Graph Induced Complex: A Data Sparsifier for Homology Inference

#### Tamal K. Dey Fengtao Fan Yusu Wang

Department of Computer Science and Engineering The Ohio State University

October, 2013

◆□> 
◆□> 
●

# Space, Sample and Complex



3.1

< 🗇 🕨

э

## Space, Sample and Complex



October 2013 2 / 25

ъ

### Space, Sample and Complex



э

2 / 25

- Delaunay complex
  - difficult to compute in high dimensional spaces;



**A** ►



э

- Delaunay complex
  - difficult to compute in high dimensional spaces;
- Vietoris-Rips complex
  - ▶ too large (5000 points in ℝ<sup>3</sup>
     ⇒ millions of simplicies);



- Delaunay complex
  - difficult to compute in high dimensional spaces;
- Vietoris-Rips complex
  - too large (5000 points in ℝ<sup>3</sup>
     ⇒ millions of simplicies);
- Čech complex
  - difficult to compute;
  - also large;



- Delaunay complex
  - difficult to compute in high dimensional spaces;
- Vietoris-Rips complex
  - ▶ too large (5000 points in ℝ<sup>3</sup>
     ⇒ millions of simplicies);
- Čech complex
  - difficult to compute;
  - also large;
- Witness complex
  - manageable size;
  - lack topological inference;



October 2013 3 / 25

(IMA)

Graph Induced Complex

October 2013 4 / 25



æ

・ロト ・回ト ・ヨト ・ヨト



< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



Graph Induced Complex

October 2013

- E

4 / 25



```
(IMA)
```

Graph Induced Complex

October 2013 4 / 25

#### Our solution



 $\mathcal{R}^r(P)$ 

æ

・ロト ・回ト ・ヨト ・ヨト

#### Our solution



```
(IMA)
```

Graph Induced Complex

October 2013 5 / 25

- E

## Input Assumptions



- *P* finite point set;
- (P, d) metric space;
- G(P) be a graph;

# Subsampling



- $Q \subset P$  a subset;
- $\nu(p)$  : the closest point of  $p \in P$  in Q;

# Graph Induced Complex



• Graph induced complex  $\mathcal{G}(P,Q,d)$  :  $\{q_1,\ldots,q_{k+1}\}\subseteq Q$ ;

▶ a (k + 1)-clique in G(P) with vertices  $p_1, \ldots, p_{k+1}$ ;

• 
$$\nu(p_i) = q_i$$
;

# Graph Induced Complex



- Graph induced complex  $\mathcal{G}(P,Q,d)$  :  $\{q_1,\ldots,q_{k+1}\}\subseteq Q$ ;
  - ▶ a (k + 1)-clique in G(P) with vertices  $p_1, \ldots, p_{k+1}$ ;
  - $\nu(p_i) = q_i$ ;

**Remark:**  $\mathcal{G}(P, Q, d)$  depends on the metric d;

- Euclidean distance  $d_E$ ;
- Graph based distance  $d_G$ ;

(IMA)

- $\bullet \ \delta \text{-sample of } P$ 
  - $\forall p \in P$ ,  $\exists q \in Q$  such that  $d(p,q) \leq \delta$ ;

3

A 3 >

A (1) > A (2) > A

- $\delta$ -sample of P
  - $\forall p \in P, \exists q \in Q \text{ such that } d(p,q) \leq \delta;$
- $\delta$ -sparse
  - $d(p,q) \ge \delta$  for any two distinct points  $p,q \in Q$ ;

∃ >

A 1

- $\delta$ -sample of P
  - $\blacktriangleright \ \forall p \in P, \ \exists q \in Q \text{ such that } d(p,q) \leq \delta;$
- $\delta$ -sparse
  - $\blacktriangleright \ d(p,q) \geq \delta \text{ for any two distinct points } p,q \in Q;$
- Computing  $\delta\text{-sparse }\delta\text{-sample }Q$ 
  - iterative procedure;

3

- $\delta$ -sample of P
  - $\blacktriangleright \ \forall p \in P, \ \exists q \in Q \text{ such that } d(p,q) \leq \delta;$
- $\delta$ -sparse
  - $d(p,q) \ge \delta$  for any two distinct points  $p,q \in Q$ ;
- Computing  $\delta$ -sparse  $\delta$ -sample Q
  - iterative procedure;



