relationship Between Concept and Content

What else could be worse than not reusing software?  An apparently reusable abstract component
may be designed poorly from the standpoint of reuse.  There are many ways in which a design may
be inadequate but still tolerable, but there is one problem that history has shown is sure to frustrate
reuse: inefficiency (SofTech, 1985).  An abstract component with only inefficient concrete
components to implement it tempts a client to “roll his/her own.”  A poorly designed abstract
component may even inherently rule out efficient realizations.

Is it even possible to have reusable components that are both flexible and efficient?  Reusable
software has a reputation for being inefficient — one of the problems that tempts a source code
owner to modify it.  This perception is based partly on folklore about an intrinsic trade-off between
generality and efficiency.  There is no theoretical reason for believing in such a trade-off.  It is not
surprising that it is observed in current practice, though, because a typical reusable software
component is based directly on the designs, data structures, and algorithms found in standard
computer science textbooks: classical stacks, lists, symbol tables, sorting algorithms, and so on.
Difficulties arising from their potential reusability were not at issue in the original designs of these
structures, and their performance as the basis for reusable components suffers as a result.

Even in cases where an abstract design is a good one there may be no efficient implementation
currently on the market.  This is almost as serious a problem as the impossibility of an efficient
implementation, because many of the advantages of reuse are not achieved if a client reuses only a
concept or some other aspect of a “high-level design” and has to build a new implementation for it.
The client programmer’s productivity will surely suffer, not only during coding but  more
importantly during maintenance (Edwards, 1990).  It has been estimated that 70% of the cost of
software is attributable to maintenance (Boehm, 1987).  Concrete components purchased from
outside suppliers generally will be certified to be correct implementations of their abstract
counterparts and normally will not be available in source-code form.  Therefore, a purchased
component usually will require — in fact, will permit — no maintenance effort by the client.  A
custom part produced in-house is subject to the usual problems and expenses of maintenance.
Moreover, a concrete component that forces the programmer to go through difficult gymnastics in
order to achieve the desired efficiency is likely to be even more of a maintenance headache than the
average program.

Methods for designing concepts and languages for defining content of components, then, are
subject to an important criterion:

• An abstract component design, in conjunction with the programming language in which
it is to be realized, must not make it difficult or impossible to build multiple efficient
concrete components that implement the design.

An implementation of a concrete component with a given abstract interface, such as the
Stack_Template of Section 3, can sometimes be created automatically from the formal behavioral
specification.  This kind of implementation, also called an executable specification, is exemplified
by the language OBJ (Goguen, 1984).  An OBJ specification of an abstract component can be
thought of as a set of equations that define a mathematical theory, or it can be treated as an
executable program by interpreting the defining equations as rewrite rules.  The performance of a
concrete component that is constructed in this way may or may not be acceptable.  We do not
further consider this method of implementation because one of the basic features of a reusable
software components industry will surely be a potential client’s freedom to choose among various
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concrete components that realize the same abstract component.  Some of these choices might be
automatically generated from specifications and prove useful as “rapid prototypes,” but at least for
the foreseeable future their performance will easily be dominated by cleverly-devised programs
written by humans.  The manual approach is therefore the focus here.

In this view an implementer of a concept invents concrete representations for program objects and
algorithms to manipulate them.  For example, there are several possible representations for Stacks
with different algorithms for the program operations New, Push, Pop, and Top.  More sophisticated
abstract components such as those supporting associative searching, sorting and selection, and
graph manipulation have more interesting performance trade-offs, of course.  Their alternative
implementations may differ in execution-time performance for the various operations or along any
other dimension except abstract functional behavior.  Some concrete components may dominate
others completely, but in general it is far more likely that competing ones are simply incomparable
in the sense that one is “better” for some operations or along some dimensions, while others are
“better” for other operations or along other dimensions.  A client program may use any concrete
component that correctly implements the abstract interface.  Regardless of the implementation, the
client always reasons about program variables as if they are abstract mathematical variables, e.g.,
he/she reasons about Stacks as though they are STRINGs.

The need for efficiency has two major implications.  It calls for a set of design guidelines to help
concept definers create abstract components that admit efficient concrete components.  It also
makes it important to identify programming language constructs that support efficient
implementation of reusable components, as well as those that thwart it.  These issues are discussed
in the remainder of Section 4.

4.2General Design Guidelines for Reusable Abstract Components

As noted by (Bentley, 1982), it has long been a goal of software engineers to make their field more
like the other engineering disciplines by developing design guidelines and standards.  The art
involved in software design will always remain important, but experience that leads to good design
must be captured and transmitted to others.  A recent report (Computer Science and Technology
Board, 1990) calls for an effort to produce “handbooks” of software engineering knowledge
similar to those used by other engineers.  Here we concentrate on design-for-reuse guidelines that
might be included in such a handbook, especially guidelines related to efficient implementation.

When dealing with efficiency we usually mean execution time in the “big-O” sense.  Space is
important, too, but typically it is not the deciding factor in whether a potentially reusable component
is reused in practice.  The constant additive or even small constant-factor overhead associated with
making a procedure call or dereferencing a pointer, for example, is also of little concern when
compared to order-of-magnitude penalties imposed by inappropriate data structures and algorithms
(Gannon and Zelkowitz, 1987; Muralidharan, 1989).

There is of course a considerable body of well-known work on efficient data structures and
algorithms, much of which has made its way into the early computer science curriculum through
textbooks such as (Martin, 1986; Feldman, 1988).  But there has been little published work on
efficiency considerations that arise directly from reusability.  These features are often subtle but
very important.  Some recent works in which these issues are considered, such as (SofTech, 1985;
Harms, 1990; Sitaraman, 1990), have not yet been published in the archival literature.  Some of the
most important efficiency-related questions are therefore considered below in detail.

Although the discussion is not couched in terms of reuse, (Liskov and Guttag, 1986) write about
three important properties of an abstract specification: clarity, restrictiveness, and generality.
“Clarity” means that a specification is understandable, and “restrictiveness” means that it states
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everything the designer wishes to state.  Both are important attributes of a good design but neither
has much to do with whether efficient implementation is possible.  “Generality” means that a
specification is sufficiently abstract and not too restrictive to permit a variety of acceptable and
efficient implementations.  In the setting of a software components industry in which multiple
concrete components are expected for each abstract component, this is certainly a worthwhile design
objective.

Using what (Liskov and Guttag, 1986) call a “definitional” style of specification, as opposed to an
“operational” one, is a major step toward generality.  A formal specification in either the algebraic
or the model-based style must be abstract by its very nature because it explains program behavior
through mathematical modeling.  It is still possible to define a model that is highly suggestive of a
particular implementation.  For example, a Stack might be modeled as an ordered pair: an integer
and a mapping from integer to math [Item].  This abstract model suggests that a Stack might be
represented as a record comprising an integer index of the top Item and an array of Items in the
Stack.  Other representations are still possible; the question is whether a typical programmer is
likely to think of anything else after seeing this sort of operational hint in the specification.

Unfortunately, even with a completely abstract and definitional formal specification method it is
amazingly easy to define behavior that rules out efficient implementations of the underlying
concept.  In fact, because of the functional style of an algebraic specification, it is easier to define
behavior in that style that cannot be implemented efficiently than to define behavior that can be.  The
classical Stack_Template of Section 3 is an excellent example of this phenomenon, as we note in
Section 4.4.

Other positive qualities of reusable component designs are proposed by (Booch, 1987).  He defines
a “primitive” operation for a type as one that cannot be implemented efficiently without access to
the underlying representation of the type.  To avoid possible confusion with the idea of a built-in
type or operation (which also are often described as “primitive”), we prefer to call such an
operation a primary operation.  All other operations are called secondary operations.  For example,
the Push operation of the Stack_Template is primary because there is no way to obtain its effect
using a combination of the other operations.  An operation to reverse a Stack is secondary because
it can be implemented by calls to Push, Pop, etc.

Primary operations usually should be primitive in the sense that they make only incremental
changes to their parameters’ abstract values.  The effect of an operation that makes large changes
often can be obtained by code that comprises more primitive operations.  This observation can be
used as a check on the quality of a component design.  Moreover, notice that an operation is
primary relative to other exported operations.  Different subsets of all possible operations for a
type might be considered primary.  It is up to the designer of an abstract component to choose an
appropriate set of primary operations.

A primary operation is so fundamental that it must be implemented together with the code that
defines the representation of some type.  Secondary operations can be implemented by layering on
top of the primary operations, or they can be implemented with direct access to the underlying
representation of some type.  The distinction of primary vs. secondary is defined in terms of what
operations can be implemented by layering, not in terms of which ones actually are implemented by
layering.  Among the many advantages of layering is that when a different realization of a basic
abstract component is substituted, there is in principle no need to re-code, re-certify, or even re-
compile layered secondary operations.  However, in some situations it is possible to achieve
significant efficiency gains by implementing certain secondary operations directly, just like primary
operations.  Language mechanisms that support the distinction between primary and secondary
operations, and between layered and direct implementations of the latter, are discussed in Section
5.1.
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Booch’s notions of “sufficiency” and “completeness” are closely related ideas.  A component
providing a type is sufficient if it also exports enough operations to characterize the type, and it is
complete if it exports all operations deemed by the designer to be useful.  A component is
practically worthless if it does not satisfy the sufficiency criterion, but a reusable component need
not be complete in the sense that all (or even any) secondary operations must be exported by the
basic abstract component.  It should be potentially complete in that it should be possible to build
any interesting secondary operation by layering on top of the primary operations.  Most potential
manipulations involving any type do not need access to its underlying representation; this is the
entire idea behind data abstraction.  Secondary operations generally should not be exported as part
of a basic reusable abstract component but should be added as extensions or enhancements.

In considering the question of objectively evaluating the quality of Ada packages, (Embley and
Woodfield, 1988; Gautier and Wallis, 1990) apply two well-known characteristics of software in
general: “coupling” and “cohesion.”  A component should be self-contained (low coupling) and
not further decomposable (high cohesion).  An abstract specification approach and language
mechanisms such as generics for dealing with conceptual context make it easier to achieve these
goals.  It is still up to the designer, however, to create a good component design.  An abstract
component should exhibit low coupling, i.e., its behavioral specification should not depend on other
abstract components — and certainly not on any concrete components.  By the same token a
component should exhibit high cohesion, i.e., it should encapsulate a single idea.  It should not
contain a jumble of almost-independent ideas in an end-run attempt to satisfy the coupling criterion.

