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Abstract

Inference of topological and geometric attributes of a hidden manifold from its point data is a funda-
mental problem arising in many scientific studies and engineering applications. In this paper we present
an algorithm to compute a set of cycles from a point data that presumably sample a smooth manifold
M ⊂ R

d. These cycles approximate ashortestbasis of the first homology groupH1(M) over coef-
ficients in finite fieldZ2. Previous results addressed the issue of computing the rankof the homology
groups from point data, but there is no result on approximating the shortest basis of a manifold from
its point sample. In arriving our result, we also present a polynomial time algorithm for computing a
shortest basis ofH1(K) for any finitesimplicial complexK whose edges have non-negative weights.

1 Introduction

Inference of unknown structures from point data is a fundamental problem in many areas of science and
engineering that has motivated wide spread research [1, 13, 23, 27, 28, 29]. Typically, this data is assumed to
be sampled from a manifold sitting in a high dimensional space whose geometric and topological properties
are to be derived from the data. In this work, we are particularly interested in computing a set of cycles
from data which not only captures the topology but is also aware of the geometry of the sampled manifold.
Specifically, we aim to approximate a shortest basis of the first homology group from the data.

Recently, a few algorithms for computing homology groups from point data have been developed. One
approach would be to reconstruct the sampled space from its point data [4, 7, 12] and then apply known
techniques for homology computations on triangulations [22, 24]. However, this option is not very attrac-
tive since a full-blown reconstruction with known techniques requires costly computations with Delaunay
triangulations in high dimensions. Chazal and Oudot [8] showed how one can use less constrained data
structures such as Rips,Čech, and witness complexes to infer the rank of the homology groups by leverag-
ing persistence algorithms [20, 29]. Among these, the Rips complexes are theeasiest to compute though
they consume more space than the others, an issue which has started to be addressed [18].

All of the works mentioned above focus on computing the Betti numbers, the rank of the homology
groups. Although the persistence algorithms [20, 29] also provide representative cycles of a homology
basis, they remain oblivious to the geometry of the manifold. As a result, these cycles do not have nice
geometric properties. A natural question is that, if the cycles of the first homology group are associated
with a length under some metric, can one approximate/compute a shortest basis of the homology group in
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polynomial time? This question has been answered in affirmative for the special case of surfaces when they
are represented with triangulations [21]. In fact, considerable progress has been made for this special case
on various versions of the problem. We cannot apply these techniques, mainly because we deal with point
data instead of an input triangulation. Also, these works either consider a surface [5, 6, 15, 21] instead of a
manifold of arbitrary dimension in an Euclidean space, or use a local measure other than the lengths of the
cycles in a basis [9].

Our main result is an algorithm that can compute a set of cycles from a Rips complex of the given data
with the guarantee that the lengths of the computed cycles approximate those ofa shortest basis of the first
homology group of the sampled manifold. In arriving at this result, we also show how to compute a shortest
basis for the first homology group of any finitesimplicial complexwhose edges have non-negative weights.
Given that computing a shortest basis fork-th homology groups of a simplicial complex overZ2 coefficients
is NP-hard fork ≥ 2 (Chen and Freedman [10]), this result settles the open case fork = 1.

1.1 Background and notations

We use the concepts of homology groups,Čech and Rips complexes from algebraic topology and geodesics
from differential geometry. We briefly discuss them and introduce relevant notations here; the readers can
obtain the details from any standard book on the topics such as [19, 22].

Homology groups and basis: A homology group of a topological spaceT encodes its topological con-
nectivity. We useHi(T) to denote itsi-th homology group over the coefficients inZ2. SinceZ2 is a field,
Hi(T) is a vector space and hence admits a basis. We are concerned with the firsthomology groupH1(T).
The elements ofH1(T) are equivalence classes[g] of 1-dimensional cyclesg. A set{[g1], . . . , [gk]} gen-
eratingH1(T) is called its basis wherek = rank(H1(T)). We say{g1, . . . , gk} is ahomology cycle basis
of H1(T) if {[g1], . . . , [gk]} is a basis ofH1(T). We also say that a set of cycles isindependentin H1(T)
if their homology classes inH1(T) are independent. By definition, a homology cycle basis is a maximally
independent set.