- $\delta$ -sample of P
  - $\forall p \in P$ ,  $\exists q \in Q$  such that  $d(p,q) \leq \delta$ ;
- $\delta$ -sparse
  - $d(p,q) \ge \delta$  for any two distinct points  $p,q \in Q$ ;
- Computing  $\delta$ -sparse  $\delta$ -sample Q



9 / 25

- $\delta$ -sample of P
  - $\blacktriangleright \ \forall p \in P, \ \exists q \in Q \text{ such that } d(p,q) \leq \delta;$
- $\delta$ -sparse
  - $d(p,q) \ge \delta$  for any two distinct points  $p,q \in Q$ ;
- Computing  $\delta$ -sparse  $\delta$ -sample Q



Image: A image: A

#### • $H_1$ inference in $\mathbb{R}^n$ by $d_E$ and $d_G$ ;

ъ

イロン 不同と 不同と 不同と

- $H_1$  inference in  $\mathbb{R}^n$  by  $d_E$  and  $d_G$ ;
- Surface reconstruction in  $\mathbb{R}^3$ ;





э

< (17) × (1)

- $H_1$  inference in  $\mathbb{R}^n$  by  $d_E$  and  $d_G$ ;
- Surface reconstruction in  $\mathbb{R}^3$ ;



 $\bullet\,$  Improved  $\mathsf{H}_1$  inference in  $\mathbb{R}^n$  by  $d_G$  from a lean subsample ;



- $H_1$  inference in  $\mathbb{R}^n$  by  $d_E$  and  $d_G$ ;
- Surface reconstruction in  $\mathbb{R}^3$ ;



• Improved  $\mathsf{H}_1$  inference in  $\mathbb{R}^n$  by  $d_G$  from a lean subsample ;



• Topological inference for compact sets in  $\mathbb{R}^n$ ;

$$\mathcal{G}^{\alpha}(P,Q,d) \to \mathcal{G}^{4(\alpha+2\delta)}(P,Q',d)$$

- $H_1$  inference in  $\mathbb{R}^n$  by  $d_E$  and  $d_G$ ;
- Surface reconstruction in  $\mathbb{R}^3$ ;



• Improved  $H_1$  inference in  $\mathbb{R}^n$  by  $d_G$  from a lean subsample ;



• Topological inference for compact sets in  $\mathbb{R}^n$ ;

$$\mathcal{G}^{\alpha}(P,Q,d) \to \mathcal{G}^{4(\alpha+2\delta)}(P,Q',d)$$

(IMA)

October 2013

10 / 25

# Simplicial map

- $f: \mathcal{K} \to \mathcal{L}$  simplicial map
  - ▷ for every simplex  $\sigma = \{v_1, v_2, \ldots, v_k\} \in \mathcal{K}$ ,  $f(\sigma) = \{f(v_1), f(v_2), \dots, f(v_k)\}$  is a simplex in  $\mathcal{L}$

< 🗇 🕨 🔸

18 N

3

## Simplicial map

#### • $f: \mathcal{K} \to \mathcal{L}$ simplicial map

 $\label{eq:simplex} \begin{array}{l} \triangleright \mbox{ for every simplex } \sigma = \{v_1, v_2, \ldots, v_k\} \in \mathcal{K}, \\ f(\sigma) = \{f(v_1), f(v_2), \ldots, f(v_k)\} \mbox{ is a simplex in } \mathcal{L} \end{array}$ 





October 2013

< 3 b

э

### Simplicial map

#### • $f: \mathcal{K} \to \mathcal{L}$ simplicial map

 $\label{eq:started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_s$ 



< 🗇 🕨

э

11 / 25

## Contiguous maps

- $f, g: \mathcal{K}_1 \to \mathcal{K}_2$  two simplicial maps are *contiguous* 
  - ▷ for any simplex  $\sigma \in \mathcal{K}_1$ , the simplices  $f(\sigma)$  and  $g(\sigma)$  are faces of a common simplex in  $\mathcal{K}_2$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

## Contiguous maps

- $f, g: \mathcal{K}_1 \to \mathcal{K}_2$  two simplicial maps are *contiguous* 
  - ▷ for any simplex  $\sigma \in \mathcal{K}_1$ , the simplices  $f(\sigma)$  and  $g(\sigma)$  are faces of a common simplex in  $\mathcal{K}_2$ .



12 / 25

## Contiguous maps

- $f, g: \mathcal{K}_1 \to \mathcal{K}_2$  two simplicial maps are *contiguous* 
  - ▷ for any simplex  $\sigma \in \mathcal{K}_1$ , the simplices  $f(\sigma)$  and  $g(\sigma)$  are faces of a common simplex in  $\mathcal{K}_2$ .