Notice that the coupling rule is intended primarily to guide the design of the most basic reusable
components.  A typical basic component such as the Stack_Template should export a type and its
primary operations.  Extensions of such a component are possible, though.  For example, an
abstract component that enhances the functionality of the Stack_Template with an operation to
reverse a Stack obviously should be explained in terms related to the behavior of Stacks.  This
much coupling is pemissible.  However, the explanation of Stacks themselves should not rely on the
behavior of Arrays just because some implementation of the Stack_Template might use them.

In summary, the literature discusses a number of general properties of good reusable component
designs.  They are meant to be interpreted as general guidelines for design or as properties of good
designs, not as hard-and-fast laws of reuse.  We can rephrase them as follows.

A reusable abstract component should:

• Be clear and understandable (“clarity”).

• State everything about the behavior that is expected of a correct implementation — and
nothing more (“restrictiveness”).

• Support a variety of implementations, and especially not rule out efficient ones
(“generality”).

• Export operations whose functionality is so basic it cannot be obtained by combinations
of other exported operations, i.e., it should export primary operations
(“primitiveness”).

• Export primary operations that together offer enough functionality to permit a client to
perform a wide class of interesting computations with the component (“sufficiency”).

• Not export operations that can be implemented using the primary operations, i.e.,
secondary operations, unless the component is an extension or enhancement of a more
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basic reusable component that exports the primary operations (“potential
completeness”).

• Not depend on the behavior of another abstract component for explanation of its
functionality, unless it is an extension or enhancement of that component (“low
coupling”).

• Encapsulate a single concept that cannot be further decomposed, e.g., a single type
(“high cohesion”).

4.3Corollaries

There seems to be considerable agreement among reusable component designers that the above
general guidelines are reasonable.  This agreement may be due in part to the lack of precision with
which they are often stated.  A number of more specific consequences can be deduced from these
guidelines and, judging from other design-for-reuse proposals and from actual published designs
of reusable components, some of the more obvious corollaries are quite controversial at the detail
level.  Some of these are illustrated below using the Stack_Template as a simple example.  A more
detailed critique and redesign of the Stack_Template is presented in Section 4.4.

4.3.1 Initialization and Finalization

The ability to prove program correctness formally is tantamount to the ability to do careful informal
reasoning about client program behavior.  It is vitally important, not just an esoteric desire for
formality (Shaw, 1983).  One important implication is that every program variable must be
considered to have an initial abstract value.  For example, every Stack must have an initial abstract
value in order to permit verification of the correctness of Stack_Template’s clients.  The reason is
simply that following declaration of a Stack and prior to its abstract initialization it makes no sense
to consider the Stack to be modeled by a mathematical STRING.  In particular, if there is no
initialization of a Stack at the abstract level it may be impossible to interpret the requires or ensures
clause of the first operation involving that Stack.

Initialization at the abstract level requires initialization at the concrete level, at least for some
potential implementations of an abstract component.  The argument here is that every
implementation of the Stack_Template, for example, must set up some concrete representation of
each Stack in order to “prime” the sequence of operations that Stack will participate in during its
lifetime.  This initial concrete configuration represents the initial abstract value.  Except in rare cases
where any random setting of bits in memory can be interpreted to represent a value of the
mathematical model — none of which is obvious for Stacks — some code must be invoked to
construct a legitimate initial configuration.

Although the need for initialization of variables is well-known and widely acccepted, its impact on
reusable component design is not universally acknowledged.  There is no general agreement on
how to accomplish initialization, either.  For example, an early Ada style manual (Hibbard et al.,
1983) recommends that each user-defined type should have an explicit initialization procedure.  A
later compendium of reusable component design guidelines for Ada programmers (SofTech, 1985)
also calls for the ability to do “creation” and “termination” of objects.  But it provides the
following suggestion for how to achieve this:  “Implement all private types as records so that
automatic initialization may be guaranteed.”  A similar guideline appears in (Gautier and Wallis,
1990), but the detailed recommendation (also for Ada) is still more specific:  The concrete
representation of each variable should be set to a value that is recognizable as “uninitialized,” and
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every operation should check for uninitialized arguments and invoke the code to initialize them as
necessary.  (Hibbard et al., 1983) argue convincingly that this method is needlessly inefficient.

Any recommendation for implementing the general rule that variables should be initialized must
work uniformly for every conceivable concrete component that implements a concept.  Otherwise
client code might have to be changed if one concrete component is substituted for another with
ostensibly the same functionality.  The generality criterion suggests that there is only one rational
way to approach initialization that respects the underlying objective of efficiency:  There should be
an explicit operation to initialize a Stack, and it should be called by a client immediately after
declaration of a Stack variable.

Similarly, when a variable is no longer needed, there should be a way to reclaim the memory
occupied by its concrete representation.  Otherwise the client may eventually exhaust available
storage.  Some implementations might rely on garbage collection for this.  Other implementations,
however, are more efficient if they can explicitly deallocate the memory used by their
representations.  The generality criterion again suggests the only rational approach:  There should
be an operation to finalize a Stack, and it must be called by a client after a Stack is no longer
needed.  In a concrete component that relies on garbage collection the finalization operation may do
nothing, but the hook should be there for an alternative implementation that explicitly manages its
own storage.

In general we therefore recommend:

• A reusable abstract component that exports a type should export an initialization
operation and a finalization operation to be invoked at the very beginning and at the very
end, respectively, of the lifetime of any variable or object of that type
(“initialization/finalization corollary”).

In Ada and Eiffel the client programmer is responsible for invoking initialization and finalization
operations explicitly.  For reusable component designs in these languages we suggest the following
conventions for initialization and finalization operations.  A concrete component implementing an
abstract component that exports a type should be required to provide code for these operations.  A
client should be expected to invoke the initialization operation for every variable immediately after
entering the scope of its declaration, and to invoke the finalization operation immediately before
exiting that scope (Muralidharan and Weide, 1990).

C++ supports compiler-generated calls to operations for this purpose (“constructors” and
“destructors”) but does not require that a component have them.  We suggest that a constructor
and destructor be defined for every reusable component that defines a new type.

RESOLVE enforces automatic initialization and finalization.  Every type must have these two
operations, which are invoked by compiler-generated calls (at entry and exit of a variable’s scope).
Explicit client calls to them are not needed and are not permitted.

4.3.2 Defensive vs. Non-Defensive Designs

A property of a component called “totality” is suggested by (Wing, 1987) as a desirable quality.
Roughly stated, an abstract component has the totality property if each procedure or function has a
well-defined result for all values of its input arguments — in short, if it does not have a requires
clause.  This attribute is easy to check, and methods for achieving totality are readily discovered if a
design is deemed wanting in this respect.  Another view of totality is as “defensive programming,”
which is offered by (Berard, 1987) as a necessary property of reusable software.  The designs
proposed by (Hibbard et al., 1983; Liskov and Guttag, 1986; Booch, 1987) are also generally
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defensive, i.e., “error-catching.”  General rules supporting this approach are proposed in (SofTech,
1985; Gautier and Wallis, 1990).

Despite the above claims, it is far from clear that reusable components should be defensive.  If the
client of a piece of software is an end-user who may make a mistake with it, then that software
clearly should be defensive: It should catch user errors and do something predictable and friendly
under all circumstances.  However, reusable software components are not invoked like application
programs.  They are embedded in other software that uses their services.  There is no question that
an operation should not be called when its arguments do not satisfy the requires clause; the
question is whether the client program or the reusable component should perform the check.  It is
important to adopt a consistent approach to this issue because it is obviously not a good idea for
neither side to worry about it, but it is impractical for both sides to do so.  Redundant checking is
inefficient, leading (Liskov and Guttag, 1986) to recommend in-line expansion of procedure calls
and subsequent source-level optimization to overcome it.   But designs based on redundant
checking bring what (Meyer, 1988) calls “conceptual pollution” to the overall system.  A
convention about who is responsible for checking requires clauses should be adopted.  Like Meyer
we suggest that basic reusable components’ operations should not catch violations of their requires
clauses.  However, it should always be possible for a client to use the exported operations to check
any requires clause and, if desired, to build a defensive version of a concept as a layer on top of the
more basic non-defensive one.

We therefore recommend another corollary that can be viewed as a natural consequence of the
generality, primitiveness, and potential completeness criteria:

• A basic reusable abstract component should not export defensive operations, but should
permit a client to define a corresponding defensive component in which the operations
can be implemented by layering on top of the more basic component  (“non-
defensiveness corollary”).

A component designed according to this guideline is not responsible for catching or for handling
errors that might occur while it is executing, and therefore should not (among other things) raise
any exception conditions resulting from violations of its requires clauses.  As noted above, however,
component designs in languages with exception-handling constructs (e.g., Ada and Eiffel but not
C++ and RESOLVE) often are designed defensively.  It seems tempting to use exception-handling
when it is available.  The reusability guidelines for Ada in (SofTech, 1985) contain a specific
suggestion to this effect: “For each assumption a subroutine depends on to operate correctly [i.e.,
requires clause], define an exception that is to be raised when the assumption is violated.”  The next
guideline offered is, “For every situation that would raise an exception, define a function that
indicates whether the exception would be raised.”  Similar suggestions are offered by (Gautier and
Wallis, 1990).

Notice that if one follows the second suggestion in the design of a basic reusable component, then it
is easy to build a component that follows the first suggestion without loss of efficiency — by
layering on top of the original component — but not vice versa.  That is, if there is an operation to
check the requires clause of every operation then a defensive design for an operation can raise
exceptions as necessary.  The following schema illustrates this:

if check of requires clause finds that it is satisfied
then call original operation
else raise exception

end if

On the other hand, if the most primitive operation available is designed to raise an exception when
its requires clause is violated, then a non-defensive version built on top of it must also pay for the
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code that performs the check.  This observation means that a defensive design is never the most
primitive one.

