Graph Induced Complex: A Data Sparsifier for Homology Inference

Tamal K. Dey Fengtao Fan Yusu Wang

Department of Computer Science and Engineering The Ohio State University

October, 2013

Space, Sample and Complex

Space

Space, Sample and Complex

Space

Samples

Space, Sample and Complex

Space

Samples

Rips Complex

Complexes

- Delaunay complex
- difficult to compute in high dimensional spaces;

Complexes

- Delaunay complex
- difficult to compute in high dimensional spaces;

- Vietoris-Rips complex
- too large (5000 points in \mathbb{R}^{3} \Rightarrow millions of simplicies);

Complexes

- Delaunay complex
- difficult to compute in high dimensional spaces;

- Vietoris-Rips complex
- too large (5000 points in \mathbb{R}^{3} \Rightarrow millions of simplicies);

- Čech complex
- difficult to compute;
- also large;

Complexes

- Delaunay complex
- difficult to compute in high dimensional spaces;

- Vietoris-Rips complex
- too large (5000 points in \mathbb{R}^{3} \Rightarrow millions of simplicies);
- Čech complex
- difficult to compute;
- also large;

- Witness complex
- manageable size;
- lack topological inference;

Subsamples

Subsamples

Subsamples

Subsamples

Subsamples

Witness Complex

Our solution

$\mathcal{R}^{r}(P)$

Our solution

$\mathcal{R}^{r}(P)$
$\mathcal{G}^{r}(P, Q)$

Input Assumptions

- P finite point set;
- (P, d) metric space;
- $G(P)$ be a graph;

Subsampling

- $Q \subset P$ a subset;
- $\nu(p)$: the closest point of $p \in P$ in Q;

Graph Induced Complex

- Graph induced complex $\mathcal{G}(P, Q, d):\left\{q_{1}, \ldots, q_{k+1}\right\} \subseteq Q$;
- a $(k+1)$-clique in $G(P)$ with vertices p_{1}, \ldots, p_{k+1};
- $\nu\left(p_{i}\right)=q_{i}$;

Graph Induced Complex

- Graph induced complex $\mathcal{G}(P, Q, d)$: $\left\{q_{1}, \ldots, q_{k+1}\right\} \subseteq Q$;
- a $(k+1)$-clique in $G(P)$ with vertices p_{1}, \ldots, p_{k+1};
- $\nu\left(p_{i}\right)=q_{i}$;

Remark: $\mathcal{G}(P, Q, d)$ depends on the metric d;

- Euclidean distance d_{E};
- Graph based distance d_{G};

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$
- δ-sparse
- $d(p, q) \geq \delta$ for any two distinct points $p, q \in Q$;

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$
- δ-sparse
- $d(p, q) \geq \delta$ for any two distinct points $p, q \in Q$;
- Computing δ-sparse δ-sample Q
- iterative procedure;

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$
- δ-sparse
- $d(p, q) \geq \delta$ for any two distinct points $p, q \in Q$;
- Computing δ-sparse δ-sample Q
- iterative procedure;

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$
- δ-sparse
- $d(p, q) \geq \delta$ for any two distinct points $p, q \in Q$;
- Computing δ-sparse δ-sample Q
- iterative procedure;

Subsample Q of P

- δ-sample of P
- $\forall p \in P, \exists q \in Q$ such that $d(p, q) \leq \delta ;$
- δ-sparse
- $d(p, q) \geq \delta$ for any two distinct points $p, q \in Q$;
- Computing δ-sparse δ-sample Q
- iterative procedure;

Results

- H_{1} inference in \mathbb{R}^{n} by d_{E} and d_{G};

Results

- H_{1} inference in \mathbb{R}^{n} by d_{E} and d_{G};
- Surface reconstruction in \mathbb{R}^{3};

Results

- H_{1} inference in \mathbb{R}^{n} by d_{E} and d_{G};
- Surface reconstruction in \mathbb{R}^{3};