We assume that each cycleg in T is associated with a non-negative weightw(g). If T is a simplicial
complex, the cycles are restricted to its1-skeleton andw(g) is defined to be the sum of edge weights in
g which are assumed to be non-negative. IfT is a Riemannian manifold, the weights on cycles are taken
as their lengths in the Riemannian metric. The weights of the cycles define the length of a setof cycles
G = {g1, . . . , gk} asLen(G) = Σk

i=1w(gi). A shortest basisof H1(T) is a homology cycle basisG of
H1(T) whereLen(G) is minimal over all such bases. In applications, the weights could be the Euclidean
lengths of the edges in which case a shortest basis would coincide with a setof cycles whose total Euclidean
length is the smallest among all homology cycle bases.

Čech complexCr(P ) Rips complexRr(P )

Complexes: LetB(p, r) denote an open Euclidean
d-ball centered atp with radiusr. For a point set
P ⊂ R

d, and a realr > 0, the Čech complex
Cr(P ) is a simplicial complex where a simplex
σ ∈ Cr(P ) if and only if Vert(σ), the vertices of
σ, are inP and are the centers ofd-balls of radius
r/2 which have a non-empty common intersec-
tion, that is,∩p∈Vert(σ)B(p, r/2) 6= ∅. Instead of
common intersection, if we only require pairwise intersection among thed-balls, we get the Rips complex
Rr(P ). See the figure on right for an example, where the radius of each disk isr/2. Notice that the top-
right triangle is inRr(P ) but not inCr(P ). It is well known that the two complexes are related by a nesting
property:
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Proposition 1.1 For any finite setP ⊂ R
d and anyr ≥ 0, one hasCr(P ) ⊆ Rr(P ) ⊆ C2r(P ).

Geodesics: The vertex setP of the simplicial complexes we consider is a dense sample of a smooth compact
manifold M ⊂ R

d without boundary. Assume thatM is isometrically embedded, that is,M inherits
the metric fromR

d. For two pointsp, q ∈ M , a geodesicis a curve connectingp and q in M whose
acceleration has no component in the tangent spaces ofM . Two points may have more than one geodesic
among which the ones with the minimum length are calledminimizing geodesics. SinceM is compact,
any two points admit a minimizing geodesic. The lengths of minimizing geodesics induce a distance metric
dM : M × M → R wheredM (p, q) is the length of a minimizing geodesic betweenp andq. Clearly,
d(p, q) ≤ dM (p, q) whered(p, q) is the Euclidean distance. Ifd(p, q) is small, Proposition 1.2 asserts that
there is an upper bound ondM (p, q) in terms ofd(p, q). Our proof extends a result in [2] where Belkin et
al. show the same result on a surface inR

3. Thereachρ(M) is defined as the minimum distance between
M and its medial axis [16].

Proposition 1.2 If d(p, q) ≤ ρ(M)/2, one has

dM (p, q) ≤ (1 +
4d2(p, q)

3ρ2(M)
)d(p, q).

Proof: Let γ(t) be a minimizing geodesic betweenp andq parameterized by length and setl = dM (p, q).
By Proposition6.3 in [27] we have thatl ≤ 2d(p, q). Let ut = γ̇(t) be theunit tangent vector ofγ at t. We
havet = dM (p, γ(t)).

Let B : Tγ(t) × Tγ(t) → T⊥
γ(t) be the second fundamental form associated with the manifoldM . Since

γ is a geodesic,dut/dt = B(ut, ut) = γ̈(t). Write ρ = ρ(M) andd = d(p, q) for convenience. From
Proposition6.1 in [27], we have

‖γ̈(t)‖ ≤ 1/ρ

since the norm of the second fundamental form is bounded by1/ρ in all directions, and thus‖dut/dt‖ ≤
1/ρ. Hence we have that

‖ut − up‖ = ‖
∫

[0,t]
duy‖ ≤

∫

[0,t]

1

ρ
dy =

t

ρ

⇒ sin
∠(up, ut)

2
≤ t

2ρ
.

Furthermore, letu · v denote the scalar-product between vectorsu andv. Then we have that

∫

[0,l]
ut · up dt =

∫

[0,l]
cos ∠(ut, up) dt =

∫

[0,l]
(1 − 2 sin2 ∠(ut, up)

2
)dt

≥
∫

[0,l]

(

1 − t2

2ρ2

)

dt = l − l3

6ρ2

On the other hand, observe that
∫

[0,l] ut · up dt measures the length of the (signed) projection ofγ along
the directionup. That is,

∫

[0,l]
ut · up dlt = (q − p) · up.
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Hence we have that

d = ‖p − q‖ ≥ (q − p) · up ≥ l − l3

6ρ2

⇒ l ≤ d + l3

6ρ2 ≤ d + 4d3

3ρ2 .