#### Fact

If  $f : \mathcal{K}_1 \to \mathcal{K}_2$  and  $g : \mathcal{K}_1 \to \mathcal{K}_2$  are contiguous, then the induced homomorphisms  $f_* : H_n(\mathcal{K}_1) \to H_n(\mathcal{K}_2)$  and  $g_* : H_n(\mathcal{K}_1) \to H_n(\mathcal{K}_2)$  are equal.

| ΊN |     |   |    |
|----|-----|---|----|
| 11 | VI. | А | .) |

(人間) とうき くうり

12 / 25

Sample P from a space  $\mathcal{M}$ ;





< 🗇 🕨 🔸

3 N

Sample P from a space  $\mathcal{M}$ ;



#### Subsample Q : $\delta$ -sample, $\delta$ -sparse;





Э

Sample P from a space  $\mathcal{M}$ ;

 $G^{\alpha}(P) = 1$ -skeleton of  $\mathcal{R}^{\alpha}(P)$ 

Subsample Q :  $\delta$ -sample,  $\delta$ -sparse;





Sample P from a space  $\mathcal{M}$ ;

the second state

 $G^{\alpha}(P)=\text{1-skeleton}$  of  $\mathcal{R}^{\alpha}(P)$ 

Subsample Q :  $\delta$ -sample,  $\delta$ -sparse;



The GIC  $\mathcal{G}^{\alpha}(P,Q)$  $\triangleright$  Built on  $G^{\alpha}(P)$ 





Sample P from a space  $\mathcal{M}$ ;

 $G^{\alpha}(P)=\text{1-skeleton}$  of  $\mathcal{R}^{\alpha}(P)$ 

Subsample Q :  $\delta$ -sample,  $\delta$ -sparse;



The GIC  $\mathcal{G}^{\alpha}(P,Q)$  $\triangleright$  Built on  $G^{\alpha}(P)$ 



 $h: \mathcal{R}^{\alpha}(P) \to \mathcal{G}^{\alpha}(P,Q)$ <br/>simplicial map



Graph Induced Complex



Sample P from a space  $\mathcal{M}$ ;

the second states

 $G^{\alpha}(P) = 1$ -skeleton of  $\mathcal{R}^{\alpha}(P)$ 

Subsample Q :  $\delta$ -sample,  $\delta$ -sparse;



The GIC  $\mathcal{G}^{\alpha}(P,Q)$  $\triangleright$  Built on  $G^{\alpha}(P)$ 



$$\begin{split} h : \mathcal{R}^{\alpha}(P) \to \mathcal{G}^{\alpha}(P,Q) \\ \text{simplicial map} \\ h_* : \mathsf{H}(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}(\mathcal{G}^{\alpha}(P,Q)) \\ \text{isomorphism } ? \end{split}$$



October 2013



| T٦ |    | Λ  |  |
|----|----|----|--|
| 11 | ٧I | 73 |  |

< 🗇 > <

★ Ξ →

ъ

14 / 25





< 🗇 > <

∃ ∃ ▶





< (17) > <

< ∃→





< (17) > <

< ∃⇒





< (17) > <

A 3 b

ъ



•  $j \circ h$  contiguous to i;



•  $j \circ h$  contiguous to i;

• 
$$(j \circ h)_* = i_*;$$
  
 $(j \circ h)_*, \ i_* : \mathsf{H}(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}(\mathcal{R}^{\alpha+2\delta}(P))$ 

(IMA)

• Contiguous maps :  $j_* \circ h_* = i_*$ ;

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- $i_*$  isomorphism;
  - i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

 $i_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{R}^{\beta}(P))$  isomorphism;



3

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- $i_*$  isomorphism;
  - i.e. *P* sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]  $i_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{R}^{\beta}(P))$  isomorphism;
  - ▶ h<sub>\*</sub> is injective;

3

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- *i*<sub>\*</sub> isomorphism;
  - i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11] *i*<sub>∗</sub> : H<sub>1</sub>(R<sup>α</sup>(P)) → H<sub>1</sub>(R<sup>β</sup>(P)) isomorphism;
  - h<sub>\*</sub> is injective;
- When  $h_*$  surjective ?

