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Abstract

Inference of topological and geometric attributes of a bidthanifold from its point data is a funda-
mental problem arising in many scientific studies and eraging applications. In this paper we present
an algorithm to compute a set of cycles from a point data thedymably sample a smooth manifold
M c R<. These cycles approximateshortestbasis of the first homology groug, (M) over coef-
ficients in finite fieldZ,. Previous results addressed the issue of computing theafathle homology
groups from point data, but there is no result on approximgatihe shortest basis of a manifold from
its point sample. In arriving our result, we also present lympmmial time algorithm for computing a
shortest basis dfl, (KC) for any finitesimplicial complexC whose edges have non-negative weights.

1 Introduction

Inference of unknown structures from point data is a fundamentdllgmoin many areas of science and
engineering that has motivated wide spread research [1, 13, 238,20]2 Typically, this data is assumed to
be sampled from a manifold sitting in a high dimensional space whose geomeltiopaogical properties
are to be derived from the data. In this work, we are particularly intede@ateomputing a set of cycles
from data which not only captures the topology but is also aware of thaefep of the sampled manifold.
Specifically, we aim to approximate a shortest basis of the first homologypdrom the data.

Recently, a few algorithms for computing homology groups from point data haen developed. One
approach would be to reconstruct the sampled space from its point datal2] and then apply known
techniques for homology computations on triangulations [22, 24]. Howévisroption is not very attrac-
tive since a full-blown reconstruction with known techniques requiredycoesmputations with Delaunay
triangulations in high dimensions. Chazal and Oudot [8] showed how anaise less constrained data
structures such as RipSech, and witness complexes to infer the rank of the homology groups énatev
ing persistence algorithms [20, 29]. Among these, the Rips complexes agadlest to compute though
they consume more space than the others, an issue which has starteddodssedi[18].

All of the works mentioned above focus on computing the Betti numbers, tileafithe homology
groups. Although the persistence algorithms [20, 29] also provide septative cycles of a homology
basis, they remain oblivious to the geometry of the manifold. As a result, tlyetesao not have nice
geometric properties. A natural question is that, if the cycles of the first lngy@roup are associated
with a length under some metric, can one approximate/compute a shortestflihsifromology group in
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polynomial time? This question has been answered in affirmative for theaspase of surfaces when they
are represented with triangulations [21]. In fact, considerable psedras been made for this special case
on various versions of the problem. We cannot apply these techniquesy Inecause we deal with point
data instead of an input triangulation. Also, these works either considefaas [5, 6, 15, 21] instead of a
manifold of arbitrary dimension in an Euclidean space, or use a local neeather than the lengths of the
cycles in a basis [9].

Our main result is an algorithm that can compute a set of cycles from a Ripglew of the given data
with the guarantee that the lengths of the computed cycles approximate trensbatest basis of the first
homology group of the sampled manifold. In arriving at this result, we alea $tow to compute a shortest
basis for the first homology group of any fingamplicial complexvhose edges have non-negative weights.
Given that computing a shortest basisfeth homology groups of a simplicial complex ovéy coefficients
is NP-hard fork > 2 (Chen and Freedman [10]), this result settles the open cage=far.

1.1 Background and notations

We use the concepts of homology grouésph and Rips complexes from algebraic topology and geodesics
from differential geometry. We briefly discuss them and introduce ratavatations here; the readers can
obtain the details from any standard book on the topics such as [19, 22].

Homology groups and basis A homology group of a topological spad&encodes its topological con-
nectivity. We useH;(T) to denote its-th homology group over the coefficientsZh. SinceZs, is a field,
H;(T) is a vector space and hence admits a basis. We are concerned with therfidbgy grougH; (T).

The elements oH;(T) are equivalence class@g of 1-dimensional cycleg. A set{[q1],...,[gx]} gen-
eratingH; (T) is called its basis where = rank(H;(T)). We say{g, ..., gr} is ahomology cycle basis

of Hi(T) if {[g1],-..,[gx]} is a basis oH;(T). We also say that a set of cyclesiiglependenin H,(T)

if their homology classes iH; (T) are independent. By definition, a homology cycle basis is a maximally
independent set.

We assume that each cygjen T is associated with a non-negative weighty). If T is a simplicial
complex, the cycles are restricted to Itskeleton andu(g) is defined to be the sum of edge weights in
¢ which are assumed to be non-negativeT lis a Riemannian manifold, the weights on cycles are taken
as their lengths in the Riemannian metric. The weights of the cycles define thh Ergsetof cycles
G ={g1,-..,9x} asLen(G) = ¥¥_w(g;). A shortest basi®f H;(T) is a homology cycle basi&' of
H1(T) whereLen(G) is minimal over all such bases. In applications, the weights could be the Earclide
lengths of the edges in which case a shortest basis would coincide witbfecgetes whose total Euclidean
length is the smallest among all homology cycle bases.

Complexes Let B(p, ) denote an open Euclidean
d-ball centered ap with radiusr. For a point set
P c RY and areal > 0, the Cech complex
C"(P) is a simplicial complex where a simplex
o € C"(P) if and only if Vert(o), the vertices of
o, are inP and are the centers dfballs of radius
r/2 which have a non-empty common intersec- . . . .
tion, that is,N,cvert(o) B(p, 7/2) # 0. Instead of Cech complex” (P) Rips complexk”(P)
common intersection, if we only require pairwise intersection among-balls, we get the Rips complex
R"(P). See the figure on right for an example, where the radius of each digk.isNotice that the top-
right triangle is iNR" (P) but not inC" (P). It is well known that the two complexes are related by a nesting

property:




Proposition 1.1 For any finite set” ¢ R¢ and anyr > 0, one hag’"(P) C R"(P) C C?"(P).