The question of whether to raise an exception when a requires clause is violated is interesting in its
own right.  Raising an exception during component debugging seems reasonable (Luckham et al.,
1987; Meyer, 1988).  For delivered components this strategy is less attractive, though.  Exceptions
are a dangerous method of altering program flow of control when an ordinary if-statement or while-
loop can do the job.  Again (SofTech, 1985) suggests a curious approach: “Instead of requiring the
user to find out if a stack is empty prior to calling the Pop operation, design the [reusable software
component] so that Stack.Pop raises the exception Stack.Empty or assigns True to the flag Empty
if the stack is empty.”  Presumably the normal way for a client to process all Items in a Stack is to
write the following kind of code:

loop
...
Pop (s);
...

end loop;
...

exception
...
when Stack.Empty ...

We cannot recommend a reusable component design approach that suggests that a client program
should include such convoluted code for such a simple job.  If exceptions are to be raised at all,
their use should not demand that a client use exception handlers in order to do quite ordinary and
expected things.

4.3.3 Copying and Equality Testing

Demanding sufficiency, potential completeness, low coupling, and high cohesion still leaves
considerable flexibility for the designer because there may be many different subsets of all
operations that can serve as the primary operations.  Intuitively, the designer’s objective is to choose
a “basis” for all computations with the type — a set of operations that “span” the set of
computations that a client might wish to perform, yet are “orthogonal” in the sense that none is
implementable using a combination of the others.

An important question that arises here is how to characterize the set of computations that a client
may wish to perform.  One property of a truly reusable component is that not all possible uses of it
are known to the designer.  However, this does not prevent the designer from anticipating what
operations these uses might involve.  For instance, one test of functional completeness of a design
is part of the non-defensiveness corollary: It should be possible to code tests of all requires clauses
of the exported operations.  If there is no primary operation to test a particular requires clause it
should be possible to write a secondary operation that does so.  Building a defensive version of the
component as a layer on top of the more primitive non-defensive one is a possible use that a
designer should anticipate.

Two other things that can be anticipated as possible client needs are copying and equality testing for
an exported type.  In the case of a composite type such as a Stack, which holds Items of another
arbitrary type, these operations cannot be implemented without copying and equality testing
operations for the type Item.  Their abstract effects can be specified, however, in reusable form:

concept Copying_Capability
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context
parameters

type Item
interface

operation Replica (original : Item) returns copy : Item
ensures copy = original

end Copying_Capability

concept Equality_Testing_Capability
context

parameters
type Item

interface
operation Are_Equal (x : Item, y : Item) returns control

ensures Are_Equal iff (x = y)
end Equality_Testing_Capability

These concepts can be generic because RESOLVE’s specification language (like most) includes
equality as a predicate for every mathematical type.  No particular theories are needed to explain
either operation.  Any implementation, of course, will be type-specific.  By the way, the specification
of Are_Equal introduces an operation that returns control.  RESOLVE has no built-in types —
even Boolean — so what would in other languages be boolean-valued functions are called control
operations that return “yes” or “no.”  Control operations are invoked to compute conditions to be
tested in if-statements and while-loops in client programs and, like function operations in
RESOLVE that return results, are not permitted to modify their parameters.

The generality criterion implies that copying and equality-testing should not be treated as built-in
operations.  It is possible in some languages (e.g., Ada) to use default assignment and equality-
testing operators even with a private type, i.e., one whose representation is hidden from the client.
As shorthand for “y := Replica (x)” one may write “y := x”, and for “Are_Equal (x, y)” one may
write “x = y”.  However, the shorthand versions operate on concrete representations, not abstract
values, and therefore may not act as Replica and Are_Equal are specified to behave.  Assignment
may result in unintended aliasing and subsequent incorrect program behavior that copying with
Replica cannot produce; see Section 4.4.  The built-in “=” operator may return the wrong result if
the mapping between concrete representations and their mathematical models is not a bijection
(Martin, 1986); e.g., two Stacks may test unequal because their representations are not identical,
even though as abstract mathematical STRINGs they are equal.

Since relying on language primitives to do copying and equality-testing is dangerous, we
recommend that a designer anticipate at least two more possible client needs:

• A reusable abstract component should export primary operations that are adequate to
permit a client to code Replica and Are_Equal as secondary operations or, if necessary,
the component should export them as primary operations (“copying/equality-testing
corollary”).

In our experience this is a very powerful test of the functional completeness of a design and leads to
interesting components, especially for more sophisticated applications such as associative searching
(Sitaraman, 1990) and graph manipulation.

Copying and equality testing are also interesting from the language standpoint.  As noted above,
Ada permits these built-in operators to be used with private types.  A component designer can
prevent their use by declaring a type limited private, however, and we recommend this approach
(Muralidharan and Weide, 1990).  Other authors, e.g. (Booch, 1987), also struggle with this issue.
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Booch disagrees with our conclusion, declaring an exported type like Stack limited private but
noting that if a generic type parameter like Item is limited private, then the implementation of the
component may not use the built-in assignment or equality-testing operators on it.  From the
standpoint of reasoning about correctness this is precisely the reason a type parameter should be
limited private.  There might be a slight efficiency penalty for writing “y := Replica (x)” in place of
“y := x” in those instances where the built-in operators would work correctly for the actual type
involved, but there is no question about the semantic effect of the statement in the generic
implementation.  Booch’s approach  in which type parameters are declared private, not limited
private, also limits severely the composability of components.  For instance, a client cannot define
Stacks of Stacks of any type.

Eiffel permits the assignment operator to be used with any type, but its meaning is different for
built-in types than for user-defined types.  Assignment copies abstract values for built-in types but
copies references (i.e., pointers to objects) for user-defined types; a similar distinction is made for
the equality-testing operator.  The non-uniform semantics necessitated by this approach is
disturbing.  It also makes it impossible to reason about Eiffel programs without introducing a level
of indirection in the abstract mathematical models of all user-defined types, significantly
complicating formal specifications and their use in verification (Shaw, 1981).

C++ permits the built-in assignment and equality-testing operators to be used, with semantics
similar to Eiffel’s.  The component designer may (but is not obligated to) override the default
effects by providing special code for copying and equality testing of abstract values.  Again, we
suggest this always be done in C++ in order to keep reasoning at an abstract level where possible.

RESOLVE does not have the usual built-in assignment or equality-testing operators, so the effects
of Replica and Are_Equal are obtained by invoking the operations explicitly.  There is a function
assignment statement — “y := Replica (x)” is an example — but the right-hand side must be a
function invocation.  It may not be a variable.  There is no implicit copying in RESOLVE.

4.4An Example: Critique and Redesign of the Stack_Template

The Stack_Template of Section 3 embodies the classical design of a stack component that appears
— although usually without a formal specification — in a variety of modern texts, presumably as an
example of a good abstract design.  It has its formal basis in the earliest works on algebraic
specification (Liskov and Zilles, 1975) and no doubt has been used in hundreds of programs over
many years.  How does it stack up against the criteria outlined above?  Sadly, despite its historical
importance and its prominent place as probably the first potentially reusable component seen by a
computer science student, the traditional design of the Stack_Template is not a good one from the
standpoint of reuse.  There are several reasons for this conclusion.

4.4.1 Initialization and Finalization

The Stack_Template design does not satisfy the initialization/finalization corollary.  Initialization is
presumably the purpose of the New operation.  Nothing in the formal Stack_Template specification
says this, however.  Some authors, e.g., (Jones, 1988), try to augment the specification with an
additional requires clause for each operation to the effect that “s is valid.”   This also becomes part
of the ensures clause of New.  The requires clause of New becomes “s is not valid.”  This
approach is somewhat confusing but probably acceptable in an informal specification, but what
does it mean in a formal specification?  What does “validity” of a Stack s mean in the
mathematical STRING model?  There is no analogous idea on the mathematical side: A
mathematical variable has a value of its type, even if that value is unknown.  Reasoning about
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program variables as though they have the values of their mathematical models is therefore
compromised by the extra-specificational notion of “validity” of a concrete representation.

The Stack_Template also lacks an operation to finalize a Stack, thereby ruling out any
implementation that can achieve efficiency advantages by avoiding garbage collection.  Indeed there
are such representations of Stacks (Pittel, 1990).

Fixing these problems is easy.  From now on we assume that the specification of a type includes an
assertion about the initial value of every variable of that type, as is the case in RESOLVE.  A
prototypical variable of a type, which is used in the initial value assertion, is called an exemplar.  For
the Stack_Template we augment the type definition and remove the New operation, leaving us with:

concept Stack_Template
context

parameters
type Item

mathematics
theory STRING_THEORY is STRING_THEORY_TEMPLATE (math [Item])

interface
type Stack is modeled by STRING

exemplar s
initially s = EMPTY

operation Push (s : Stack, x : Item)
ensures s = POST (#s, #x) and x = #x

operation Pop (s : Stack)
requires not (s = EMPTY)
ensures there exists x : math [Item], #s = POST (s, x)

operation Top (s : Stack) returns x : Item
requires not (s = EMPTY)
ensures there exists s1 : STRING, s = POST (s1, x)

end Stack_Template

There is no need to specify the effect of finalization because it is invoked only after a Stack is no
longer needed and, therefore, has no particular effect on the abstract model of a Stack.  The
finalization operation is usually important only as a hook for a concrete component to manage its
own dynamically allocated memory.

4.4.2 Potential Completeness and Non-Defensiveness

The revised Stack_Template above requires a Stack to be non-empty before a client may invoke Pop
or Top on it.  This design therefore is not defensive.  However, it is not potentially complete.  The
component offers no way for a client to check this requires clause.  The non-defensiveness
corollary suggests that it is advisable to redesign the Stack_Template with either an emptiness test
or an equality test (but not both) as a primary operation.