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- *i*<sub>\*</sub> isomorphism;
  - i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11] *i*<sub>\*</sub> : H<sub>1</sub>(R<sup>α</sup>(P)) → H<sub>1</sub>(R<sup>β</sup>(P)) isomorphism;
  - h<sub>\*</sub> is injective;
- When  $h_*$  surjective ?
  - ► Higher dimensional homology (dim > 1), UNKNOWN;

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- *i*<sub>\*</sub> isomorphism;
  - i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11] *i*<sub>∗</sub> : H<sub>1</sub>(R<sup>α</sup>(P)) → H<sub>1</sub>(R<sup>β</sup>(P)) isomorphism;
  - h<sub>\*</sub> is injective;
- When  $h_*$  surjective ?
  - ▶ Higher dimensional homology (dim > 1), UNKNOWN;
  - Positive answers for the 1-st dimensional homology :

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- *i*<sub>\*</sub> isomorphism;
  - i.e. P sampled from a manifold with positive reach;
     Prop 4.1 of [Dey and Wang 11]
     i<sub>∗</sub> : H<sub>1</sub>(R<sup>α</sup>(P)) → H<sub>1</sub>(R<sup>β</sup>(P)) isomorphism;
  - h<sub>\*</sub> is injective;
- When  $h_*$  surjective ?
  - ▶ Higher dimensional homology (dim > 1), UNKNOWN;
  - Positive answers for the 1-st dimensional homology :
    - ★ Euclidean distance  $d_E$  in  $\mathbb{R}^3$ ;

- Contiguous maps :  $j_* \circ h_* = i_*$ ;
- *i*<sub>\*</sub> isomorphism;
  - i.e. P sampled from a manifold with positive reach;
     Prop 4.1 of [Dey and Wang 11]
     i<sub>∗</sub> : H<sub>1</sub>(R<sup>α</sup>(P)) → H<sub>1</sub>(R<sup>β</sup>(P)) isomorphism;
  - h<sub>\*</sub> is injective;
- When  $h_*$  surjective ?
  - ▶ Higher dimensional homology (dim > 1), UNKNOWN;
  - Positive answers for the 1-st dimensional homology :
    - ★ Euclidean distance  $d_E$  in  $\mathbb{R}^3$ ;
    - ★ Graph distance  $d_G$  in  $\mathbb{R}^n$ ;

#### $h_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{G}^{\alpha}(P,Q))$ isomorphism

#### Theorem

• *P*: an  $\epsilon$ -sample of a surface with positive reach  $\rho$  in  $\mathbb{R}^3$ ;

• 
$$Q$$
: a  $\delta$ -sparse  $\delta$ -sample of  $(P, d_E)$ ;  
•  $\epsilon \leq \frac{1}{162}\rho$ ,  $12\epsilon \leq \alpha \leq \frac{2}{27}\rho$ , and  $8\epsilon \leq \delta \leq \frac{2}{27}\rho$ ;

 $\Rightarrow h_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{G}^{\alpha}(P, Q, d_E)) \text{ isomorphism.}$ 



3

・ 同 ト ・ ヨ ト ・ ヨ ト …

#### Theorem

• *P*: an  $\epsilon$ -sample of a surface with positive reach  $\rho$  in  $\mathbb{R}^3$ ;

• 
$$Q$$
: a  $\delta$ -sparse  $\delta$ -sample of  $(P, d_E)$ ;  
•  $\epsilon \leq \frac{1}{162}\rho$ ,  $12\epsilon \leq \alpha \leq \frac{2}{27}\rho$ , and  $8\epsilon \leq \delta \leq \frac{2}{27}\rho$ ;

$$\Rightarrow h_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{G}^{\alpha}(P, Q, d_E)) \text{ isomorphism.}$$

#### Theorem

- *P*: an  $\epsilon$ -sample of manifold *M* with positive reach  $\rho$ ;
- Q: a  $\delta$ -sample of  $(P, \mathbf{d}_G)$ ;
- $4\epsilon \le \alpha, \delta \le \frac{1}{3}\sqrt{\frac{3}{5}}\rho$ ,

 $\Rightarrow h_*: \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{G}^{\alpha}(P, Q, \underline{d_G})) \text{ isomorphism.}$ 

## Improved $H_1$ Inference

• Homological loop feature size for simplicial complex  $\mathcal{K}$ 

 $hlfs(\mathcal{K}) = \frac{1}{2} \inf\{|c|, c \text{ is non null-homologous 1-cycle in } \mathcal{K}\}.$ 

3

# Improved $H_1$ Inference

 Homological loop feature size for simplicial complex K hlfs(K) = <sup>1</sup>/<sub>2</sub> inf{|c|, c is non null-homologous 1-cycle in K}.