- Improved H_{1} inference in \mathbb{R}^{n} by d_{G} from a lean subsample ;

Results

- H_{1} inference in \mathbb{R}^{n} by d_{E} and d_{G};
- Surface reconstruction in \mathbb{R}^{3};

- Improved H_{1} inference in \mathbb{R}^{n} by d_{G} from a lean subsample;

- Topological inference for compact sets in \mathbb{R}^{n};

$$
\mathcal{G}^{\alpha}(P, Q, d) \rightarrow \mathcal{G}^{4(\alpha+2 \delta)}\left(P, Q^{\prime}, d\right)
$$

Results

- H_{1} inference in \mathbb{R}^{n} by d_{E} and d_{G};
- Surface reconstruction in \mathbb{R}^{3};

- Improved H_{1} inference in \mathbb{R}^{n} by d_{G} from a lean subsample ;

- Topological inference for compact sets in \mathbb{R}^{n};

$$
\mathcal{G}^{\alpha}(P, Q, d) \rightarrow \mathcal{G}^{4(\alpha+2 \delta)}\left(P, Q^{\prime}, d\right)
$$

Simplicial map

- $f: \mathcal{K} \rightarrow \mathcal{L}$ simplicial map
\triangleright for every simplex $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \in \mathcal{K}$, $f(\sigma)=\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)\right\}$ is a simplex in \mathcal{L}

Simplicial map

- $f: \mathcal{K} \rightarrow \mathcal{L}$ simplicial map
\triangleright for every simplex $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \in \mathcal{K}$, $f(\sigma)=\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)\right\}$ is a simplex in \mathcal{L}

Simplicial map

- $f: \mathcal{K} \rightarrow \mathcal{L}$ simplicial map
\triangleright for every simplex $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \in \mathcal{K}$,

$$
f(\sigma)=\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)\right\} \text { is a simplex in } \mathcal{L}
$$

$$
\begin{array}{lll}
{[u]} & \rightarrow \\
{[u]} \\
{[w]} \\
{[w]} \\
{[w]} \\
{[x]} & {[w]} \\
{[w]} \\
{[x]}
\end{array}
$$

$$
\begin{array}{lll}
{[u v]} & \rightarrow & {[u]} \\
{[u w]} & \rightarrow & {[u w]} \\
{[v w]} & \rightarrow & {[u w]}
\end{array}
$$

$$
[u v w] \rightarrow[u w]
$$

Contiguous maps

- $f, g: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ two simplicial maps are contiguous
\triangleright for any simplex $\sigma \in \mathcal{K}_{1}$, the simplices $f(\sigma)$ and $g(\sigma)$ are faces of a common simplex in \mathcal{K}_{2}.

Contiguous maps

- $f, g: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ two simplicial maps are contiguous
\triangleright for any simplex $\sigma \in \mathcal{K}_{1}$, the simplices $f(\sigma)$ and $g(\sigma)$ are faces of a common simplex in \mathcal{K}_{2}.

$$
\begin{aligned}
& f([v])=[y] \\
& g([v])=[z], \\
& f([u v])=[x y] \\
& g([u v])=[x z]
\end{aligned}
$$

Contiguous maps

- $f, g: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ two simplicial maps are contiguous
\triangleright for any simplex $\sigma \in \mathcal{K}_{1}$, the simplices $f(\sigma)$ and $g(\sigma)$ are faces of a common simplex in \mathcal{K}_{2}.

$$
\begin{aligned}
& f([v])=[y] \\
& g([v])=[z], \\
& f([u v])=[x y] \\
& g([u v])=[x z]
\end{aligned}
$$

Fact

If $f: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ and $g: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ are contiguous, then the induced homomorphisms $f_{*}: \mathrm{H}_{n}\left(\mathcal{K}_{1}\right) \rightarrow \mathrm{H}_{n}\left(\mathcal{K}_{2}\right)$ and $g_{*}: \mathrm{H}_{n}\left(\mathcal{K}_{1}\right) \rightarrow \mathrm{H}_{n}\left(\mathcal{K}_{2}\right)$ are equal.