The last inequality follows from the fact thatl ≤ 2d. This proves the lemma.

Convexity radius and sampling: For a pointp ∈ M , the set of all pointsq with dM (p, q) < r forms
p’s geodesic ballBM (p, r) of radiusr. It is known that there is a positive realrp for each pointp ∈ M so
thatBM (p, r) is convexfor r ≤ rp. It means that, forr ≤ rp, any two points inBM (p, r) admit aunique
minimizing geodesic that lies inBM (p, r). Theconvexity radiusof M is ρc(M) = infp∈M rp. Intuitively, a
geodesic ball centered anywhere onM with convexity radius is guaranteed to be convex in the sense that any
two points within it has a unique minimizing geodesic. We use Euclidean distances todefine the sampling
density. We say a discrete setP ⊂ M is anε-sample1 of M if B(x, ε) ∩ P 6= ∅ for each pointx ∈ M .

1.2 Main results

We compute a set of cyclesG = {g1, . . . , gk} from an ε-sampleP of M whose total length, denoted
Len(G), is within a factor of the total length of a shortest basis inH1(M). Recall that the length of a cycle
g in M is defined as the length ofg in the Riemannian metric associated withM . The factor depends onε,
ρ(M), and an input parameterr > 0.

Theorem 1.3 LetM ⊂ R
d be a smooth, closed manifold withℓ as the length of a shortest basis ofH1(M).

Given anε-sampleP ⊂ M of n points and4ε ≤ r ≤ min{1
2

√

3
5ρ(M), ρc(M)}, one can compute a set of

cyclesG in R
d where:

i.
1

1 + 4r2

3ρ2(M)

ℓ ≤ Len(G) ≤ (1 +
4ε

r
)ℓ.

ii. Treating G as a1-complex, there is a maph : G → M so thath(G) is a homology cycle basis of
H1(M) and the Hausdorff distance between the underlying space ofg and h(g) is at mostr/2 for
eachg ∈ G.

iii. The cycles inG can be computed inO(n(n + ne)
2(ne + nt)) time wherene andnt are the numbers

of edges and triangles respectively in the Rips complexR2r(P ).

The above result suggests thatlim ε
r
,r→0 Len(G) → ℓ. To makeε

r
andr simultaneously approach0, one

may taker = O(
√

ε) and letε → 0. We note thatne = O(n2) andnt = O(n3) giving anO(n8) worst-case
complexity for the algorithm. However, ifr = Θ(ε) and points inP haveΩ(ε) pairwise distance,ne andnt

reduce toO(n) by a result of [8]. In this case we get a time complexity ofO(n4). In arriving at Theorem 1.3,
we also prove the following result which is of independent interest.

Theorem 1.4 LetK be a finite simplicial complex with non-negative weights on edges. A shortestbasis for
H1(K) can be computed inO(n4) time wheren is the size ofK.

1 Hereε-sample is not defined relative to reach or feature size as commonly done in reconstruction literature [1, 7, 12].
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2 Algorithm description

The algorithm that we propose proceeds as follows. We compute a Rips complex R2r(P ) out of the given
point cloudP ⊂ M . Next, we compute the rankk of H1(M) by considering the persistent homology group

H
r,2r
1 (R(P )) = imageι∗

where the inclusionι : Rr(P ) →֒ R2r(P ) induces the homomorphismι∗ : H1(Rr(P )) → H1(R2r(P )).
As a homology group overZ2, H

r,2r
1 (R(P )) is a vector space and the rank ofH

r,2r
1 (R(P )) coincides with

that ofH1(M) for appropriater, see Proposition 3.5.
A basis ofHr,2r

1 (R(P )) is formed by the classes of a maximal set of cycles inRr(P ) whose classes
remain independent inH1(R2r(P )) under the mapι∗. We show that a shortest basis ofH

r,2r
1 (R(P )) ap-

proximates a shortest basis ofH1(M). Therefore, we aim to compute a shortest basis ofH
r,2r
1 (R(P )) from

Rr(P ) andR2r(P ). To accomplish this, the algorithm augmentsR2r(P ) by putting a weightw(e) on each
edgee ∈ R2r(P ). The weights are of two types: either they are the lengths of the edges, or avery large
valueW which is larger thank times the total weight ofRr(P ). Precisely we set

w(e) =

{

length ofe if e ∈ Rr(P )
W if e ∈ R2r(P ) \ Rr(P ).