GeodesicsThe vertex seP of the simplicial complexes we consider is a dense sample of a smooth compact
manifold M ¢ R? without boundary. Assume thalt/ is isometrically embedded, that i3/ inherits
the metric fromR?. For two pointsp,q € M, a geodesids a curve connecting and ¢ in M whose
acceleration has no component in the tangent spac#s. ofwo points may have more than one geodesic
among which the ones with the minimum length are catt@dimizing geodesicsSince M is compact,
any two points admit a minimizing geodesic. The lengths of minimizing geodesicsareddistance metric
dy : M x M — R wheredy(p, q) is the length of a minimizing geodesic betweemndq. Clearly,
d(p,q) < dy(p,q) whered(p, q) is the Euclidean distance. dfp, q) is small, Proposition 1.2 asserts that
there is an upper bound @h,(p, ¢) in terms ofd(p, q). Our proof extends a result in [2] where Belkin et
al. show the same result on a surfac&®i Thereachp(M) is defined as the minimum distance between
M and its medial axis [16].

Proposition 1.2 If d(p, q) < p(M)/2, one has

2
dyv(p.q) < (1+ W)d(p, q).

Proof: Let v(¢) be a minimizing geodesic betwegrandq parameterized by length and et d(p, q).
By Proposition6.3 in [27] we have that < 2d(p, q). Letu; = 5(¢) be theunit tangent vector of; at¢. We
havet = dy;(p,v(t)).

Let B : Ty x Ty — Tj(t) be the second fundamental form associated with the manifaldbince
~ is a geodesicdu; /dt = B(ug,uy) = 4(t). Write p = p(M) andd = d(p, q) for convenience. From
Proposition6.1 in [27], we have

@I <1/p

since the norm of the second fundamental form is boundet)/pyin all directions, and thu§du, /dt|| <
1/p. Hence we have that
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Furthermore, let: - v denote the scalar-product between vectoasmidv. Then we have that
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On the other hand, observe tl}@&}l] ut - up dt measures the length of the (signed) projectiory afong
the directionu,,. That s,

/ U - up dly = (g — p) - up.
[0.]



Hence we have that

3
d=|p—qll>(qg—p)-up>1-¢>
3 4d3

= l§d+m

The last inequality follows from the fact thak 2d. This proves the lemma. [ ]

Convexity radius and sampling: For a pointp € M, the set of all pointg with dy/(p,q) < r forms

p’s geodesic ballB,;(p, r) of radiusr. Itis known that there is a positive reg) for each poinp € M so
that B/ (p, r) is convexfor r < r,. It means that, for < r,, any two points inB(p, r) admit aunique
minimizing geodesic that lies iB;(p, 7). Theconvexity radiu®f M is p.(M) = inf,cpr 7. INtuitively, a
geodesic ball centered anywhereldnwith convexity radius is guaranteed to be convex in the sense that any
two points within it has a unique minimizing geodesic. We use Euclidean distande§ite the sampling
density. We say a discrete sétC M is ana—sampl@ of M if B(x,e) N P # () for each pointr € M.

1.2 Main results

We compute a set of cycleS = {gi,...,gx} from ane-sampleP of M whose total length, denoted
Len(G), is within a factor of the total length of a shortest basisliri//). Recall that the length of a cycle
g in M is defined as the length gfin the Riemannian metric associated with The factor depends on
p(M), and an input parameter> 0.

Theorem 1.3 Let M C R? be a smooth, closed manifold wittas the length of a shortest basistdf(1/).
Given anz-sampleP C M of n points andde < r < min{%\@p(M), pc(M)}, one can compute a set of
cyclesG in R% where:
i.
L <len(@) < (14 =
1+ 2200

).

r

ii. Treating G as al-complex, there is a map: G — M so thath(G) is a homology cycle basis of
H1 (M) and the Hausdorff distance between the underlying spageamid 2.(g) is at mostr/2 for
eachg € G.

iii. The cycles inG' can be computed i®(n(n + n.)?(ne + n)) time wheren, andn, are the numbers
of edges and triangles respectively in the Rips comBI&X P).

The above result suggests thiat: , Len(G) — (. To make: andr simultaneously approach one
may taker = O(,/z) and letz: — 0. We note that, = O(n?) andn; = O(n?) giving anO(n®) worst-case
complexity for the algorithm. However, if = O(g) and points inP have()(e) pairwise distance;. andn;
reduce taD(n) by a result of [8]. In this case we get a time complexityXif.*). In arriving at Theorem 113,
we also prove the following result which is of independent interest.

Theorem 1.4 Let K be a finite simplicial complex with non-negative weights on edges. A shbatgstfor
H1(K) can be computed i®(n?) time wheren is the size ok,

! Heree-sample is not defined relative to reach or feature size as commondyidoeconstruction literature [1,/7, 12].



2 Algorithm description

The algorithm that we propose proceeds as follows. We compute a RipsesoR{ (P) out of the given
point cloudP C M. Next, we compute the rarikof Hy (M) by considering the persistent homology group

H??"(R(P)) = imager.,

where the inclusion : R"(P) — R?*"(P) induces the homomorphism : Hi(R"(P)) — Hi(R* (P)).
As a homology group ovef,, H?" (R(P)) is a vector space and the rankif>" (R(P)) coincides with
that ofH; (M) for appropriate, see Proposition 3.5.

A basis ong’QT(R(P)) is formed by the classes of a maximal set of cycleRii{ P) whose classes
remain independent il (R?"(P)) under the map.. We show that a shortest basisH)TQT(R(P)) ap-
proximates a shortest basistéf(1/). Therefore, we aim to compute a shortest basid'of (R(P)) from
R"(P) andR?"(P). To accomplish this, the algorithm augmef¥ (P) by putting a weightu(e) on each
edgee € R?(P). The weights are of two types: either they are the lengths of the edgeseny farge
valueW which is larger thark times the total weight oR" (P). Precisely we set

_ [ lengthofe if e € R"(P)
wle) = { W it e € R (P)\ R (P).