With an equality-testing operation it is possible to check whether a Stack is EMPTY by comparing
it to a newly declared (initially EMPTY)  Stack.  Alternatively, with an operation to test emptiness
and the other Stack_Template operations — plus an equality-testing operation for Items — it is
possible to check whether two Stacks are equal.  The primitiveness criterion suggests the simpler
operation is more appropriate as a primary operation.  Therefore, we add a control operation called
Is_Empty, leaving us with the following design:

concept Stack_Template
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context
parameters

type Item
mathematics

theory STRING_THEORY is STRING_THEORY_TEMPLATE (math [Item])
interface

type Stack is modeled by STRING
exemplar s
initially s = EMPTY

operation Push (s : Stack, x : Item)
ensures s = POST (#s, #x) and x = #x

operation Pop (s : Stack)
requires not (s = EMPTY)
ensures there exists x : math [Item], #s = POST (s, x)

operation Top (s : Stack) returns x : Item
requires not (s = EMPTY)
ensures there exists s1 : STRING, s = POST (s1, x)

operation Is_Empty (s : Stack) returns control
ensures Is_Empty iff (s = EMPTY)

end Stack_Template

4.4.3 Choice of Primary Operations

Minimality is the principal objective in choosing a primary set from among all conceivable
operations, i.e., the set of primary operations usually should have minimum cardinality while still
satisfying the properties of primitiveness, sufficiency, and potential completeness.  To select among
many possible such sets of operations of the same cardinality, though, a designer should consider
efficiency: Which choices of primary operations lead to potentially efficient implementations of
secondary operations, and which thwart efficiency?  Sometimes it is possible to identify a set of
primary operations that dominates all others in this respect.  The Stack_Template is an example of
this.  However, the operations Push, Pop, and Top in the current design do not constitute a well-
chosen set of primary operations.

The first evidence for this conclusion is that Push and Top are potentially quite inefficient.  Notice
that there is no reason for any restriction on type Item and in fact none is specified.  A client
instantiating Stack_Template may replace Item by any program type, including simple types like
Integer or more complex types like Queue of Integers or even Stack of Integers.  The problem with
the Push operation is that it demands that x not be changed, but also demands that the (old) value of
x become the top Item of s.  The implementation of Push therefore must place a copy of x onto
Stack s.  Because type Item may end up being one whose representation is large and expensive to
copy, the Push operation may run very slowly.  Consider its execution time when x is a Queue of
Integers, for example.

A similar problem with the design stems from the semantics of the Top operation.  Again, because
Item may be any type, copying the top Item of s to return to the caller may be expensive.  This
situation is acceptable if Item is restricted to simple types such as Integer.  But if there are no
restrictions on type Item then the inherent copying designed into the Push and Top operations is
problematical.

Both efficiency problems noted above can be traced to what might be called the “copying style” of
design and programming.  This style is taught to most programmers and is encouraged by Ada ,
C++, Eiffel, and their cousins, as well as by functional programming languages.  How are stacks
designed and implemented in these languages?  Published interfaces typically mimic the original
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Stack_Template concept of Section 3 (or are very similar).  Published implementations invariably
use assignment statements and other more subtle ways to make copies of Items.  This is no surprise
— they are forced to do so by the design of the abstract interface.

Consider an Ada generic package body to implement the Stack_Template.  Suppose Stack is
declared as a private type with a typical representation — a record with two fields: contents (an
array of Items) and top_index (the index in the contents array of the top of the Stack).  Ignore the
fact that the array has a fixed maximum size while the Stack it represents can be arbitrarily large; the
same phenomenon is observed with the more complex code of a linked representation such as that
proposed in (Booch, 1987).  The code for Push, Pop, and Top might look like this:

package body Stack_Template is
...
procedure Push (s : in out Stack; x : in Item) is
begin

s.top_index := s.top_index + 1;
s.contents (s.top_index) := x; -- copying an Item

end Push;
procedure Pop (s : in out Stack) is
begin

s.top_index := s.top_index - 1;
end Pop;
procedure Top (s : in Stack) return Item is
begin

return (s.contents (s.top_index)); -- copying an Item
end Top;
...

end Stack_Template;

The comments mark where inefficiency might arise.  If the data structure representing the abstract
value of an Item is an array or a record with many fields, for example, the two commented
statements are expensive in execution time despite their deceptive simplicity.

Possibly recognizing this, some authors, e.g., (Stubbs and Webre, 1987), replace the original Pop
and Top operations with a combined operation — also called Pop but with different behavior —
producing yet another variation on the design:

concept Stack_Template
context

parameters
type Item

mathematics
theory STRING_THEORY is STRING_THEORY_TEMPLATE (math [Item])

interface
type Stack is modeled by STRING

exemplar s
initially s = EMPTY

operation Push (s : Stack, x : Item)
ensures s = POST (#s, #x) and x = #x

operation Pop (s : Stack, x : Item)
requires not (s = EMPTY)
ensures #s = POST (s, x)

operation Is_Empty (s : Stack) returns control
ensures Is_Empty iff (s = EMPTY)
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end Stack_Template

The advantage of this approach is that the implementation of the new Pop need not copy an Item.  It
simply removes the top value from s and returns it to the caller in x.  If a client program doesn’t
need a copy of this Item, then it doesn’t have to pay for making one, as it would if it called Top.

The new design is also more consistent with the general reuse guidelines.  For one thing, it has
fewer operations defined in the interface and is therefore more concise and probably more
understandable.  Furthermore, it is easy to implement the original Pop (call it Pop_And_Discard)
and Top as secondary operations using the new Stack_Template design.  Here is RESOLVE code
for them:

operation Pop_And_Discard (s : Stack)
local variables

x: Item
begin

Pop (s, x)
end Pop_And_Discard

operation Top (s : Stack) returns x : Item
begin

Pop (s, x)
Push (s, x)

end Top

This implementation of Pop_And_Discard may be slower than if it is coded as a primary operation,
but only by a small constant factor due to an extra layer of procedure call.  Top is slower by a
constant factor for the same reason.  On the other hand, if the new Pop is implemented as a
secondary operation using Top and Pop_And_Discard, then the client pays for copying an Item,
like it or not.

How does the above code for Top copy an Item?  It is done by the Push operation, which is defined
in such a way that its name should be Push_A_Copy.  This observation suggests yet another
improvement to the Stack_Template design that replaces the original operation with a new Push that
“consumes” the Item being pushed onto the Stack.  The ensures clause of Push now says nothing
about the value of x upon return from the operation, so the implementer is free to return any value
for that parameter.  It is no longer necessary to copy an Item in order to implement Push.  This
change leaves us with the following (final) redesign of the Stack_Template:

concept Stack_Template
context

parameters
type Item

mathematics
theory STRING_THEORY is STRING_THEORY_TEMPLATE (math [Item])

interface
type Stack is modeled by STRING

exemplar s
initially s = EMPTY

operation Push (s : Stack, x : Item)
ensures s = POST (#s, #x)

operation Pop (s : Stack, x : Item)
requires not (s = EMPTY)
ensures #s = POST (s, x)
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operation Is_Empty (s : Stack) returns control
ensures Is_Empty iff (s = EMPTY)

end Stack_Template

An interesting and obvious question is whether the redefined behavior of the Push operation is
really what a client program might want.  There are grounds for believing that in most uses of
Stacks it is exactly what is needed.  There is usually no reason to keep a copy of an Item that is
pushed onto a Stack.  After all, the entire idea of using a Stack is usually to keep track of
information that will be needed later in LIFO order.  A client normally does not need to have a
separate copy of that information at the same time.

Again, however, if the behavior of the original Push operation (call it Push_A_Copy) is really
needed, it is easy to layer it on top of the new Push operation without incurring a significant
performance penalty, while the converse is not true.  Here is RESOLVE code for Push_A_Copy:

operation Push_A_Copy (s : Stack, x : Item)
local variables

y: Item
begin

y := Replica (x)
Push (s, y)

end Push_A_Copy

The Stack_Template now exports only primary operations.  Secondary operations — those
identified so far are Push_A_Copy, Pop_And_Discard, and Top  — should be defined by a
separate abstract component or by an enhancement or extension of this one; see Section 5.1.

4.4.4 Swapping

A very careful reader may wonder exactly how the new Push and Pop operations can be
implemented without copying an Item.  In Ada, for example, it seems that something like the
original code still must be used, including assignment statements involving Items:

procedure Push (s : in out Stack; x : in out Item) is
begin

s.top_index := s.top_index + 1;
s.contents (s.top_index) := x; -- copying an Item

end Push;
procedure Pop (s : in out Stack; x : in out Item) is
begin

x := s.contents (s.top_index); -- copying an Item
s.top_index := s.top_index - 1;

end Pop;

The understandable but erroneous conclusion that copying Items is still necessary even with the
new abstract design is another result of our long training and experience with the copying style of
programming.  To see that there is an alternative, suppose the assignment statement of Ada is
replaced or augmented with a swap statement of the form “x :=: y” where x and y are variables of
the same type whose values are exchanged by the statement.3  The precise meaning of swapping
can be defined by imagining it is a call to a procedure with the following specification:
                                                
3 There seems to be no reason a swap statement could not be added to Ada, C++, Eiffel, or almost any similar

language with virtually no impact on the rest of the language.
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operation “_:=:_” (x : Item, y : Item)
ensures x = #y and y = #x

Push and Pop can now be coded as follows, with swap statements replacing the assignment
statements involving Items:

procedure Push (s : in out Stack; x : in out Item) is
begin

s.top_index := s.top_index + 1;
s.contents (s.top_index) :=: x; -- swapping Items

end Push;
procedure Pop (s : in out Stack; x : in out Item) is
begin

x :=: s.contents (s.top_index); -- swapping Items
s.top_index := s.top_index - 1;

end Pop;

What is the advantage of swapping over copying?  It seems at first glance as if swapping two Items
must be as expensive in execution as three assignment statements.  For Items whose
representations are large and complex, swapping seems three times less efficient than copying.

However, notice that the desired semantic effect of swapping two abstract values can be achieved in
implementation simply by swapping pointers to the data structures that represent those values; see
Fig. 3.  This means that if a compiler (without the knowledge of the programmer) adds an extra
level of indirection to all variables whose representations are larger than a pointer, then the swap
statement can always be compiled into code that takes exactly three pointer move instructions in a
typical instruction set.  Swapping two Items therefore can be implemented to run in a (very small)
constant amount of time, regardless of how large or complicated the representations of those Items
might be.  Moreover, the same code that swaps two Items also swaps two Stacks or any other pair
of values of the same type.