Let the complexR2r(P ) augmented with weights be denoted asR2r+(P ). A shortest basis ofH1(R2r+(P ))
does not necessarily form a shortest basis ofH

r,2r
1 (R(P )). However, the firstk cycles sorted according to

lengths in a shortest basis ofH1(R2r+(P )) form a shortest basis ofHr,2r
1 (R(P )). We give an algorithm to

compute a shortest basis for any simplicial complex which we apply toR2r+(P ).
Since we are interested in computing a homology cycle basis of the first homology group, it is sufficient

to consider all simplices up to dimension two, that is, only vertices, edges, andtriangles in the simplicial
complexes that we deal with. Henceforth, we assume that all complexes thatwe consider have simplices up
to dimension two.

2.1 Computing cycles

We will prove later that a shortest basis forH
r,2r
1 (R(P )) indeed approximates a shortest basis forH1(M).

The algorithm SHORTCYCLE computes them.

Algorithm 1 SHORTCYCLE (P, r)

1: Compute the Rips complexR2r(P ) and a weighted complexR2r+(P ) from it as described.
2: Compute the rankk of H

r,2r
1 (R(P )) by the persistence algorithm.

3: Compute a shortest basis forH1(R2r+(P )).
4: Return the firstk smallest cycles from this shortest basis.

Theorem 2.1 The algorithmSHORTCYCLE(P, r) computes a shortest basis for the persistent homology
groupH

r,2r
1 (R(P )).

Proof: Let g1, . . . , ga be the set of cycles sorted according to the non-decreasing lengths whichare computed
in step 3. They form a homology cycle basis ofH1(R2r+(P )). Out of these cycles the algorithm outputs
the firstk cyclesg1, . . . , gk. Sincek is the rank ofHr,2r

1 (P ) there arek independent cycles inH1(Rr(P ))
which remain independent inH1(R2r+(P )). We claim that the cyclesg1, . . . , gk reside inRr(P ). For if
they do not, the sum of their lengths would be more thanW which isk times larger than the total weight
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of Rr(P ). Then, we can argue that any independent set ofk cycles fromRr(P ) which remain independent
in H1(R2r+(P )) can replaceg1, . . . , gk to have a smaller length so thatg1, . . . , ga could not be a shortest
basis ofH1(R2r+(P )).

The above argument implies thatg1, . . . , gk is a homology cycle basis ofHr,2r
1 (P ). If it is not a short-

est basis, it can be replaced by a shorter one so that again we would have a homology cycle basis of
H1(R2r+(P )) which is shorter than the one computed. This is a contradiction.

It remains to show how to compute a shortest basis ofH1(R2r+(P )) in step 3 of SHORTCYCLE.

2.2 Shortest basis

LetK be any finite simplicial complex embedded inR
d whose edges have non-negative weights. To compute

a shortest basis forH1(K) we make use of the fact thatH1(K) is a vector space as we restrict ourselves toZ2

coefficients. For such cases, Erickson and Whittlesey [21] observedthat if a set of cyclesL in K contains a
shortest basis, then the greedy setG chosen fromL is a shortest basis. The greedy setG of L is anordered
set of cycles{g1, . . . gk}, k = rank H1(K), satisfying the following condition. The first elementg1 is the
shortest cycle inL which is nontrivial inH1(K). Supposeg1, . . . , gi have already been defined in the setG.
The next chosen cyclegi+1 is the shortest cycle inL which is independent ofg1, . . . , gi, that is,[gi+1] cannot
be written as a linear combination of[g1], ..., [gi]. The check for independence is a costly step in this greedy
algorithm which we aim to reduce. We construct a set ofcanonicalcycles which contains a homology cycle
basis ofH1(K). This set is pruned by a persistence based algorithm before applying thegreedy algorithm.

2.2.1 Canonical cycles

We start with citing a result of Erickson and Whittlesey [21]. A simple cycleL is tight if it contains a
shortest path between every pair of points inL.

Proposition 2.2 With non-negative weights, every cycle in a shortest basis ofH1(K) is tight.