Let the complexR?"( P) augmented with weights be denoted¥ ™ (P). A shortest basis dfi; (R*"*(P))
does not necessarily form a shortest basibl’pzf"(R(P)). However, the firsk: cycles sorted according to
lengths in a shortest basis kf (R?"*(P)) form a shortest basis (bﬂ’%(R(P)). We give an algorithm to
compute a shortest basis for any simplicial complex which we appRAtd (P).

Since we are interested in computing a homology cycle basis of the first hoyrgrogp, it is sufficient
to consider all simplices up to dimension two, that is, only vertices, edgedriandles in the simplicial
complexes that we deal with. Henceforth, we assume that all complexasgeltansider have simplices up
to dimension two.

2.1 Computing cycles

We will prove later that a shortest basis feb’fQT(R(P)) indeed approximates a shortest basisHo(M/).
The algorithm $IORTCYCLE computes them.

Algorithm 1 SHORTCYCLE (P, r)
1: Compute the Rips compleR?"(P) and a weighted compleR?"+ (P) from it as described.
2: Compute the rank of HZ’QT(R(P)) by the persistence algorithm.
3: Compute a shortest basis fidf (R*"*(P)).
4: Return the firsk smallest cycles from this shortest basis.

Theorem 2.1 The algorithmSHORTCYCLE(P, ) computes a shortest basis for the persistent homology
groupH}™" (R(P)).

Proof: Letgy, ..., g, be the set of cycles sorted according to the non-decreasing lengthsarbicbmputed
in step 3. They form a homology cycle basistbf(R?"+(P)). Out of these cycles the algorithm outputs
the firstk cyclesgy, .. ., gi. Sincek is the rank oﬁ-l{’Q’“(P) there arek independent cycles iH; (R"(P))
which remain independent id; (R>"*(P)). We claim that the cycleg,, ..., g, reside inR"(P). For if
they do not, the sum of their lengths would be more tharwhich is k times larger than the total weight



of R"(P). Then, we can argue that any independent sétayicles fromR" (P) which remain independent
in Hy(R?*(P)) can replacey, . . ., gr to have a smaller length so that, . . ., g, could not be a shortest
basis ofH; (R*"*(P)).

The above argument implies that, . . ., gx is @ homology cycle basis CH?QT(P). If it is not a short-
est basis, it can be replaced by a shorter one so that again we wowdahaamology cycle basis of
Hi(R?*(P)) which is shorter than the one computed. This is a contradiction. |

It remains to show how to compute a shortest basl$;¢R*"*(P)) in step 3 of $HORTCYCLE.

2.2 Shortest basis

Let K be any finite simplicial complex embeddedifi whose edges have non-negative weights. To compute
a shortest basis fdt; () we make use of the fact thet () is a vector space as we restrict ourselveg4o
coefficients. For such cases, Erickson and Whittlesey [21] obséne¢d a set of cycleg in K contains a
shortest basis, then the greedy Gathosen fromL is a shortest basis. The greedy &eof L is anordered

set of cycles{gi, ... gk}, k = rank H1(K), satisfying the following condition. The first elementis the
shortest cycle irC which is nontrivial inH; (). Supposey, . . ., g; have already been defined in the &et
The next chosen cyclg 1 is the shortest cycle i which is independent ofy, . . . , g;, thatis,[g;1+1] cannot

be written as a linear combination @f |, ..., [¢;]. The check for independence is a costly step in this greedy
algorithm which we aim to reduce. We construct a setasfonicalcycles which contains a homology cycle
basis ofH; (). This set is pruned by a persistence based algorithm before applyiggethey algorithm.

2.2.1 Canonical cycles

We start with citing a result of Erickson and Whittlesey [21]. A simple cyklés tight if it contains a
shortest path between every pair of pointd.in

Proposition 2.2 With non-negative weights, every cycle in a shortest badig 0€) is tight.

To collect all tight cycles, we consider the canonical cycles definedliasvs. Let7 be ashortest path tree

in K rooted atp. Notice that we are not assumifigto be unique, but it is fixed once computed. For any
two nodesyy, g2 € P, letIly(q1, g2) denote the unique path from to g2 in T'. Let Ep be the set of edges
in T'. Given a non-tree edge= (¢1,¢2) € E \ Er, define thecanonical cycleof e with respect t, ¢, (e)

in short, as the cycle formed by concatenafihg(q:, ¢2) ande, that is,

Cp(e) =Ir(q1,q2) oe.

Let C), be the set of all canonical cycles with respecptae.,C, = {c,(e) : e € E'\ Er}. Then we have
the following easy consequence.

Proposition 2.3 U, pC), contains all tight cycles.

For convenience, we treat,c pC),, as a multiset, that is, a cycle appears as many times as it is considered
a canonical cycle for a point ii?. The arguments and the algorithms to follow can easily be modified to
eliminate this assumption. By Proposition[2.8.pC, is a set of cycles from which the greedy set can be
selected. Howevev),c pC), can be a very large set containing possibly many trivial cycles whiclitiesol
many unnecessary independence checks. To remedy this, we identifiettaty set>,, of C}, and choose
the greedy set from the unian,c pG,, instead ofJ,c pC,,. We shall show that that',, can be computed by
a persistence based algorithm thereby avoiding explicit independeacksch

If the lengths of the cycles i@, are distinct, the greedy sét, is unique. However, in presence of equal
length cycles we need a mechanism to break ties. For this we introduce the ofotimnonical order We
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assign a unigue numbe(e) betweerl tom to each non-tree edgef there aren of them. For any two non-
tree edges ande’, lete < ¢’ if and only if eitherLen(c,(e)) < Len(c,(€’)), or Len(c,(€e)) = Len(cy(€'))
andv(e) < v(e'). The total order imposed by’ provides the canonical order

e <ex<...<€np-

Based on this canonical order, we form the greedysetf C), as described in the beginning of Section 2.2.
Below we argue that,c pG), is good for our purpose and each gt can be computed based on the
persistence algorithm. Again, we tregic pG), as a multiset for convenience.