The universal efficiency of swapping has interesting implications.  First, it is better to design
operations whose implementations can swap values rather than copying when those values might be
of arbitrary types.  For example, an operation to access a value in an array can be designed so that
the array is modified in the process, by swapping the value in the indexed position with one of the
arguments to the procedure.  The usual fetch and store operations are secondary operations with
this design.  Using swapping rather than assignment as a built-in operation leads to a slightly
different programming style than for other Pascal-like languages.  It is rather easy to learn, though,
because it is a minor variation, and it usually results in more efficient programs than can be
produced by using previously published designs for the components involved.  We have designed
dozens of concepts using the swapping style and have found that a couple of new programming
idioms are all that one needs to learn in order to feel comfortable with it (Harms, 1990).
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FIG. 3.   Abstract View and Implementation of Swapping.

4.5Chasing Efficiency at the Expense of Correctness

Before leaving the question of implementation guidelines we consider another obvious, popular, and
(in some circles) explicitly recommended approach to removing the inefficiency of copying large
Item representations:  Represent a type as a pointer to the data structure that represents the abstract
value (SofTech, 1985; Booch, 1987).  Most programming languages encourage this.  The
terminology of Ada even gives the impression that a client programmer does not have to see the
“private” part of a package specification because the choice of a type’s representation does not
matter from the standpoint of functionality.  This is not true.  In fact the inefficiency of the Ada
code implementing the original Push and Top operations in Section 4.4 is the good news about it.
The bad news is that it may be incorrect.  It mistakenly assumes the assignment statement “y := x”
always has the same effect as “y := Replica (x)”.

Here is the code in question:

package body Stack_Template is
...
procedure Push (s : in out Stack; x : in Item) is
begin

s.top_index := s.top_index + 1;
s.contents (s.top_index) := x; -- copying an Item (?)

end Push;
...
procedure Top (s : in Stack) return Item is
begin

return (s.contents (s.top_index)); -- copying an Item (?)
end Top;
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...
end Stack_Template;

To see the problem, consider Stack_Template instantiated as follows in a client program:

package Stack_Of_Ints is new Stack_Template (Integer);

This package instantiation replaces Item in generic package Stack_Template with the built-in type
Integer, to define Stacks of Integers (type “Stack_Of_Ints.Stack”).  Now consider the following
variable definitions:

i1, i2: Integer;
si1, si2: Stack_Of_Ints.Stack;

The abstract effect of the assignment “i1 := i2” is of course that, afterward, i1 has the same abstract
value as i2, and i2’s value is not changed.  The implementation of the assignment statement is that a
copy of the representation of the abstract value of i2 is made and becomes the representation of the
abstract value of i1.  A subsequent change to i1 by, e.g., “i1 := i1 + 53” has absolutely no effect on
the abstract value of i2.  This matches our intuition about what an assignment statement does.  We
expect “si1 := si2” to have a similar abstract effect.  The abstract value of si1 (a mathematical
STRING) becomes equal to the abstract value of si2, which does not change.  A subsequent change
to si1 by, e.g., “Push (si1, i1)” has no effect on the abstract value of si2 just as it has no effect on
the abstract value of i2 — even if it follows the statement “i2 := i1”.

All this is true if the representation of type Stack is the one first hypothesized for the private part of
Stack_Template, i.e., a record with two fields.  It is not true, however, if the representation of type
Stack is a pointer to such a record.  Then the assignment of a Stack variable copies only this
pointer, not the record to which it points.  Of course this is efficient compared to copying the record
but it leads to incorrect abstract behavior.  Following “si1 := si2” the statement “Push (si1, i1)”
results in the abstract values of both si1 and si2 being changed.

The effect of copying only a pointer to the representation data structure, not the data structure itself,
is known as aliasing or structural sharing.  It is a situation in which a data structure is known by
two or more different names.  If the effect of aliasing that occurs inside a component is visible in
the client program — if it manifests itself as a “linkage” between two variables that is not
explained in the abstract mathematical model used to reason about the behavior of those variables
— then it is easy to write programs that appear to work but are really incorrect.  Code walk-
throughs and testing can easily fail to identify aliasing errors because the implicit linkage between
variables may arise only in certain circumstances, only for certain types used in generic package
instantiations, or only in certain combinations or sequences of statements.  The aliasing problem is
not unique to Ada, of course, but arises in every language that has pointer types (Meyer, 1988).  In
fact, (Hoare, 1983) remarks that because of aliasing, “introduction [of pointers] into high-level
languages has been a step backward from which we may never recover.”

Notice that swapping does not introduce aliasing even though representations involve compiler-
introduced pointers in order to permit efficient implementation of the swap operator.  In RESOLVE
the language rules completely prevent implicit aliasing (which in most other languages can also
occur as the result of constructs other than the assignment statement, e.g., parameter passing).  Like
all other types, pointers are not built-in but are exported by formally specified concepts in order to
permit careful reasoning about program behavior.  The undeniably advantageous efficiency effects
of aliasing that can be achieved by disciplined and judicious use of pointers in other languages are
obtained in RESOLVE by encapsulating clever pointer tricks into reusable abstract components
(Pittel, 1990).
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5. Other Issues

While space limitations prevent detailed treatment of other important issues related to design and
implementation of reusable software components, we briefly discuss two more significant problems
that affect reuse.  Both demand additional attention before they can be considered to be solved.

5.1Defining Context

What else could be worse than not reusing software?  A not-quite-suitable component might be
available — one with no hope of adaptation to the specific needs of the client.  On the surface the
main problem here may seem to be the frustration experienced by the client.  However, such
predicaments over time will lead to a software components industry with a proliferation of concepts
that differ only in minor ways.  There will be an even greater proliferation of concrete components.
This can only lead to confusion about which components do what, to questions about why they are
considered different, and to a net reduction in reuse compared to a more structured situation.  A
client in this world may spend an inordinate amount of time trying to locate and understand
available reusable components only to end up starting over from scratch.

Relatively minor differences among similar abstract components and among similar concrete
components are considered in the 3C model as part of the context of concept and content,
respectively.  Stated in these terms, the success of a software component industry will be based
partly on the following requirements:

• The approach and language for specifying an abstract component must include
mechanisms to permit concept adaptation (i.e., behavioral adaptation) by the client
through the use of conceptual context.

• The approach and language for implementing a concrete component must include
mechanisms to permit content adaptation (i.e., performance adaptation) by the client
through the use of implementation context.

One of the problems with a proliferation of components is the increased difficulty of searching
through them to find a particular behavior of interest.  There has been considerable work in this area
recently.  Some researchers classify components using standard methods from library science,
while others draw on techniques from artificial intelligence (Prieto-Diaz, 1987).  The underlying
motivation for such efforts is the belief that a useful catalog of reusable components will be so large
that it will be difficult for a typical client programmer to find anything in it without sophisticated
computer assistance.

The need (as opposed to the opportunity) for computer-assisted searching among reusable
components is dubious.  Indexing reusable concepts on the basis of abstract functionality within
application domain, and then organizing the variety of concrete components that implement each
concept on the basis of performance and similar attributes, results in a natural hierarchy that should
keep a typical client’s search space quite manageable.  Furthermore, a large factor reduction in the
size of that space can be achieved if there are effective mechanisms for parameterizing the context of
both concept and content (Edwards, 1990).  For example, the “Booch components” in Ada
(Booch, 1987) include over 20 variations and implementations of essentially a single concept: stack.

Both the ease of locating reusable abstract components and client understanding of the ones that are
found are influenced by an ability to factor context from concept.  Similar benefits are available on
the concrete component side.  For example, suppose a client program needs both stacks of integers
and stacks of characters.  If a single flexible concrete component implements these two obviously
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related concepts then the client wins on two counts.  First, he/she only has to purchase a single
adaptable concrete component rather than two more specialized concrete components.  Second, the
total volume of object code in the client’s product is smaller if these two variations of stacks share
code.

As suggested above, there are really two distinct kinds of context: fixed and parameterized.  Both
kinds of conceptual context are illustrated in the Stack_Template.  An example of fixed conceptual
context is the declaration of the theory of mathematical STRINGs to explain Stacks in the
Stack_Template.  A client has no choice in the theory that is used in the specification.  On the other
hand, the client is permitted to choose the kinds of Items that will be stored in a Stack; this is
parameterized conceptual context.  A similar distinction exists on the implementation side, where a
typical concrete component relies on some fixed implementation context (e.g., context brought in
using the Ada with clause) as well as on client-supplied generic parameters.

Design for reuse implies that both functionality and performance should be as adaptable as
possible.  Technically, this means that the designer of a basic reusable component should strive to
make context parameterized rather than fixed.  Marketing concerns in the software components
industry may result in purchased components that are easy-to-understand and/or easy-to-instantiate
specializations of underlying reusable concepts and implementations that are highly parameterized
(Musser and Stepanov, 1989).  This kind of adaptation will be done by the supplier, not the
purchaser, but it will still rely on methods for factoring context from concept and content, and on
mechanisms for parameterizing context.

The two most important language mechanisms that have been developed for this purpose are
genericity and inheritance (Meyer, 1986).  Both have been widely adopted in practice through their
incorporation into practical programming languages, but in their current forms they remain
disturbingly unsatisfactory in principle.

5.1.1 Genericity

The Stack_Template example used throughout this chapter is generic, i.e., it is parameterized by the
type Item.  In effect the Stack_Template is a schema, or pattern, or template — hence its name —
for a family of reusable abstract components.  A client is responsible for creating an instance of the
schema by substituting an actual type for the formal type parameter Item.  The mathematical
theories for STACKs and STRINGs introduced in Section 3 are generic in the same sense,
although the term is ordinarily used to describe program concepts rather than mathematical theories.

The limits of genericity as a mechanism for parameterizing context are not well understood
(Sitaraman, 1990).  This is partly because the extent to which a language supports genericity has a
tremendous influence on the power of the idea.  C++ does not have genericity and Eiffel uses it
only to parameterize types, as we have seen here.  Ada and RESOLVE extend genericity in
important ways beyond type parameterization and give the flavor of the potential power of the
mechanism (Musser and Stepanov, 1989).