To collect all tight cycles, we consider the canonical cycles defined as follows. LetT be ashortest path tree
in K rooted atp. Notice that we are not assumingT to be unique, but it is fixed once computed. For any
two nodesq1, q2 ∈ P , let ΠT (q1, q2) denote the unique path fromq1 to q2 in T . Let ET be the set of edges
in T . Given a non-tree edgee = (q1, q2) ∈ E \ ET , define thecanonical cycleof e with respect top, cp(e)
in short, as the cycle formed by concatenatingΠT (q1, q2) ande, that is,

cp(e) = ΠT (q1, q2) ◦ e.

Let Cp be the set of all canonical cycles with respect top, i.e.,Cp = {cp(e) : e ∈ E \ ET }. Then we have
the following easy consequence.

Proposition 2.3 ∪p∈P Cp contains all tight cycles.

For convenience, we treat∪p∈P Cp as a multiset, that is, a cycle appears as many times as it is considered
a canonical cycle for a point inP . The arguments and the algorithms to follow can easily be modified to
eliminate this assumption. By Proposition 2.3,∪p∈P Cp is a set of cycles from which the greedy set can be
selected. However,∪p∈P Cp can be a very large set containing possibly many trivial cycles which result into
many unnecessary independence checks. To remedy this, we identify thegreedy setGp of Cp and choose
the greedy set from the union∪p∈P Gp instead of∪p∈P Cp. We shall show that thatGp can be computed by
a persistence based algorithm thereby avoiding explicit independence checks.

If the lengths of the cycles inCp are distinct, the greedy setGp is unique. However, in presence of equal
length cycles we need a mechanism to break ties. For this we introduce the notion of canonical order. We
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assign a unique numberν(e) between1 tom to each non-tree edgee if there arem of them. For any two non-
tree edgese ande′, let e < e′ if and only if eitherLen(cp(e)) < Len(cp(e

′)), or Len(cp(e)) = Len(cp(e
′))

andν(e) < ν(e′). The total order imposed by ‘<’ provides the canonical order

e1 < e2 < . . . < em.

Based on this canonical order, we form the greedy setGp of Cp as described in the beginning of Section 2.2.
Below we argue that∪p∈P Gp is good for our purpose and each setGp can be computed based on the

persistence algorithm. Again, we treat∪p∈P Gp as a multiset for convenience.

Proposition 2.4 The greedy set chosen from∪p∈P Gp is a shortest basis ofH1(K).

Proof: We show that∪p∈P Gp contains a shortest basis ofH1(K). Then, the proposition follows by the
argument as delineated at the beginning of section 2.2.

Consider all canonical cycles∪p∈P Cp. Sort them in non-decreasing order of their lengths. If two cycles
have equal lengths and if there are pointspi ∈ P for which both of them are inCpi

, break the tie using the
canonical order applied to the canonical cycles for any such one point.Otherwise, break the tie arbitrarily.
Based on this order letG be the greedy set from∪p∈P Cp. Proposition 2.2 and Proposition 2.3 imply that
∪p∈P Cp contains a shortest basis ofH1(K) and thusG is a shortest basis. Consider any cycleL in G. It is
a canonical cycle with respect to someq ∈ P for which all cycles appearing beforeL in the canonical order
precede it in the sorted sequence. The cycleL is independent of the cycles in∪p∈P Cp appearing before
L, in particular independent of the cycles inCq appearing beforeL in the canonical order, which means
L ∈ Gq. Therefore∪p∈P Gp contains a shortest basisG of H1(K). The proposition follows.

Motivated by the above observations, we formulate an algorithm CANONGEN that computes the greedy
setGp of Cp. We note that, very recently, Chen and Freedman [9] proposed a similar algorithm which
computes anapproximationof a shortest basis of a simplicial complex rather than an optimal one.

Algorithm 2 CANONGEN (p, K)
1: Construct a shortest path treeT in K with p as the root. LetET denote the set of tree edges.
2: For each non-tree edgee = (q1, q2) ∈ E \ ET , let cp(e) be the canonical cycle ofe.
3: Perform the persistence algorithm based on the following filtration ofK: all the vertices inP =

Vert(K), followed by all tree edges inT , followed by non-tree edges in thecanonical order, and
followed by all the triangles inK. There arek = rank(H1(K)) number of edges unpaired after the
algorithm, and each of them is necessarily a non-tree edge. Return the setof canonical cycles associated
with them.

Proposition 2.5 CANONGEN (p,K) outputs the greedy setGp chosen fromCp.

Proof: Let {e1, e2 · · · , em} be the set of non-tree edges for the shortest path treeT listed in the canonical
order. Let

Gp = {cp(e
∗
1), cp(e

∗
2), · · · , cp(e

∗
k)}.