Proposition 2.4 The greedy set chosen framc pG), is a shortest basis dfi; (IC).

Proof: We show thatJ,cpG), contains a shortest basis Hf (/C). Then, the proposition follows by the
argument as delineated at the beginning of section 2.2.

Consider all canonical cycles,c pC),. Sort them in non-decreasing order of their lengths. If two cycles
have equal lengths and if there are poimts P for which both of them are it,,, break the tie using the
canonical order applied to the canonical cycles for any such one giherwise, break the tie arbitrarily.
Based on this order l&¥ be the greedy set from,c pC,. Proposition 2.2 and Proposition 2.3 imply that
Upe pC), contains a shortest basisaf () and thusG is a shortest basis. Consider any cytlen G. Itis
a canonical cycle with respect to some P for which all cycles appearing befofein the canonical order
precede it in the sorted sequence. The cyclies independent of the cycles in,cpC),, appearing before
L, in particular independent of the cyclesdry appearing beford. in the canonical order, which means
L € G,. ThereforeJ,c pG), contains a shortest bagisof H (). The proposition follows. |

Motivated by the above observations, we formulate an algorittmdNGEN that computes the greedy
setG, of C;,. We note that, very recently, Chen and Freedman [9] proposed a simitaitlafg which
computes ampproximationof a shortest basis of a simplicial complex rather than an optimal one.

Algorithm 2 CANONGEN (p, K)

1. Construct a shortest path tr&en K with p as the root. Let denote the set of tree edges.

2: For each non-tree edge= (¢1,¢2) € E'\ Er, letc,(e) be the canonical cycle ef

3: Perform the persistence algorithm based on the following filtratioiCofall the vertices inP =
Vert(K), followed by all tree edges iff’, followed by non-tree edges in theanonical order and
followed by all the triangles irkC. There arek = rank(H;(K)) number of edges unpaired after the
algorithm, and each of them is necessarily a non-tree edge. Return tiearbnical cycles associated
with them.

Proposition 2.5 CANONGEN (p, K) outputs the greedy sét, chosen fronC,,.

Proof: Let {e1,e2--- ,en} be the set of non-tree edges for the shortest pathiirksted in the canonical
order. Let

Gp ={cpler), cples), -+, cpler)}-
It suffices to show thafe},e;--- ,e;} is the set of unpaired edges. Observe that for @nye,(e;) is
independent of any subset ff, (e;) : e; < e} }.

We prove the proposition by contradiction. Assume sejngets paired by a trianglein the persistence
algorithm. LetKC; denote the complex in the filtration right befarés added. Letf : £; <— K be the
inclusion map; it induces a homomorphisfn= H;(K;) — H;(K). Let[L], denote the homology class
in IC; carried by the cycld.. The boundaryt uniquely determines a subset of unpaired positive edges



el <--- < e inK;such thafot], = [cp(e))] + - - - + [ep(€))]s. The persistence algorithm [20] picks the
youngest one from this subset to pair with.e.,e = €/,. On the other hand, we have

[ep(€D)] + -+ + [en(es—1)] + [ep(e])]
—f*([cp(€1)] ot lep(el )]+
= f«([0t):) =

which means that, (e} ) is dependent on a subset{ef,(e;) : e; < e;}. We reach a contradiction. |
All previous results put together provide a greedy algorithm for compuatisigortest basis df; ().

[ep(ei)]e)

Algorithm 3 SPGeN (K)

1: For eaclp € P = Vert(K) computeG, :=CANONGEN (p,K). Letk = |G)|.
Sort all cycles inJ, G, by their lengths in the increasing order. gt . . ., g p| be this sorted list.
Initialize G := {¢1 }.
for i :=2tok|P|, do

if |G| = k, then
Exit the for loop.
else ifg; is independent of all cycles if¥, then
Add gitoG.
end if
end for
ReturnG.

o
= o

2.2.2 Checking independence

In step 7 of SPGN we need to determine if a cycleis independent of all cycleg, . . ., g% so far selected
in G. Suppose we obtain from running persistence algorithm on a shortest path tree based filtfatian
pointp in step 3 of QNONGEN. At the end of this persistence algorithm we must have gotten an unpaired
edge, say, wherec,(e) = g. To determine ifg is independent of all cycles selected so far we adopt a
sealing technique proposed in [9]. We fill . .. ¢/ with triangles. The filling is done only combinatorially
by choosing a dummy vertex, say and adding trianglesv;v; 1 for each edge;v;., of the cycles to be
filled. Let £’ be the new complex after adding these triangles and their eddésltoeffect, these triangles
and edges make the cyclgs . .., ¢, trivial in H;(K). They make the cycle trivial as well if and only if
g is dependent op/, ..., g.. Since we are sealing according to the greedy order, the proof of Lemma 4
in [9] applies to establish this fact. Whetheis rendered trivial or not can be determined as follows. We
continue the persistence algorithm corresponding to the vereéth the addition of the simplices ik’ \ K
and check i is now paired or not.

Letn,, n., andn,; denote the number of vertices, edges, and triangles respectiviélyNiotice that we
add at most:. edges and triangles for sealing since the dummy vertex is added to at pnexges to create
new triangles incC’.