Reusable Ada components are most easily designed as packages.  Each package has a header, called
a “package specification,” that defines the syntax of its interface.  It has a separately compilable
“package body” that defines the implementation.  A parameterized package is called a “generic
package.”  Parameterization by a type is only one of the ways a component can be generic in Ada.
Values and program operations may also be used as generic parameters.  For example, using the
style of design described in Section 4, a designer might write the following generic package
specification in Ada:

generic
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type Item is limited private;
with procedure Initialize (x : in out Item);
with procedure Finalize (x : in out Item);
with procedure Swap (x, y : in out Item);

package Stack_Template is
...

end Stack_Template;

One problem with Ada generics is that no semantic information is provided to restrict the actuals
that may be substituted for formal generic parameters (Livintchouk and Matsumoto, 1984).  It is
possible for a client to instantiate a package with any procedures that have the calling signatures of
the corresponding formals.  For instance, the initialization procedure for type Item can be passed
legally for both Initialize and Finalize in the example above because they have the same structural
interface.  This problem is attributable to Ada’s lack of an associated specification language.
However, it suggests that an effective mechanism for parameterizing context should include not
only program parameters but mathematical parameters that can be used to explain the behavior of
the program parameters.

RESOLVE contains integrated specification and implementation languages in which both
mathematical and program ideas may be passed as generic parameters.  Formal generic program
parameters must include explanations of their expected behavior, and this is often expressed using
other (mathematical) generic parameters.  An ordinary compiler cannot check that an actual
parameter has the proper behavior, but proof rules of the language permit a verifier to do so in order
to guarantee that a program is not certified as correct if it contains a component that is improperly
instantiated (Krone, 1988).

Another interesting aspect of Ada generics is that there is no distinction between conceptual and
implementation context.  The type Item above is required to explain Stacks, but procedures
Initialize, Finalize, and Swap are needed only to implement Stacks.  If any conceivable
implementation of a concept needs an operation involving the types of other generic parameters,
then that procedure also must be listed as a generic parameter in the package specification.

While the seriousness of this problem is not evident from the Stack_Template example, consider
the “abstract” design for a reusable set concept reported by (London and Milsted, 1989).
Although it is written in Z and has no connection whatsoever to a particular implementation
language such as Ada, the specification includes a hash function in the abstract component
interface.  All the set operations are explained by their impacts on a hash table, even though this is
only one possible representation for sets.  The authors note that the Smalltalk sets upon which their
design is based are implemented using hashing, but do not apologize for the violation of abstraction
or its inhibiting effect on reusability.  In fact, they state that the objective of the Z specification is to
“model essentially all the details of an industrial-strength implementation of sets.”  In this case the
inability to separate conceptual from implementation context seems to have contributed to the
unnecessary mixing of concept and content.

To see that a hashing function need not participate in this abstract component’s specification,
consider a similar concept called Partial_Map_Template by (Sitaraman, 1990).  This abstract
component captures the idea of associative searching by modeling a search as the evaluation of a
partial function from type Domain to type Range.  These types are the only conceptual parameters.
As with sets, one possible implementation of the Partial_Map_Template is to use hashing, another
is to use a binary search tree, and there are many others.  The first implementation needs an
operation to compute a hash function given a value of type Domain, while the second needs an
operation to compare two Domain values with respect to some total order.  In Ada, both of these
operations must be additional parameters listed in the generic package specification even though
neither is necessary to explain the abstract behavior of the Partial_Map_Template.  Otherwise the
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concept cannot support these two functionally indistinguishable concrete components that might
implement it.  If other possible representations might involve other operations on Domain or Range
values they also must be added to the concept’s generic parameter list.  An alternative in Ada is to
have separate package specifications for each implementation, but this suggests that there are
multiple concepts when in fact there are multiple implementations for a single concept.

In RESOLVE there are separate syntactic slots for conceptual context (as seen in Section 3) and for
implementation context.  A client of Partial_Map_Template who instantiates the hashing
implementation provides a hash function; one who instantiates the binary search tree
implementation provides a comparison function.  The jury is still out on how a component designer
or supplier should use this mechanism to trade off between complexity and flexibility of client
parameterization, but it seems clear that separate parameterization of concept and content is
important for reuse in the 3C model and in the components industry scenario (Sitaraman, 1990).

Compared to most languages Ada has a rather comprehensive mechanism for generics, but it does
not allow a package to be a generic parameter.  However, RESOLVE does permit instances of
concepts to be parameters to other concepts and to implementations.  This is necessitated by the
need to perform strong compile-time type-checking, and it facilitates composition of components
that otherwise would have to be designed in violation of the low-coupling guideline (Harms, 1990).
Other interesting frontiers of genericity are explored by (Sitaraman, 1990).

5.1.2 Inheritance

Inheritance is widely considered another promising approach to factoring context from concept and
content.  Inheritance is a way of defining a new component as a variation on an existing one (in the
case of multiple inheritance, two or more existing ones).  A hierarchy of components is defined by
identifying, for each new component, the existing components to which it is related through
inheritance.  A new component is usually an extension of its parent(s) in the hierarchy in that it
provides the same services and possibly more.  There are two important relationships between
components in a system based on inheritance.  One is the usual client-component relationship in
which the client uses a component by invoking its services.  The other is the inheritance relationship
in which a component (the heir) inherits from its ancestors.

Language specifics are again very important influences on the manner in which one thinks about
and uses inheritance.  C++ has single inheritance, whereas Eiffel offers multiple inheritance.  Ada
does not provide an inheritance mechanism.  RESOLVE offers a limited form of inheritance called
enhancement.  The Eiffel view of inheritance is the basis for most of the discussion that follows.

Inheritance may be used in several ways (Meyer, 1988).  First, in Eiffel as in most languages with
inheritance, there is no explicit separation of concept from content.  However, it is possible for a
component’s operations to be “deferred”; C++ has a similar notion called “virtual.”  A deferred
operation has no code to implement it.  It is a placeholder for the name of an operation that an heir
must define in order for execution to be possible.  For example, in the case of the Stack_Template
concept we might define a class in which all the operations are deferred.  One heir of this class
might represent Stacks using arrays, another might use lists.  The parent class stands for the
concept while the two heirs provide alternative ways of implementing its content, as shown in Fig. 4.
This use of inheritance can be considered a way to separate concept from content and to relate them
in the obvious way.
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Stack_Template

Stack_Using_Array Stack_Using_List

FIG. 4.   Using Inheritance to Separate Concept from Content.

Another important use of inheritance is to change (presumably slightly) the functionality and/or
implementation of an existing component.  An heir is permitted to see the internal representational
details of its ancestors’ data and operations.  It may extend an ancestor by adding new data
representation features, by adding code for new operations, and/or by overriding (in effect
replacing) the existing code for some or all of the ancestors’ operations.  However, an ancestor may
not be changed directly in order that its clients remain unaffected by the addition of heirs.  This use
of inheritance may be considered to have two distinct purposes: to define a new concept by
describing its relation to existing abstract components (which then constitute its conceptual context),
or to define new content by taking advantage of its relation to existing concrete components (its
implementation context).  The first purpose is sometimes called type or specification inheritance
and the second implementation or code inheritance.

Inheritance therefore does triple-duty:  It is used to separate concept from content, concept from
conceptual context, and content from implementation context.  Its role as a single language
mechanism that supports three important objectives is part of the appeal of inheritance.  However,
there is reason to suspect it may not do particularly well at any of them precisely because it must be
adequate for all three.  For instance, it has been noticed that the latter two purposes tend to conflict
(LaLonde, 1989).  An inheritance hierarchy that effectively separates concept from conceptual
context seems only vaguely related to a hierarchy that effectively separates content from
implementation context.  There could be two different inheritance hierarchies, one for specification
inheritance and one for code inheritance, but we do not know of a language in which the details of
such a split have been worked out.

There is even some doubt about whether code inheritance should be permitted at all.  A serious
problem with it is that a concrete component’s implementer must understand the implementation
details and subtle representational conventions of all of its ancestors in order to implement that
component correctly.  Unless care is taken it is possible to introduce components that seem to work
properly yet, by manipulating their ancestors’ internal data representations, violate subtle and
implicit conventions that the ancestors require for correctness.  Information hiding is thus
compromised (Snyder, 1986; Muralidharan and Weide, 1990).  Moreover, source code for
ancestors must be available in order for new components to inherit code from them.  This situation
is not likely to be viable in a mature software components industry.  In fact, some authors have
recently concluded that code inheritance should be abandoned altogether because it actually
discourages design for reuse (Raj, 1990) and because its advantages largely can be obtained —
without the disadvantages — through effective use of parameterization (Raj and Levy, 1989;
Muralidharan and Weide, 1990; Sitaraman, 1990).

Few similar objections have been raised to specification inheritance, which continues to seem
attractive as a way of relating a new concept to existing ones.  The challenge is to achieve this
objective without introducing a high degree of coupling among concepts comparable to the high
degree of coupling among implementations that arises from code inheritance.  With specification
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inheritance a client must understand the behaviors of all of a component’s ancestors in order to
understand that component.  One possible solution to this problem is to try to keep the inheritance
hierarchy looking like a forest of fairly short and independent smaller hierarchies.  This
characterization does not describe the inheritance hierarchies of component libraries currently in use
in inheritance-based systems, however.

Recognizing the difficulties with code inheritance and the importance of concept hierarchies that are
short and independent of each other, RESOLVE includes two different mechanisms that have the
same benefits as a restricted form of specification inheritance.  The first is generic parameters that
are instances of concepts.  Using this kind of genericity it is possible, for example, to specify an
operation that can be used to convert, say, a Stack from any representation to any other.  The
implementation of this conversion operation can be layered on top of the Stack_Template so it
works no matter what underlying representations are involved.  Other interesting uses of genericity
are explained by (Harms, 1990; Sitaraman, 1990).