H_{1} inference in \mathbb{R}^{n}

Sample P from a space \mathcal{M};

H_{1} inference in \mathbb{R}^{n}

Sample P from a space \mathcal{M};

Subsample $Q: \delta$-sample, δ-sparse;

H_{1} inference in \mathbb{R}^{n}

 Sample P from a space \mathcal{M};

Subsample $Q: \delta$-sample, δ-sparse;

$G^{\alpha}(P)=1$-skeleton of $\mathcal{R}^{\alpha}(P)$

H_{1} inference in \mathbb{R}^{n}

Sample P from a space \mathcal{M};

$G^{\alpha}(P)=1$-skeleton of $\mathcal{R}^{\alpha}(P)$

Subsample $Q: \delta$-sample, δ-sparse;

The GIC $\mathcal{G}^{\alpha}(P, Q)$
\triangleright Built on $G^{\alpha}(P)$

H_{1} inference in \mathbb{R}^{n}

Sample P from a space \mathcal{M};

$G^{\alpha}(P)=1$-skeleton of $\mathcal{R}^{\alpha}(P)$

Subsample $Q: \delta$-sample, δ-sparse;

The GIC $\mathcal{G}^{\alpha}(P, Q)$
\triangleright Built on $G^{\alpha}(P)$

simplicial map

H_{1} inference in \mathbb{R}^{n}

Sample P from a space \mathcal{M};

$G^{\alpha}(P)=1$-skeleton of $\mathcal{R}^{\alpha}(P)$

Subsample $Q: \delta$-sample, δ-sparse;

The GIC $\mathcal{G}^{\alpha}(P, Q)$
\triangleright Built on $G^{\alpha}(P)$

$h: \mathcal{R}^{\alpha}(P) \rightarrow \mathcal{G}^{\alpha}(P, Q)$
simplicial map $h_{*}: \mathbf{H}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathbf{H}\left(\mathcal{G}^{\alpha}(P, Q)\right)$ isomorphism ?

Contiguous maps between Rips and GIC

- $j \circ h$ contiguous to i;

Contiguous maps between Rips and GIC

- $j \circ h$ contiguous to i;
- $(j \circ h)_{*}=i_{*}$;

$$
(j \circ h)_{*}, i_{*}: \mathrm{H}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}\left(\mathcal{R}^{\alpha+2 \delta}(P)\right)
$$

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]
$i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad$ isomorphism;

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]
$i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad$ isomorphism;
- h_{*} is injective;

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

$$
i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad \text { isomorphism; }
$$

- h_{*} is injective;
- When h_{*} surjective ?

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

$$
i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad \text { isomorphism; }
$$

- h_{*} is injective;
- When h_{*} surjective ?
- Higher dimensional homology (dim > 1), UNKNOWN;

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

$$
i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad \text { isomorphism; }
$$

- h_{*} is injective;
- When h_{*} surjective ?
- Higher dimensional homology ($\operatorname{dim}>1$), UNKNOWN;
- Positive answers for the 1 -st dimensional homology :

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

$$
i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad \text { isomorphism; }
$$

- h_{*} is injective;
- When h_{*} surjective ?
- Higher dimensional homology ($\operatorname{dim}>1$), UNKNOWN;
- Positive answers for the 1-st dimensional homology :
\star Euclidean distance d_{E} in \mathbb{R}^{3};

Isomorphism of h_{*}

- Contiguous maps : $j_{*} \circ h_{*}=i_{*}$;
- i_{*} isomorphism;
- i.e. P sampled from a manifold with positive reach; Prop 4.1 of [Dey and Wang 11]

$$
i_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{R}^{\beta}(P)\right) \quad \text { isomorphism; }
$$