2.3 Time complexity

First, we analyze the time complexity oiAQONGEN. Shortest path tree computation in step 1 afNON-
GEN takesO(n, logn, + n.) time. The persistence algorithm fon@0NGEN can be implemented using
matrix reductions [14] in timé&((n, +n.)?(n. +n)). This is because there aig + n. rows in this matrix
and each insertion of. + n; simplices can be implemented @(n, + n.) column operations each taking
O(ny, + ne) time. Therefore, GBNONGEN takesO (n, log n, + (1, + ne)?(ne + ny)) time.
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Step 1 of SP&N calls CANONGEN n,, times. Therefore, step 1 of SB® takesO (n2 log n, +n, (1, +
ne)%(ne + ny)) time. Step 2 of SPEN can be performed it (n, k log n, k) time wherek = O(n.) is the
rank of H; (). The time complexity for independence check in step 7 is dominated by thetpecsis
algorithm which is continued oft to accommodate simplices i’. Since we add)(n.) new simplices
in X', it has the same asymptotic complexity as for running the persistence algoritkin \&e conclude
that SPG&N spendO(n, (n, + ne)?(n. + ny)) time in total. If we taken = |K|, this gives arO(n?) time
complexity.

Now, we analyze the time complexity oH®RTCYCLE which is the main algorithm. Let. andn; be
the number of edges and trianglesRA” (P) created out of: points. Step 1 takes at ma®{(n + n. + n;)
time since we only compute edges and triangleR&f( P) out of n points. Accounting for the persistence
algorithm in step 2 and the time complexity of step 3 we get thaarSrCyCLE takes

O(n(n + ne)*(ne +ny)) time.

The procedure SP&\(K) computes canonical sef$, which is ensured by Proposition 2.5. Then, it
forms a greedy set from these canonical sets which is a shortest twallig(K) by Proposition 2.4. This
and the time analysis for SR establish Theorem 1.4.

3 Approximation for M

The algorithm $GEN is used in $SIORTCYCLE to produce a shortest basis for the persistent homology
groupH®" (R(P)). Proposition 3.5 in this section shows that a shortest bagi€'8f(R(P)) coincides
with a shortest basis iH; (C"(P)). Therefore, if we show that a shortest basi$li{C” (P)) approximates

a shortest basis iH; (M), we have the approximation result of Theorem 1.3.

3.1 Connecting M,Cech complex, and Rips complex

First, we note the following result established in [27] which conn@dtsvith the union of the ball®” =
UpGPB(pa T)'

Proposition 3.1 Let P C M be anc-sample. IR¢ <r < \/gp(M), there is a deformation retraction from
P" to M so that the corresponding retractian P” — M hast(B) C B forany ballB € {B(p,7)}pecp.

Recall thatC?"(P) is the nerve of the covelB(p, r) },cp Of the space””. By a result of Leray [25], it
is known thatP” andC?"(P) are homotopy equivalent. The next proposition follows from examining the
specific equivalence maps used to prove the Nerve Lemma in Hatchedfi2@articular, the simplices of
the Cech complex are mapped to a subset of the union of the balls centereit settices, see Appendix
for its proof.

Proposition 3.2 There exists a homotopy equivalenteC?”(P) — P" such that for each simplex ¢
C?"(P), one hasf(o) C Upevert(o) B(p,7) and f(p) = p for anyp € P.

The two propositions above together provide the connection betweand theCech complex:
Proposition 3.3 Let P C M be ans-sample. I2e < r < \/gp(M), there is a homotopy equivalence map
h=to f:C*(P)— M suchthati(c) C M N (Upevert(o)B(p, 7)) andh(p) = p foranyp € P.

Now we establish a connection betwe@ech complex and Rips complexes which helps proving Propo-
sition[3.5.



Proposition 3.4 Let P C M be anes-sample. Then, fode < r < %\/gp(M), we have the following
isomorphisms
jl* j2*

HI? (R(P)) & Hi(C"(P)) & Hi(C¥(P)) & Hi(CY(P)),

wherej,, andjs, are induced by the inclusion magsand j, respectively. Moreover, if
C'(P) &5 RI(P) £ €2 (P) £ R (P) £ €17 (P),

thenj; = iy 041, andjy = i4 0 73 and Hq’zr(R(P)) = image (1) Wherec, : H1(R"(P)) — Hl(RQT’(P))
is induced by the inclusion= i3 o is.

Proof: Based on Proposition 3.3, it can be proved by following the idea in [8] oftinieed Cech and Rips
complexes. [ ]

By definition the set of edges @1 (P) is same as the set of edgesRfi(P). This means a set of cycles
in R"(P) also forms a set of cycles @' (P). In light of Proposition 3.4, this implies:

Proposition 3.5 Let P C M be ane-sample andte < r < %\/gp(M). ThenH," (R(P)) andHy (M)

.27

are isomorphic and a basis fét;”" (R (P)) is shortest if and only if it is shortest fét; (C" (P)).

Proof: From Proposition 3.3 and Proposition 3.4, we have the following isomorphisms:
HY?" (R(P)) &~ Hi(C"(P)) ~ Hi (M),

Let A = {ay,--- ,a;} be a shortest basis fot}* (R(P)). Eacha, is a cycle inR"(P) and hence in
C"(P). Obviously A is a homology cycle basis &f;(C"(P)) as the inclusion map frord" (P) to R"(P)
induces a homomorphism. Thus, a shortest basidfa¢” (P)) must be no longer than that Hﬁ’Q’"(R(P)).
Similarly if A = {a1,---,ax} is ashortest basis &f; (C"(P)), then eaclu; must be inR"(P) and survive

in R2"(P) as it must survive irt4"(P). ThusA is a homology cycle basis fdi7*" (R(P)) and hence a
shortest basis dﬂ’{’z”(R(P)) is no longer than that dfl; (C"(P)). This proves the proposition. |

3.2 Bounding the lengths

Our idea is to argue that a shortest basislofC” (P)) can be mapped to a homology cycle basisipfM )
by the maph of Proposition 3.3. We argue that the lengths of the homology cycle basistamange too
much in the process.