A new concept also may be defined as an enhancement of another.  For example, if an operation to
reverse a stack is needed, the final Stack_Template of Section 4.4 may be augmented with a new
concept:

concept Reverse_Extension enhances Stack_Template
interface

operation Reverse (s : Stack)
ensures s = REVERSE (#s)

end Reverse_Extension

The conceptual context of Reverse_Extension is all of Stack_Template, including the mathematical
machinery declared there.  Assuming String_Theory includes the definition of REVERSE
(although it is not shown in Section 3), the specification of the Reverse operation for Stacks is easy.
Reverse may be implemented as a secondary operation by layering on top of the Stack_Template
operations.  It is also possible to build a new concrete component for the combined concept
“Stack_Template with Reverse_Extension” by implementing the original Stack_Template
operations plus Reverse in such a way that all operations have access to the concrete representation
of Stacks.  This can result in more efficient execution.  For example, Reverse can be implemented to
run in constant time rather than linear time even as the other operations suffer only a small constant-
factor performance degradation.  Any other composite concept may be created by mixing and
matching the possibly many enhancements of a basic reusable concept.  The composite concept
may be implemented by layering using secondary code for the enhancements, or by reimplementing
the entire composite concept.

While this approach does not offer all of the flexibility of inheritance, it avoids the most serious
disadvantages and offers a few advantages of its own.  It is too early to tell whether the trade-off is a
good one.  More examples and more research are needed to clarify the many issues involved in
separating context from concept and content.  Some particular problems of interest include
investigation of the interactions among the three uses of inheritance, the extent to which they
conflict from the standpoint of reuse, and the general difficulty of managing the details of highly
parameterized context of sophisticated reusable components.

5.2Certifying That Content Correctly Implements Concept

What else could be worse than not reusing software?  An incorrect concrete component might be
chosen — one that is not a correct realization of the corresponding abstraction.  Clients of reusable
software components, like those of electronic components, will expect the parts they purchase to
work correctly.  An electronic component, even after exhaustive testing of the logical design, might
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fail because of physical defects introduced in the manufacturing process.  Presumably failures of
software components will be attributable mostly to logical errors in implementation or coding.  This
suggests that an auxiliary industry of component certifiers might arise.  Perhaps manufacturers,
clients, and/or standards bodies will develop an independent “Underwriters’ Laboratory” for
software components.

A viable software component industry therefore will demand that:

• A concrete component must be certifiably trustworthy, i.e., it must correctly implement
the corresponding abstract component.

At first glance it appears there are two alternative approaches to certifying that a particular content
faithfully implements the corresponding concept.  Verification (also called proof of correctness) is
a formal demonstration that the code implements what the formal specification demands.  There are
two parts to such a proof: showing that the implementation is correct if a call to an operation
returns, and showing that it does in fact terminate.  Testing is done by running an operation on test
data and inspecting the results to see that it actually does what is intended.  Of course, this is only
possible when the operation does return.

The terms verification and testing as used here should not be confused with the terms “verification
and validation” that have been used to describe similar but not identical processes by, e.g.,
(Wallace and Fujii, 1989).  Like many technical words, these terms have slightly different meanings
in different sub-communities of software engineering.

The view that both verification and testing are suitable for certifying that content correctly
implements concept does not tell the whole story.  Fig. 5 illustrates the informal and formal aspects
of a typical abstract component A and one concrete component C that implements it.  Both A and C
are written in a formal language with well-defined syntax and semantics.  Section 3 explains why
this must be so for A, and most computer scientists are already comfortable with the idea that an
implementation language can be treated formally.  The figure also shows the natural language
description R — perhaps a metaphorical explanation as discussed in Section 3 — of the intuitively
required abstract behavior which is (supposedly) defined formally in A.  Finally, it shows the
observed execution behavior E of the implementation defined formally in C.

 A 

C 

Intuitively
Required
Behavior

(R)

Observed
Execution
Behavior

(E)

FORMALINFORMAL

FIG. 5.   Informal and Formal Aspects of a Software Component.

A central issue in certification of correctness is to demonstrate that the “is correctly implemented
by” relation (denoted by the arrow from A to C) holds.  With the appropriate mathematical
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machinery this is a formally-defined property relating two formally-defined entities.  If it can be
proved that the relation holds, this fact is demonstrable by a formal process of symbol manipulation
following well-defined rules of logic.  Such a proof is mechanizable, or in practice at least
mechanically checkable.  Every step is justified by application of some rule in an entirely syntactic
process.  No mathematicians have to vote on whether the resulting proof has been constructed
properly.

The client of a software component will also wish to know that the two dashed arrows in Fig. 5 are
“correct.”  Showing this is another matter entirely.  The top arrow means that requirement R “is
captured by” specification A.  This is a somewhat vague property relating an informal behavioral
description to a formal one.  At best we can hope to make a believable, rigorous, but nonetheless
informal argument that the relation holds.  Similarly, the other dashed arrow means that program C
“is expected to behave as” observation E.  Again, we can hope to argue that this is so but not prove
it formally.  The case is based on arguments that the formal semantics defined for the
implementation language match what a reader of the code intuitively expects, that the compiler-
generated code also matches this expectation, and even that the hardware will not be unplugged
while the client is executing the component.  Some of the links in this chain are not subject to
formal proof methods.

The question of the roles of verification and testing has recently been debated in the open literature
with a fervor reminiscent of a religious argument; see (Fetzer, 1988) and letters to the editor in
subsequent issues of Communications of the ACM.  The spirit of the exchange is similar to one
prompted a decade earlier by (DeMillo et al., 1979).  Several points are important here.  First,
verification is not a cure for bad programming.  It is a formal way of capturing the informal
reasoning about program behavior that a programmer must be able to undertake and to understand
in any case.  If one can reason informally — and correctly — about a program’s behavior, then in
principle that reasoning can be formalized.  Equivalently, if formal verification of a program is
difficult or impossible then so is rigorous informal reasoning about its behavior.  The question of
whether a programmer ought (in principle if not in practice) to be able to verify his/her program is
therefore tantamount to the question of whether he/she ought to be able to reason about it and
understand it.  Few would argue that this is a superfluous or incidental activity.

Second, in the terms of Fig. 5, verification should be considered a way of certifying that C correctly
implements A.  It deals only with the formally-defined products of the software engineering process
and formal relationships between them shown on the right side of Fig. 5.  Verification cannot —
and should not purport to — show that the formal specification of behavior in A captures the
requirement that is intuitively stated in R, or that in actual execution E the concrete component
behaves as it is coded in C.

Third, verification refers to a formal process of symbol manipulation according to well-defined
proof rules associated with the formal languages used to write abstract behavioral specifications and
concrete implementations.  The literature contains examples of programs that have been “proved
correct,” only later to be shown erroneous in some respect.  In the setting of Fig. 5, the reason for
this discrepancy is generally that the so-called “proofs” are necessarily informal arguments about
the correctness of C relative to R, not relative to A.  These arguments are written in natural language
and, like the informal behavioral descriptions they deal with, are ambiguous and subject to
misinterpretation and misunderstanding.  Such arguments by definition are not program
verifications.

Finally, testing is usually treated as a method for checking the composite relation that E matches R.
Even if a formal specification is available to test against (Gannon et al., 1981; Gourlay, 1983), the
best that testing can do is to check E against A.  It has been noted that testing can only show the
presence of errors, not their absence (Dijkstra, 1972).  In fact, though, if defects are discovered by
testing they may be almost anywhere: in the translation of R to A, in the implementation of A by C,
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in the execution of C producing E, or in the comparison of R to E.  A problem detected in testing
therefore does not even imply the presence of an error in the implementation C.  On the other hand,
given that C has been certified to implement A correctly (i.e., where this has been shown by
verification) testing may be able to increase confidence in a conclusion that R is captured by A
(Gerrard et al., 1990) and/or that the actual execution E is what should be expected of C.
Verification alone cannot do this.

Verification and testing therefore can be viewed as important complementary (not competing)
techniques essential to the development of a mature software components industry.  Advances in
these areas, however, generally have not been applied to reusable software until very recently.
Therefore, existing reusable components typically are accompanied by no certification of
correctness of implementation.  Of course certification is complicated by the lack of formal
specifications, since without them it is impossible to know whether a concrete component is in fact
behaving properly.  Even with formal specification the problem is very difficult because the
techniques necessary to verify correctness are not yet well-developed, and they generally have not
been applied to programs with complex modular composition and non-trivial data structures.

5.2.1 Verification

In the same way that reusability of software justifies the cost of engineering it to be efficient and
flexible, it also justifies what may turn out to be an even higher cost for verifying it.  If software is
to be relied upon heavily, as a reusable software component surely will be, it is vital that it be
completely correct.  This is a challenging issue because although there has been work on program
verification for over twenty years, starting with (Floyd, 1967; Hoare, 1969), there are still few
programs whose correctness has been — or could be — formally verified.  The paper in which
(DeMillo et al., 1979) claim they can “only try to argue against verification, not blast it off the face
of the earth” seems to have had a more chilling effect than the authors humbly imagined.  From
about the time of that paper until now there has been relatively little activity on the verification front
in general.

However, the more recent work, including some related to Alphard (Shaw, 1981), Modula-2 (Ernst
et al., 1982), Ada/ANNA (Luckham et al., 1987), and Larch/Ada with an interesting subset of Ada
(Guaspari et al., 1990), bears directly on the verification of reusable components.  It follows the
general lines of decade-earlier efforts but concentrates on modularity of proofs and programs and
on examples comparable to those envisioned as implementations of non-trivial reusable
components.  At this point, in fact, there is every reason to be optimistic about the prospects for
verification of reusable components and their clients’ uses of them, even if not arbitrary programs.

One of the main reasons for optimism is that when abstract components are specified as in Section
3, client code becomes much easier to verify because the verification factors nicely along component
boundaries.  If the more sophisticated components are implemented in layers on top of simpler
ones, then it is relatively easy to verify each of the pieces, as contrasted with the verification of a
monolithic program of similar size or complexity (Shaw, 1983; Krone, 1988).  This finding is
contrary to the claim of (DeMillo et al., 1979) that “there is no reason to believe that a big
verification can be the sum of many small verifications.”  The reason verifications are
comparatively simple in this setup is that the mathematical language used for specification at
successive levels in the hierarchy of components changes appropriately as we move up. At the
bottom the specifications may be talking about integers and cartesian products, while at higher
levels they may be expressed in terms of functions, sets, strings, graphs, equivalence relations, or
whatever mathematical structures are appropriate.