- h_{*} is injective;
- When h_{*} surjective ?
- Higher dimensional homology ($\operatorname{dim}>1$), UNKNOWN;
- Positive answers for the 1-st dimensional homology :
\star Euclidean distance d_{E} in \mathbb{R}^{3};
\star Graph distance d_{G} in \mathbb{R}^{n};

```
\(h_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{G}^{\alpha}(P, Q)\right)\) isomorphism
```


Isomorphism of h_{*}

Theorem

- P : an ϵ-sample of a surface with positive reach ρ in \mathbb{R}^{3};
- Q : a δ-sparse δ-sample of $\left(P, d_{E}\right)$;
- $\epsilon \leq \frac{1}{162} \rho, 12 \epsilon \leq \alpha \leq \frac{2}{27} \rho$, and $8 \epsilon \leq \delta \leq \frac{2}{27} \rho$;
$\Rightarrow h_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{G}^{\alpha}\left(P, Q, d_{E}\right)\right)$ isomorphism.

Isomorphism of h_{*}

Theorem

- P : an ϵ-sample of a surface with positive reach ρ in \mathbb{R}^{3};
- Q : a δ-sparse δ-sample of $\left(P, d_{E}\right)$;
- $\epsilon \leq \frac{1}{162} \rho, 12 \epsilon \leq \alpha \leq \frac{2}{27} \rho$, and $8 \epsilon \leq \delta \leq \frac{2}{27} \rho$;
$\Rightarrow h_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{G}^{\alpha}\left(P, Q, d_{E}\right)\right)$ isomorphism.

Theorem

- P : an ϵ-sample of manifold M with positive reach ρ;
- Q : a δ-sample of $\left(P, d_{G}\right)$;
- $4 \epsilon \leq \alpha, \delta \leq \frac{1}{3} \sqrt{\frac{3}{5}} \rho$,
$\Rightarrow h_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{G}^{\alpha}\left(P, Q, d_{G}\right)\right)$ isomorphism.

Improved H_{1} Inference

- Homological loop feature size for simplicial complex \mathcal{K} $\operatorname{hlfs}(\mathcal{K})=\frac{1}{2} \inf \{|c|, \mathrm{c}$ is non null-homologous 1 -cycle in $\mathcal{K}\}$.

Improved H_{1} Inference

- Homological loop feature size for simplicial complex \mathcal{K} $\operatorname{hlfs}(\mathcal{K})=\frac{1}{2} \inf \{|c|, \mathrm{c}$ is non null-homologous 1 -cycle in $\mathcal{K}\}$.

Improved H_{1} Inference

- Homological loop feature size for simplicial complex \mathcal{K} $\operatorname{hlfs}(\mathcal{K})=\frac{1}{2} \inf \{|c|, \mathrm{c}$ is non null-homologous 1 -cycle in $\mathcal{K}\}$.

Theorem

If Q is a δ-sample of $\left(P, d_{G}\right)$ for $\delta<\frac{1}{2} \operatorname{hlfs}\left(\mathcal{R}^{\alpha}(P)\right)-\frac{1}{2} \alpha$, then $h_{*}: \mathrm{H}_{1}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{1}\left(\mathcal{G}^{\alpha}\left(P, Q, d_{G}\right)\right)$ is an isomorphism.

Experimental Result for Improved H_{1} Inference

- Klein bottle in \mathbb{R}^{4} with $|P|=40,000$;
- GIC size : $154(\delta=1.0)$

Surface Reconstruction

- Crust [AB99] and Cocone [ACDL00]:
- Compute a subcomplex $T \subset \operatorname{Del} P$;
- Argue T contains the restricted Delaunay triangulation Del| ${ }_{M} P$;

- Prune T to output a 2-manifold;

Surface Reconstruction by GIC in \mathbb{R}^{3}

- Restricted Delaunay triangulation $\left.\operatorname{Del}\right|_{M} Q \subset \mathcal{G}\left(P, Q, d_{E}\right)$;