Let g be any closed curve if/. Following [3], we define a procedure to approximatey a cycleg in
the 1-skeleton ofC"(P). This procedure calleBecomposition method not part of our algorithm, but is
used in our argument about length approximations of cyclég in

Decomposition method If ¢ = Len(g) > r—2¢ > 0, we can write/ = o+ (¢1+¢1+...+1)+ o where
¢y =r—2eandr—2e > {y > (r—2¢)/2. Starting from an arbitrary point, say split g into pieces whose
lengths coincide with the decomposition®fThis produces a sequence of points- xg, x1,...,T;m = @
alongg which divide it according to the lengths constraints. Because of our sagrguimdition, each point
x; has a poinp; € P within e distance. We define a cycie= {pop; . . . pm } With consecutive points joined
by line segments. Proposition 3.6 shows thatsides in thd -skeleton ofC" (P).

Proposition 3.6 Given a closed curve on M with Len(g) > r — 2¢ > 0, Decomposition methofinds a
cycleg from thel-skeleton o€ (P) such that:Len(g) < —5-Len(g).

r—2e
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Proof: From the construction and sampling condition, it follows that,Ifet i < m — 2,

d(pi,pi+1) < d(xi,pi) + d(xi, 1) + d(@iz1, pig1)

N
< 2+l =r= (r—2s)£1

Similarly,
T
<
d(po,p1) < —

Since. %5 ly < r, each edge;p; 1 belongs taC"(P). Therefore, we obtain a cycle= pop: . . . pm in the

1-skeleton ofC"(P) whose length satisfies:

by andd(ppm—1,p0) < L.

r—2¢

. _ r
Len(g) = E?lold(pz‘,pz‘ﬂ) < — Len(g).

2e

|

Consider a homology cycle basisléf (M) where each cycle is a closed geodesidiénFor a smooth,
compact manifold such a basis always exists by a well known result irreliffiel geometry [19]. Let
G ={q,-..,9x} be this set of geodesic cycles. By Proposition 3.6, we claim that there todaeles
G = {¢1,..., g} In C"(P) whose length is within a small factor of the length@f However, we need to
show that(z indeed a homology cycle basis df (C"(P)). We show this by mapping eagh < GtoM
by the homotopy equivalende (Proposition 3.8) and arguing thgit(j;)] = [g;] in Hi(M). Sinceh is a
homotopy equivalence map, it follows that the isomorphism H; (C"(P)) — H;(M) maps the clasfj;]
to [g;]. This implies that7 is a homology cycle basis &f, (C”(P)).

To prove thath(g;) is a representative of the clagg|, we consider a tubular neighborhood gf of
radiusr which is smaller than the convexity radipg(A/). Then, we show that each segmepn;; of g;
is mapped to a curvk(p;p;+1) which lies within this tubular neighborhood. Because of this containment,
h(pipi+1) must be homotopic to a geodesic segmeny;ofAll these homotopies together provide a homo-
topy betweerh(g;) andg;. First we show that the tubular neighborhood of a segmeant thfat we consider
is indeed simply connected.

Proposition 3.7 Lety = ~(p, ¢) be a minimizing geodesic between two pointg € M. Consider its
tubular neighborhoodl'ub, () on M that consists of the points ol within a geodesic distance from
7y, i.e., Tubs(y) = {z € M : minye, dy(z,y) < s}. Thenifs < p.(M), Tubs(7y) is contractible, in
particular, Tub,() is simply connected.

Proof: We show thatTub, () deformation retracts tg. For any pointz € Tub,(y), consider an open
geodesic balB of radiuss. We claim thaty N B has a unique point,, which is at a minimum geodesic
distance frome. Suppose not, that is, there is another minimefjn The geodesic segmemtz,,, z,,,) on
7 goes outside the open geodesic Wall= By (x, dy(x, zy,)). Sinces < p.(M), B' has a radius less
than the convexity radius. It follows that there is a unique minimizing geodeswden:,,, andz, lying
in B’. Then, we have two distinct minimizing geodesics betwegrandz/,,, one lying inB’ and another
going outsideB’ though both of which lie inB. This is impossible sinc® also has a radius less than the
convexity radius.

Consider the retraction map: Tubs(y) — ~ wheret(x) = x,,. One can construct a deformation
retraction that deforms the identity dfub () to t by moving each point along the minimizing geodesic
path that connect to z,, in ~. ]

Proposition 3.8 Let P C M be ans-sample andle < r < min{3p(M), p.(M)}. If g is the cycle on
C"(P) constructed from a geodesic cyglén M by Decomposition methgdhen[h(g)] = [¢g] whereh is
the homotopy equivalence defined in Proposition 3.3.
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Proof: Sinceg is a geodesic cycle, it follows from standard results in differential gegni@®] that
Len(g) > 2p.(M). Thusg can be constructed from a geodesic cyclesingDecomposition methodeach
vertexp; of g is within ane Euclidean distance from the point in g. Next, notice that, sincé” (P) uses
balls of radius-/2, the stated range of satisfies the condition of Proposition 3.3. By Proposition 3.3, for
any pointy on the segmeni;p; 11, h(y) is within » /2 Euclidean distance to eithgy or p;;1. This implies
that h(y) is within /2 + ¢ Euclidean distance, and hence, by Proposition 1.2, wittgeodesic distance
to eitherz; or x;11. In addition, since the sub-curve of the geodesic cydetweenr; andz; 1, denoted
v(zi, xiy1), is of lengthly = r — 22 < p.(M), v(x;, z;+1) iS @ minimizing geodesic between andx; ;.
Thereforeh(p;pi+1) € Tub,(v(xi, zi11)). In particular, there are minimizing geodesigs:;, h(p;)) and
'y(miﬂ, h(pi_;,_l)) that reside imubr(7<$i, .731‘4_1)).