# Improved $H_1$ Inference

 Homological loop feature size for simplicial complex K hlfs(K) = <sup>1</sup>/<sub>2</sub> inf{|c|, c is non null-homologous 1-cycle in K}.



### Theorem

If Q is a  $\delta$ -sample of  $(P, d_G)$  for  $\delta < \frac{1}{2} \text{hlfs}(\mathcal{R}^{\alpha}(P)) - \frac{1}{2}\alpha$ , then  $h_* : \mathsf{H}_1(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_1(\mathcal{G}^{\alpha}(P, Q, d_G))$  is an isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Experimental Result for Improved $H_1$ Inference



• Klein bottle in 
$$\mathbb{R}^4$$
 with  $|P| = 40,000$ ;

GIC size : 154 (δ = 1.0)

**A** ►

A 3 >

### Surface Reconstruction

- Crust [AB99] and Cocone [ACDL00]:
  - Compute a subcomplex  $T \subset \operatorname{Del} P$ ;
  - ► Argue T contains the restricted Delaunay triangulation Del|<sub>M</sub> P;



Prune T to output a 2-manifold;

19 / 25

## Surface Reconstruction by GIC in $\mathbb{R}^3$

• Restricted Delaunay triangulation  $\operatorname{Del}_M Q \subset \mathcal{G}(P, Q, d_E)$ ;

< 🗇 🕨

## Surface Reconstruction by GIC in $\mathbb{R}^3$

- Restricted Delaunay triangulation  $Del|_M Q \subset \mathcal{G}(P, Q, d_E)$ ;
- Problem: GIC not embedded in  $\mathbb{R}^3$ ;





## Surface Reconstruction by GIC in $\mathbb{R}^3$

- Restricted Delaunay triangulation  $\operatorname{Del}_M Q \subset \mathcal{G}(P,Q,d_E)$ ;
- Problem: GIC not embedded in  $\mathbb{R}^3$ ;



#### Cleaning

If V is the vertex set of  $t_1$  and  $t_2$  together, then at least one of  $t_1$ and  $t_2$  is not in Del V. The triangle which is not in Del V cannot be in Del Q as well.

#### Theorem

- P: ε-sample
- $Q: \delta$ -sparse,  $\delta$ -sample of P
- $8\varepsilon \le \delta \le \frac{2}{27}\rho$ ,  $\alpha \ge 8\varepsilon$

A triangulation  $T \subseteq G^{\alpha}(P,Q,d_E)$  can be computed.

|       | FERTILITY |      | BOTIJO |       |
|-------|-----------|------|--------|-------|
|       | mesh      | GIC  | mesh   | GIC   |
| 0-dim | 3007      | 3007 | 4659   | 4659  |
| 1-dim | 9039      | 9817 | 14001  | 14709 |
| 2-dim | 6026      | 6304 | 9334   | 10755 |
| 3-dim |           | 139  |        | 718   |

- |P| = 1,575,055 for FERTILITY;
- |P| = 1,049,892 for BOTIJO;





• Go beyond manifold and H<sub>1</sub>;

э

물 에 제 물 에

< 🗇 🕨 🔸

- Go beyond manifold and H<sub>1</sub>;
- $X \subset \mathbb{R}^n$  compact set, and  $X^{\lambda}$  offset;

**A** ►

3

- Go beyond manifold and H<sub>1</sub>;
- $X \subset \mathbb{R}^n$  compact set, and  $X^{\lambda}$  offset;
- Homology of  $X^{\lambda}$  captured by persistence of Rips complex on its samples P;



- Go beyond manifold and H<sub>1</sub>;
- $X \subset \mathbb{R}^n$  compact set, and  $X^{\lambda}$  offset;
- Homology of X<sup>λ</sup> captured by persistence of Rips complex on its samples P;
- Interleave GIC with Rips complexes :

persistence of GIC gives homology of  $X^{\lambda}$ ;

- Go beyond manifold and H<sub>1</sub>;
- $X \subset \mathbb{R}^n$  compact set, and  $X^{\lambda}$  offset;
- Homology of X<sup>λ</sup> captured by persistence of Rips complex on its samples P;
- Interleave GIC with Rips complexes :

persistence of GIC gives homology of  $X^{\lambda}$ ;

Q δ-sparse δ-sample of P;

- $Q' \ \delta'$ -sparse  $\delta'$ -sample of P with  $\delta' > \delta$ ;
- Denote  $\beta = \alpha + 2\delta$ ;