Surface Reconstruction by GIC in \mathbb{R}^{3}

- Restricted Delaunay triangulation $\left.\operatorname{Del}\right|_{M} Q \subset \mathcal{G}\left(P, Q, d_{E}\right)$;
- Problem: GIC not embedded in \mathbb{R}^{3};

Surface Reconstruction by GIC in \mathbb{R}^{3}

- Restricted Delaunay triangulation $\left.\operatorname{Del}\right|_{M} Q \subset \mathcal{G}\left(P, Q, d_{E}\right)$;
- Problem: GIC not embedded in \mathbb{R}^{3};

Cleaning

If V is the vertex set of t_{1} and t_{2} together, then at least one of t_{1} and t_{2} is not in $\operatorname{Del} V$. The triangle which is not in $\operatorname{Del} V$ cannot be in $\operatorname{Del} Q$ as well.

Theorem

- P : ε-sample
- $Q: \delta$-sparse, δ-sample of P
- $8 \varepsilon \leq \delta \leq \frac{2}{27} \rho, \alpha \geq 8 \varepsilon$

A triangulation $T \subseteq G^{\alpha}\left(P, Q, d_{E}\right)$ can be computed.

	FERTILITY		BOTIJO	
	mesh	GIC	mesh	GIC
0-dim	3007	3007	4659	4659
1-dim	9039	9817	14001	14709
2-dim	6026	6304	9334	10755
3-dim		139		718

- $|P|=1,575,055$ for FERTILITY;
- $|P|=1,049,892$ for BOTIJO;

GIC for Compact Sets

- Go beyond manifold and H_{1};

GIC for Compact Sets

- Go beyond manifold and H_{1};
- $X \subset \mathbb{R}^{n}$ compact set, and X^{λ} offset;

GIC for Compact Sets

- Go beyond manifold and H_{1};
- $X \subset \mathbb{R}^{n}$ compact set, and X^{λ} offset;
- Homology of X^{λ} captured by persistence of Rips complex on its samples P;

GIC for Compact Sets

- Go beyond manifold and H_{1};
- $X \subset \mathbb{R}^{n}$ compact set, and X^{λ} offset;
- Homology of X^{λ} captured by persistence of Rips complex on its samples P;
- Interleave GIC with Rips complexes :
persistence of GIC gives homology of X^{λ};

GIC for Compact Sets

- Go beyond manifold and H_{1};
- $X \subset \mathbb{R}^{n}$ compact set, and X^{λ} offset;
- Homology of X^{λ} captured by persistence of Rips complex on its samples P;
- Interleave GIC with Rips complexes :
persistence of GIC gives homology of X^{λ};

- $Q \delta$-sparse δ-sample of P;
- $Q^{\prime} \delta^{\prime}$-sparse δ^{\prime}-sample of P with $\delta^{\prime}>\delta$;
- Denote $\beta=\alpha+2 \delta$;

GIC for Compact Sets

- Above diagram gives sequence

$$
\begin{aligned}
& \mathrm{H}_{k}\left(\mathcal{R}^{\alpha}(P)\right) \xrightarrow{h_{1 *}} \mathrm{H}_{k}\left(\mathcal{G}^{\alpha}(P, Q, d)\right) \xrightarrow{j_{1 *}} \mathrm{H}_{k}\left(\mathcal{R}^{\alpha+2 \delta}(P)\right) \\
& \xrightarrow{i_{2_{*}}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta}(P)\right) \xrightarrow{h_{2 *}} \mathrm{H}_{k}\left(\mathcal{G}^{4 \beta}\left(P, Q^{\prime}, d\right)\right) \xrightarrow{j_{2_{*}}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta+2 \delta^{\prime}}(P)\right)
\end{aligned}
$$