Consider the cycle formed by the three geodesic segmémtsx;1), v(xi, h(pi)), Y(xit1, h(Pit1)),
and the curveéx(p;p;+1). From Proposition 3.7, this cycle is contractiblelihas it resides iTub, (y(x;, zi41)).
In fact, there is a homotopsf; that takesi(p;pi+1) to y(z;, z;4+1) while H; keepsh(p;) andh(p;+1) on the
geodesicsy(x;, p;) andvy(z;+1, pi+1) respectively. We can combine all homotopisfor 0 < ¢ < m to
define a homotopy betweér{g) andg. It follows that[h(g)] = [g]. |

Proposition 3.9 Let P C M be ane-sample andle < r < min{3p(M), p.(M)}. f G = {g1,...,9x}
andG’ = {g,...,q,} are the cycles of a shortest basistdf()/) andH;(C"(P)) respectively, then we
haveLen(G’) < (14 4)Len(G).

Proof: It is obvious that any;; must be a geodesic cycle. Lgtbe the cycle constructed ecomposition
methodin the 1-skeleton ofC”(P). Thus, we have a sét = {1, -+, gr}- By Proposition 3.8, there is a
homotopy equivalenck : C"(P) — M so that/h(g;)] = [gi], which means that! is also a homology cycle
basis ofH; (C"(P)). By Proposition 3.6,

Len(@) < Len(G) < Len(G) < (1 + %)Len(G).

r—2¢
|
We now consider the opposite direction, and provide a lower bound fatotaklength of a shortest
basis ofH, (C"(P)) in terms of the length of a shortest basidf /).

Proposition 3.10 Let P C M be ane-sample andie < r < min{3p(M), p.(M)}. LetG and G’ be
defined as in Proposition 3.9. We hallenG < (1 + %)Len((}’). Moreover, there exists a map

h: G' — M so thath(G’) is a homology cycle basis &f, (1) and the Hausdorff distance between each
cycleg € G" andh(g’) is at most.

Proof: We construct a set of cycles il from G’. First, we show that the length of these cycles is at most
(1+ 3%?\49 times the length of+’. Next, we show that the constructed cycles form a homology cycle basis
of H1<M)

For each cycle/ € G’, we construcg as follows. The vertices and edgesgofare vertices and edges
of C"(P). For an edge = pq € ¢, p,q € P thusp, q € M. We connecp andq by a minimizing geodesic
v(p, q) on M, and maye to this geodesic. Mapping each edgejiron M, we obtaing. Thus we obtain a
setG = {g1,- -+, gr}. By Proposition 1.2d(p, q) < (1 + é‘;z((’]’\f)))d(p, q) < (1+ %)d(p, q). Hence
the length bound follows.

We now show that the sét is a homology cycle basis fdt; (1/). Consider mapping} € G'to M by
the homotopy equivalende Each edge = pq € g;. is mapped to a curvk(pq). From Proposition 3.3,
we have that(p) = p andh(q) = ¢ and each point ok(pq) is within r/2 Euclidean distance and hence
r geodesic distance to eithgror q. This implies thath(pq) C Tub,(y(p,q)). Then, by using similar
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argument as in Proposition 3.7, we claim thép, ¢) andh(pq) are homotopic. Combining all homotopies
for each edge of’,, we get thath(g;) is homotopic tog;. Sinceh is a homotopy equivalencé (G’) and
henceG = {41, ..., g} are a homology cycle basis bff (1/). Therefore,

472

Len(G) < Len(G) < (1 + W)

Len(G').

The cycles im(G’) form a homology cycle basis 6f, (M) and each cyclg’ € G’ has a Hausdorff distance

of /2 with h(¢’) satisfying the last claim. |
Thanks to Propositian 3.5, shortest base§’ii’) and H’{’zT(R(P)) are same for an appropriate range

of r.

Theorem 3.11 Let P C M be ans-sample and be a real positive witde < r < min{%\/gp(M), pe(M)}.
LetG and G’ be a shortest basis ¢f; (M) andH}*" (R(P)) respectively. We have

i. : L Len(G) < Len(G') < (1+ 2)Len(G).

4r2
3p2 (M)

ii. Thereisamaph : G — M so thath(G’) is a homology cycle basis éf; (M) and the Hausdorff
distance between the underlying spacg’aindh(¢’) is at most-/2 for eachy’ € G'.

Theorem 1.3 follows from Theorem 3./11, Theorem 2.1, and the time compémdtysis in section 2.3.

4 Conclusions

We have given a polynomial time algorithm for approximating a shortest ba#ig dirst homology group
of a smooth manifold from a point data. We have also presented an algoritbomioute a shortest basis
for the first homology of any finite simplicial complex with non-negative weigists edges.

We use Rips complexes for computations and@seeh complexes for analysis. One may observe that
Cech complexes can be used directly in the algorithm. Since we know'th&Y is homotopy equivalent
to M for an appropriate range @f we can compute a shortest basis far(C" (P)) which can be shown
to approximate a shortest basis tér(1/) using our analysis. In technical terms, this will get rid of the
weighting in step 1 and also step 4 agiSRTCYCLE algorithm, and make Theorem 2.1 and Proposition 3.5
redundant. Although the time complexity does not get affected in the wosstseanse, computing the trian-
gles forCech complexes becomes harder numerically in high dimensions than theise Rips complexes.
This is why we chose to describe an algorithm using the Rips complexes.

Recently, new persistence algorithms based on matrix multiplications [26, id bean proposed which
have improved time complexity. It will be interesting to see how the time complexity oélgarithm can
be improved using similar techniques.

Computing a shortest basis for other homology groups &itltoefficients has been shown to be NP-
hard by Chen and Freedman [10]. A related topic that has been addiiegbe literature is the problem of
homology localization which asks for computing a shortest cycle in a givemlagy class. The problem
has been shown to be NP-hard for a large number of cases/[6, 10 witbefficient. Interestingly, it is
shown in [17] that the problem is polynomial time solvable for a class of spaten the homology is
defined withZ instead ofZ,. Does similar disparity exist for the shortest basis problem betweenatiffer
coefficient rings?
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Figure 1: Cycles in a shortest basis computed in Rips complexes (left cobansiructed out of point data
(right column).
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Appendix
Proof of Proposition/3.2.