It suffices to show that{e∗1, e∗2 · · · , e∗k} is the set of unpaired edges. Observe that for anye∗i , cp(e
∗
i ) is

independent of any subset of{cp(ej) : ej < e∗i }.
We prove the proposition by contradiction. Assume somee∗i gets paired by a trianglet in the persistence

algorithm. LetKt denote the complex in the filtration right beforet is added. Letf : Kt →֒ K be the
inclusion map; it induces a homomorphismf∗ = H1(Kt) → H1(K). Let [L]t denote the homology class
in Kt carried by the cycleL. The boundary∂t uniquely determines a subset of unpaired positive edges
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e′1 < · · · < e′s in Kt such that[∂t]t = [cp(e
′
1)]t + · · · + [cp(e

′
s)]t. The persistence algorithm [20] picks the

youngest one from this subset to pair witht, i.e.,e∗i = e′s. On the other hand, we have

[cp(e
′
1)] + · · · + [cp(e

′
s−1)] + [cp(e

∗
i )]

= f∗([cp(e
′
1)]t + · · · + [cp(e

′
s−1)]t + [cp(e

∗
i )]t)

= f∗([∂t]t) = 0

which means thatcp(e
∗
i ) is dependent on a subset of{cp(ej) : ej < e∗i }. We reach a contradiction.

All previous results put together provide a greedy algorithm for computinga shortest basis ofH1(K).

Algorithm 3 SPGEN (K)
1: For eachp ∈ P = Vert(K) computeGp :=CANONGEN (p,K). Let k = |Gp|.
2: Sort all cycles in∪pGp by their lengths in the increasing order. Letg1, . . . , gk|P | be this sorted list.
3: Initialize G := {g1}.
4: for i := 2 to k|P |, do
5: if |G| = k, then
6: Exit the for loop.
7: else ifgi is independent of all cycles inG, then
8: Add gi to G.
9: end if

10: end for
11: ReturnG.

2.2.2 Checking independence

In step 7 of SPGEN we need to determine if a cycleg is independent of all cyclesg′1, . . . , g
′
s so far selected

in G. Suppose we obtaing from running persistence algorithm on a shortest path tree based filtrationfor a
pointp in step 3 of CANONGEN. At the end of this persistence algorithm we must have gotten an unpaired
edge, saye, wherecp(e) = g. To determine ifg is independent of all cycles selected so far we adopt a
sealing technique proposed in [9]. We fillg′1 . . . g′s with triangles. The filling is done only combinatorially
by choosing a dummy vertex, sayv, and adding trianglesvvivi+1 for each edgevivi+1 of the cycles to be
filled. LetK′ be the new complex after adding these triangles and their edges toK. In effect, these triangles
and edges make the cyclesg′1, . . . , g

′
s trivial in H1(K). They make the cycleg trivial as well if and only if

g is dependent ong′1, . . . , g
′
s. Since we are sealing according to the greedy order, the proof of Lemma 4.4

in [9] applies to establish this fact. Whetherg is rendered trivial or not can be determined as follows. We
continue the persistence algorithm corresponding to the vertexp with the addition of the simplices inK′ \K
and check ife is now paired or not.

Let nv, ne, andnt denote the number of vertices, edges, and triangles respectively inK. Notice that we
add at mostne edges and triangles for sealing since the dummy vertex is added to at mostne edges to create
new triangles inK′.

2.3 Time complexity

First, we analyze the time complexity of CANONGEN. Shortest path tree computation in step 1 of CANON-
GEN takesO(nv log nv + ne) time. The persistence algorithm for CANONGEN can be implemented using
matrix reductions [14] in timeO((nv +ne)

2(ne +nt)). This is because there arenv +ne rows in this matrix
and each insertion ofne + nt simplices can be implemented inO(nv + ne) column operations each taking
O(nv + ne) time. Therefore, CANONGEN takesO(nv log nv + (nv + ne)

2(ne + nt)) time.
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Step 1 of SPGEN calls CANONGEN nv times. Therefore, step 1 of SPGEN takesO(n2
v log nv +nv(nv +

ne)
2(ne + nt)) time. Step 2 of SPGEN can be performed inO(nvk log nvk) time wherek = O(ne) is the

rank of H1(K). The time complexity for independence check in step 7 is dominated by the persistence
algorithm which is continued onK to accommodate simplices inK′. Since we addO(ne) new simplices
in K′, it has the same asymptotic complexity as for running the persistence algorithm on K. We conclude
that SPGEN spendsO(nv(nv + ne)

2(ne + nt)) time in total. If we taken = |K|, this gives anO(n4) time
complexity.