GIC for Compact Sets

- Above diagram gives sequence

$$
\begin{aligned}
\mathrm{H}_{k}\left(\mathcal{R}^{\alpha}(P)\right) \xrightarrow{h_{1 *}} & \mathrm{H}_{k}\left(\mathcal{G}^{\alpha}(P, Q, d)\right) \xrightarrow{j_{1 *}} \mathrm{H}_{k}\left(\mathcal{R}^{\alpha+2 \delta}(P)\right) \\
& \xrightarrow{i_{2 *}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta}(P)\right) \xrightarrow{h_{2 *}} \mathrm{H}_{k}\left(\mathcal{G}^{4 \beta}\left(P, Q^{\prime}, d\right)\right) \xrightarrow{j_{2_{2}}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta+2 \delta^{\prime}}(P)\right)
\end{aligned}
$$

- $h_{*}=\left(h_{2} \circ i_{2} \circ j_{1}\right)_{*}$ simplicial map;
- Algorithms for persistence of simplicial maps [DFW];

GIC for Compact Sets

- Above diagram gives sequence

$$
\mathrm{H}_{k}\left(\mathcal{R}^{\alpha}(P)\right) \xrightarrow{h_{1 *}} \mathrm{H}_{k}\left(\mathcal{G}^{\alpha}(P, Q, d)\right) \xrightarrow{j_{1 *}} \mathrm{H}_{k}\left(\mathcal{R}^{\alpha+2 \delta}(P)\right)
$$

$$
\xrightarrow{i_{2 *}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta}(P)\right) \xrightarrow{h_{2 *}} \mathrm{H}_{k}\left(\mathcal{G}^{4 \beta}\left(P, Q^{\prime}, d\right)\right) \xrightarrow{j_{2_{*}}} \mathrm{H}_{k}\left(\mathcal{R}^{4 \beta+2 \delta^{\prime}}(P)\right)
$$

- $h_{*}=\left(h_{2} \circ i_{2} \circ j_{1}\right)_{*}$ simplicial map;
- Algorithms for persistence of simplicial maps [DFW];

Theorem

- P: an ϵ-sample of a compact set $\left(X, d_{E}\right)$;
- Q: a δ-sparse δ-sample of $(P, d)\left(d=d_{E}\right.$ or $\left.d_{G}\right)$;
- Q^{\prime} : a δ^{\prime}-sparse δ^{\prime}-sample of $(P, d)\left(\delta^{\prime}>\delta\right)$;
- $0<\epsilon<\frac{1}{9} \operatorname{wfs}(X), 2 \epsilon \leq \alpha \leq \frac{1}{4}(\operatorname{wfs}(X)-\epsilon)$ and $(\alpha+2 \delta)+\frac{1}{2} \delta^{\prime} \leq \frac{1}{4}(\operatorname{wfs}(X)-\epsilon)$,

$$
\Rightarrow \operatorname{im} h_{*} \cong \mathrm{H}_{k}\left(X^{\lambda}\right)(0<\lambda<\operatorname{wfs}(X))
$$

Conclusion

- Software for constructing GIC
\triangleright Available at authors' webpages;

Conclusion

- Software for constructing GIC
\triangleright Available at authors' webpages;
- Future work
\triangleright Go beyond of H_{1} for h_{*};

$$
h_{*}: \mathrm{H}_{n}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{n}\left(\mathcal{G}^{\alpha}(P, Q)\right)(n \geq 2) \text { isomorphism ? }
$$

Conclusion

- Software for constructing GIC
\triangleright Available at authors' webpages;
- Future work
\triangleright Go beyond of H_{1} for h_{*};

$$
h_{*}: \mathrm{H}_{n}\left(\mathcal{R}^{\alpha}(P)\right) \rightarrow \mathrm{H}_{n}\left(\mathcal{G}^{\alpha}(P, Q)\right)(n \geq 2) \text { isomorphism ? }
$$

\triangleright Potential use in topological data analysis;