The proof is based on that of Nerve Lemma in [22] (Chapter 4.G)I'Uea the barycentric subdivision
of C?"(P). We consider the following sequence — we will describe the spalé and maps involved in

this sequence shortly.

h

Py L2t apr T pr. 1)

Ap
We prove the proposition by defininfg= 7 o Aq o h and showing thaf is a homotopy equivalence meeting
the requirements stated in the proposition.

We first introduce the concept of mapping cylinder. For a nfiap X — Y, the mapping cylinder
My is the quotient space of the disjoint unigN x I)| | Y with (z, 1) identified with f () € Y, denoted
My = X ||, Y, see Figure 2(a). Itis obvious thal; retracts toY” under a deformation retraction. Let
ey be the retraction froml/; to Y. It is well-known (e.g., Corollary.21 in [22]) that f is a homotopy
equivalence map if and only i/, retracts toX under a deformation retraction. See Figure 2(b). In fact,
if ex in Figure 2(b) is a retraction under a deformation retraction, the gnapex o iy is a homotopy
equivalence map frorr to X. We will use this fact later in the proof to define the map: AP” — T.

We are now ready to explain each map in the composition of the fnapincel is the barycentric
subdivision ofC?"(P), we can takeh as an identity map between the underlying space§?6fP) and
I'. Index the points inP = {p;}!", arbitrarily. LetB; = B(p;,r). To facilitate the argument, label the
vertices inI" using B;'s and their finite intersections, see Figure 3. Under such labeling, tiexvest of
anyk-simplexA* in I' can be ordered as

AY=(Byyn---NB;,,BiyN---NB;,_,,....Bi, N---NB; ), (2)

where the size of the index set in the label of each vertex decreases ftol to n — k£ for somen. Each
edge {-simplex) inT" is associated with an inclusion map between the labels of its vertices. This énduce
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Xxl

Figure 2: (a) the mapping cylindéd; = X | |, Y [22]; (b) the maps among(, Y and My : ix andiy
are the inclusion maps fronY andY” into M respectivelyey is a retraction from\M/, to Y given by a
deformation retraction, andy is a retraction from\/; to X given by a deformation retraction providgd
is a homotopy equivalence.

the following sequence of inclusion maps by considering only edges betiw@econsecutive vertices in
Eqn (2) for anyk-simplexAF in T':

(BiN--NB;) = (ByN--NB )

We now give a brief account for the construction®P” used in the sequence of maps given in Eqn (1).
The readers are referred to [22] for more detailsP” is realized using the concept of iterated mapping
cylinder defined over a sequence of maps. Specifically, the sequémtgusion maps as shown in Eqn
(3) associated with ani-simplexA* in T induces an iterated mapping cylinder ove¥. We obtainA P”
by gluing these iterated mapping cylinders over all simpliceE,iisee the top right most picture in Fig-
ure/ 3. There is a canonical projectidyp : AP” — T induced by projecting each finite intersection to its
corresponding vertex if.

To define the mapg\q in Eqn (1), consider the mapping cylind&f,,. In Chapter 4.G of [22], the
Nerve Lemma was proved by showing tiidt , retracts toA P™ under a deformation retraction; let p- :
Ma, — APT be the associated retraction. We 8et := ea pr o it Whereir is the inclusion map fronit
into Ma,,. From our earlier discussion about Figure 2 (h),is a homotopy equivalence (settiig= AP"
andY = T in the diagram of Figure|2 (b)). Furthermore, [22] showed that thea@@drac A p- in fact maps
a simplexA* € T to the iterated mapping cylinder defined over the saxieimplying thatAg maps a
simplexA* ¢ T into the iterated mapping cylinder defined by the sequence of inclusion mepsiatsd
with A,

On the other handA P" can also be considered as the quotient space of the disjoint union of all the
productsB;, N --- N B;, x A", as the subscripts range over setof 1 distinct indices and any > 0,
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Figure 3: lllustration of the maps and the spaces involved in Eq. 1.

with the identifications over the faces Af* using inclusions3;, N---N B;, — B;; N---N B,-j n---NBb;,
where” means the corresponding term is missing. From this viewpoint, any poiat P" has a fiber
7~1(x) in AP" defined as follows. Let; be a copy ofr in B; for those B; containingz and define

7 Nx) = {3, tizi : >, t; = 1 andt; > 0}, see the bottom left most picture in Figure 3. It is easy to see
that P can be embedded inth P" as a section o\ P", denoteds(P"). Since points int—!(x) can move
linearly along line segments tgx), s(P") is a retract ofAP". Takingz as the retraction from\ P" to
s(P"), we haver as a homotopy equivalence. Thys= m o Ag o h is a homotopy equivalence.

Observe that a pointin an iterated mapping cylinder over a simpla% = (B;,N---NB;,,--- , Biy N
--N B;,_,)in T is in the fiberr—!(x) for somez in B;,. This means that if airsimplex Al is in the
closure of the star of a vertgxe P in T, then any poiny in the iterated mapping cylinder ové is in the
fiber of a pointr € B(p,r). Indeed, this follows from the previous statement by considering any simple
AF containingp andA!. Now consider a simplex < C?"(P). Any simplex in the barycentric subdivision
of o must be in the closure of the star of some vertex oThusco, under the mag\q o h, is mapped into
the union of the iterated mapping cylinders defined over the simplices in thedvari subdivision otr,
and thus , its image, under the mapis further mapped intd),cver (o) B(p, 7).

In addition, it is clear that it is possible to choog&o that it fixes each vertex &¥"(P). This proves
the proposition.

18



	Introduction
	Background and notations
	Main results

	Algorithm description
	Computing cycles
	Shortest basis
	Canonical cycles
	Checking independence

	Time complexity

	Approximation for M
	Connecting M, Cech complex, and Rips complex
	Bounding the lengths

	Conclusions