22 / 25

• Above diagram gives sequence

$$\mathsf{H}_{k}(\mathcal{R}^{\alpha}(P)) \xrightarrow{\ h_{1*}} \mathsf{H}_{k}(\mathcal{G}^{\alpha}(P,Q,d)) \xrightarrow{\ j_{1*}} \ \mathsf{H}_{k}(\mathcal{R}^{\alpha+2\delta}(P))$$

$$\xrightarrow{i_{2*}} \mathsf{H}_{k}(\mathcal{R}^{4\beta}(P)) \xrightarrow{h_{2*}} \mathsf{H}_{k}(\mathcal{G}^{4\beta}(P,Q',d)) \xrightarrow{j_{2*}} \mathsf{H}_{k}(\mathcal{R}^{4\beta+2\delta'}(P))$$



э

3 N

< 🗇 🕨 🔸

• Above diagram gives sequence

$$\mathsf{H}_{k}(\mathcal{R}^{\alpha}(P)) \xrightarrow{h_{1*}} \mathsf{H}_{k}(\mathcal{G}^{\alpha}(P,Q,d)) \xrightarrow{j_{1*}} \mathsf{H}_{k}(\mathcal{R}^{\alpha+2\delta}(P))$$

$$\xrightarrow{i_{2*}} \mathsf{H}_{k}(\mathcal{R}^{4\beta}(P)) \xrightarrow{h_{2*}} \mathsf{H}_{k}(\mathcal{G}^{4\beta}(P,Q',d)) \xrightarrow{j_{2*}} \mathsf{H}_{k}(\mathcal{R}^{4\beta+2\delta'}(P))$$

- $h_* = (h_2 \circ i_2 \circ j_1)_*$  simplicial map;
  - Algorithms for persistence of simplicial maps [DFW];

э

三下 人 三下

• Above diagram gives sequence

$$\mathsf{H}_{k}(\mathcal{R}^{\alpha}(P)) \xrightarrow{\ h_{1*}} \mathsf{H}_{k}(\mathcal{G}^{\alpha}(P,Q,d)) \xrightarrow{\ j_{1*}} \ \mathsf{H}_{k}(\mathcal{R}^{\alpha+2\delta}(P))$$

$$\xrightarrow{i_{2*}} \mathsf{H}_k(\mathcal{R}^{4\beta}(P)) \xrightarrow{h_{2*}} \mathsf{H}_k(\mathcal{G}^{4\beta}(P,Q',d)) \xrightarrow{j_{2*}} \mathsf{H}_k(\mathcal{R}^{4\beta+2\delta'}(P))$$

• 
$$h_* = (h_2 \circ i_2 \circ j_1)_*$$
 simplicial map;

Algorithms for persistence of simplicial maps [DFW];

#### Theorem

- P: an  $\epsilon$ -sample of a compact set  $(X, d_E)$ ;
- Q: a  $\delta$ -sparse  $\delta$ -sample of (P, d)  $(d = d_E \text{ or } d_G)$ ;
- Q': a  $\delta'$ -sparse  $\delta'$ -sample of (P, d)  $(\delta' > \delta)$ ;
- $0 < \epsilon < \frac{1}{9} \mathrm{wfs}(X), \ 2\epsilon \le \alpha \le \frac{1}{4} (\mathrm{wfs}(X) \epsilon) \text{ and } (\alpha + 2\delta) + \frac{1}{2}\delta' \le \frac{1}{4} (\mathrm{wfs}(X) \epsilon),$

$$\Rightarrow \text{ im } h_* \cong \mathsf{H}_k(X^\lambda) \ (0 < \lambda < \mathrm{wfs}(X))$$

## Conclusion

- Software for constructing GIC
  - Available at authors' webpages;

### Conclusion

- Software for constructing GIC
  - Available at authors' webpages;
- Future work
  - $\triangleright$  Go beyond of H<sub>1</sub> for  $h_*$ ;

 $h_*: \mathsf{H}_n(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_n(\mathcal{G}^{\alpha}(P,Q)) \ (n \geq 2)$  isomorphism ?



### Conclusion

- Software for constructing GIC
  - Available at authors' webpages;
- Future work
  - $\triangleright$  Go beyond of H<sub>1</sub> for  $h_*$ ;

 $h_*: \mathsf{H}_n(\mathcal{R}^{\alpha}(P)) \to \mathsf{H}_n(\mathcal{G}^{\alpha}(P,Q)) \ (n \geq 2)$  isomorphism ?

Potential use in topological data analysis;





・ロト ・四ト ・ヨト ・ヨト

25 / 25

E 990