The fact that a concept may be described in one mathematical theory, while its content may involve
lower-level concepts described in completely different theories, implies that an implementation must
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include a formal description of the correspondence relation between the abstract mathematical
model that explains the concept and its concrete representation.  Because they lack integrated
specification languages in which to write abstract behavioral descriptions, and because they were not
designed to support verification, Ada, C++, and Eiffel have no place in which to express such a
correspondence.  RESOLVE implementations have a syntactic slot in which the implementer must
state this assertion.  The proof system for RESOLVE uses the correspondence clause to elaborate
the conceptual specifications of each operation into the mathematical language in which the
operations in the implementation code are specified.  This elaboration is done entirely at the
syntactic level (something better done by machine than by a human), and it is performed only once
for each concrete component (Krone, 1988).

The potential payoff of factoring in terms of simplifying presumably many proofs of client
programs that instantiate a reusable concept is substantial (Musser and Stepanov, 1989).  However,
considerable additional work is needed before mechanical verification, or even mechanical checking
of program correctness proofs, becomes practical on a large scale — even for the special case of
reusable components.  Some of the problem lies in the area of mathematical theorem proving, some
in the area of proof rules for programming languages that support reuse.  We hope that the current
philosophical flap over the utility of verification does not have the same negative impact on research
in this area that was observed the last time such a controversy arose.

5.2.2 Testing

Testing, like verification, has been investigated for many years, but again only recently with respect
to software components like those considered here.  One of the first published techniques of this
kind is described by (Gannon et al., 1981), who introduce a method called DAISTS to test a
component against its algebraic specification.  The axioms are equations that define functions that
are directly implemented by program operations.  They include axioms for an EQUAL function.  A
variety of test points are chosen for each axiom and that axiom is “executed” on each one, i.e., both
sides of the equation are evaluated by composing operations as required.  Whether the equation
holds is then checked using the Equal operation on the two results.

There are several problems with this method, some obvious and some more subtle.  For example,
(Gannon et al., 1981) note that an (erroneous) implementation of the Equal operation that does not
compute the EQUAL function but always returns “true” results in tests that never find defects.
More fundamental problems are noted by (Hegazy, 1989), who demonstrates how the method can
be blind to implementation errors even when the Equal operation is apparently correct.  Specifically,
it is possible to have implementations that pass all of DAISTS tests for every axiom and for every
possible test point, yet would fail if the tests included certain theorems that are derivable from the
axioms using the rules of the logic of the specification language.  Such implementations cannot be
proved correct by verification, but no amount of testing of the axioms alone can reveal an error.

DAISTS tests compositions of operations because the effects of compositions are specified in the
algebraic approach.  This is at the heart of the difficulty noted above.  There are also methods for
testing reusable components having model-based specifications.  Here the operations can be tested
individually, making traditional program testing results and techniques appear more directly
applicable.  For example, (Liskov and Guttag, 1986) note the importance of path coverage in testing
components.  Other conventional test data adequacy criteria involving control flow and data flow
can also be adapted for use with reusable components having model-based specifications.
Surprisingly, it has been observed that there are differences between the relative theoretical power of
these criteria when applied to formally specified reusable components and their relative theoretical
power when applied to ordinary programs written in conventional languages (Zweben, 1989).
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Several other interesting issues related to testing of reusable components are investigated by
(Hegazy, 1989).  For instance, there is a question of “observability”: How can the value of a
variable with a hidden representation be observed in evaluating the outcome of a test?  In traditional
testing one simply prints out the values of program variables and assumes that the language’s built-
in print routine works properly.  For instance, a 32-bit Integer’s representation is displayed in the
form of a decimal number that can be interpreted as its mathematical model.  Similarly, a Stack
should be displayed in the form of its abstract model (a mathematical STRING).  But who writes
the operation that does this?  How does that operation affect the Stack being displayed?  Displaying
the value of an exported type ordinarily is not a primary operation, but if it is coded as a secondary
operation layered on top of the primary operations then errors in the primary operations or in the
implementation of the display operation can manifest themselves in bizarre ways that impact the
integrity of the testing procedure.

There are many other questions that need to be answered in order to make testing of reusable
components possible (Hegazy, 1989).  Assuming that important test cases can be identified, how
can variables be driven to have the desired values?  For some types that might be defined by
reusable components it is not obvious how to do this.  What instances of a generic component
should be tested?  Can the usual test data adequacy criteria be adapted to answer this question?
There seem to be more questions than answers in these areas.

As noted above, testing and verification are complementary techniques for certification of
correctness.  They seemingly can be combined synergistically.  One interesting connection is that
language support for component verification and testing seem to require similar constructs.  The
component testing method proposed by (Hegazy, 1989) depends on two important language
mechanisms of RESOLVE that permit the programmer of a concrete component to write a special
model operation that displays the value of an exported program type in the form of its abstract
mathematical model, not in terms of its internal representation.  Language constraints prevent the
implementation of this operation from disturbing the internal representation, which is important in
testing.  It turns out that the same constructs allow a programmer to mix into the code what are
known as adjunct variables: purely mathematical variables that do not participate in program
execution, but that simplify the statement of correspondences and other assertions.  Adjunct
variables have previously been shown to be important in verification (Krone, 1988).

6. Conclusions

Reusable software components have long appeared to be potentially attractive weapons in the war
on the “software crisis.”  However, they have not yet proved to be as valuable as their counterparts
in more mature engineering disciplines.  There are a variety of non-technical and technical reasons
for this phenomenon.  We have reported on a number of recent inroads into answering the technical
questions, which are summarized below.

In Section 2 we have explained a specific model of component-based software structure as the
foundation for discussion.  This model, recently dubbed the 3C reference model, emphasizes the
importance of separating concept (what a component does) from content (how a component works).
It further distinguishes intrinsic concept and content from context (environment of a component).
In the 3C model there are two kinds of components: abstract and concrete, corresponding to
concept and content, respectively.  Each abstract component admits many different concrete
components that realize its abstract behavior.

One of the reasons for postulating a specific model of software structure is the need to sketch a
vision of a mature software components industry.  Any long-term viable approach to software
component reuse must relentlessly pursue the ultimate goal as well as intermediate milestones.  A
key point here is our conclusion — based on technical, economic, and legal grounds — that a
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software components industry eventually will be based on formal specification of abstract
component behavior and the general unavailability of source code to concrete component clients.
For some programmers the absence of source code for components seems virtually impossible to
comprehend.  In fact, we have faced considerable resistance to the suggestion that it is as potentially
beneficial as it is inevitable.  There are already pockets of programmers writing commercial
software for whom the absence of source code for components poses no serious problem, though.

Based on this likely long-term scenario, we have discussed in Section 3 some approaches to formal
specification of functional behavior of reusable components.  The two major contenders, which are
usually called the algebraic and model-based approaches, are more alike than at odds.  They are
really differences in style.  Recent developments and personal experience in teaching computer
science students as well as practicing software engineers lead us to predict that the model-based
style will be preferred for writing formal specifications of reusable components.

In Section 4 we have recommended both general and specific guidelines to direct designers of
reusable software components toward superior abstract designs that have efficient implementations.
The literature reveals a surprising variety of contradictory suggestions for all but the most general
statements of what constitutes “good design.”  We have compared and contrasted previous
suggestions and have augmented the more useful ones with very specific corollaries.  A stack
module (used as an example here) is among the simplest reusable components.  It is frequently
disparaged as being so simple that it cannot illustrate any but the most trivial point.  However, the
variety of stack designs encountered in the literature — all of which are inferior to the one
eventually developed in Section 4.4.3 — reveals the importance of having a “handbook of design”
for reusable components.  Even an apparently simple component is difficult to design for reuse.
Designing a family of components that fit together comfortably is an orders-of-magnitude harder
task and, we contend, cannot be done successfully without strict adherence to a set of standard
design guidelines and conventions.

Finally, in Section 5 we have explored methods for factoring the context of reusable components
from their abstract specifications and concrete implementations in order to support component
adaptation by clients.  Two powerful techniques currently are used for this purpose: genericity and
inheritance.  Genericity will be more useful if it is extended from its definition in, e.g., Ada and
Eiffel.  Inheritance, on the other hand, will be more useful if it is significantly restricted from its
definition in, e.g., C++ and Eiffel.  Specifically, inheritance of abstract behavior is safe and valuable
under many circumstances.  Inheritance of implementation code is dangerous and
counterproductive with respect to modularity, information hiding, and other accepted software
engineering principles.  In RESOLVE we have introduced a powerful form of genericity and a
method of specification inheritance (called enhancement) that together permit a vast array of reuse
possibilities heretofore not feasible.

We have also briefly discussed techniques for certifying the correctness of concrete components
relative to their abstract counterparts.  This is one of the most important issues facing the software
engineering community in general — one where there are a number of hard technical problems that
remain to be solved, but also one where we envision significant progress over the next decade.  Both
verification and testing are crucial aspects of the certification of correctness of reusable
components.  We would not be surprised to see the software components industry spawn the
development of a cadre of independent component certifiers whose trustworthiness and very
economic survivability depend on the quality of their work.

Throughout the chapter we have also discussed the influences of programming language
mechanisms on component reuse, and the influences of component reuse on programming
language design.  There is plenty of room for improvement in programming languages to support
software component reuse.  It would be a serious mistake to assume that any existing language
contains “the right constructs” and that no further language work is necessary.  It is tempting to
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denounce new languages as pipe-dreams in the face of the massive infusion of support now going
into Ada, for example.  However, there is already a clear recognition of Ada’s weaknesses and a
lively debate over what Ada-9X should look like.  By the time Ada-0X is being considered a decade
from now, it will probably resemble Ada only superficially and then only for reasons of upward
compatibility.  Some of the lessons learned from other languages in the interim surely will be
applicable to the re-design of Ada.

Despite significant recent advances, then, there are still a number of important obstacles to the
development a mature software components industry.  We feel confident they can be adequately
addressed in the next several years and that, if the non-technical impediments to reuse can be
overcome in the same time frame, a rudimentary software components industry will be seen to take
shape before the end of the century.
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