Now, we analyze the time complexity of SHORTCYCLE which is the main algorithm. Letne andnt be
the number of edges and triangles inR2r(P ) created out ofn points. Step 1 takes at mostO(n + ne + nt)
time since we only compute edges and triangles ofR2r(P ) out ofn points. Accounting for the persistence
algorithm in step 2 and the time complexity of step 3 we get that SHORTCYCLE takes

O(n(n + ne)
2(ne + nt)) time.

The procedure SPGEN(K) computes canonical setsGp which is ensured by Proposition 2.5. Then, it
forms a greedy set from these canonical sets which is a shortest basis for H1(K) by Proposition 2.4. This
and the time analysis for SPGEN establish Theorem 1.4.

3 Approximation for M

The algorithm SPGEN is used in SHORTCYCLE to produce a shortest basis for the persistent homology
groupH

r,2r
1 (R(P )). Proposition 3.5 in this section shows that a shortest basis ofH

r,2r
1 (R(P )) coincides

with a shortest basis inH1(Cr(P )). Therefore, if we show that a shortest basis inH1(Cr(P )) approximates
a shortest basis inH1(M), we have the approximation result of Theorem 1.3.

3.1 Connecting M,Čech complex, and Rips complex

First, we note the following result established in [27] which connectsM with the union of the ballsP r =
∪p∈P B(p, r).

Proposition 3.1 LetP ⊂ M be anε-sample. If2ε ≤ r ≤
√

3
5ρ(M), there is a deformation retraction from

P r to M so that the corresponding retractiont : P r → M hast(B) ⊂ B for any ballB ∈ {B(p, r)}p∈P .

Recall thatC2r(P ) is the nerve of the cover{B(p, r)}p∈P of the spaceP r. By a result of Leray [25], it
is known thatP r andC2r(P ) are homotopy equivalent. The next proposition follows from examining the
specific equivalence maps used to prove the Nerve Lemma in Hatcher [22].In particular, the simplices of
theČech complex are mapped to a subset of the union of the balls centered at their vertices, see Appendix
for its proof.

Proposition 3.2 There exists a homotopy equivalencef : C2r(P ) → P r such that for each simplexσ ∈
C2r(P ), one hasf(σ) ⊂ ∪p∈Vert(σ)B(p, r) andf(p) = p for anyp ∈ P .

The two propositions above together provide the connection betweenM and theČech complex:

Proposition 3.3 LetP ⊂ M be anε-sample. If2ε ≤ r ≤
√

3
5ρ(M), there is a homotopy equivalence map

h = t ◦ f : C2r(P ) → M such thath(σ) ⊂ M ∩ (∪p∈Vert(σ)B(p, r)) andh(p) = p for anyp ∈ P .

Now we establish a connection betweenČech complex and Rips complexes which helps proving Propo-
sition 3.5.
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Proposition 3.4 Let P ⊂ M be anε-sample. Then, for4ε ≤ r ≤ 1
2

√

3
5ρ(M), we have the following

isomorphisms

H
r,2r
1 (R(P )) ≈ H1(Cr(P ))

j1∗≈ H1(C2r(P ))
j2∗≈ H1(C4r(P )),

wherej1∗ andj2∗ are induced by the inclusion mapsj1 andj2 respectively. Moreover, if

Cr(P )
i1→֒ Rr(P ))

i2→֒ C2r(P ))
i3→֒ R2r(P ))

i4→֒ C4r(P ),

thenj1 = i2 ◦ i1, andj2 = i4 ◦ i3 andH
r,2r
1 (R(P )) = image (ι∗) whereι∗ : H1(Rr(P )) → H1(R2r(P ))

is induced by the inclusionι = i3 ◦ i2.

Proof: Based on Proposition 3.3, it can be proved by following the idea in [8] of intertwinedČech and Rips
complexes.

By definition the set of edges inCr(P ) is same as the set of edges inRr(P ). This means a set of cycles
in Rr(P ) also forms a set of cycles inCr(P ). In light of Proposition 3.4, this implies:

Proposition 3.5 Let P ⊂ M be anε-sample and4ε ≤ r ≤ 1
2

√

3
5ρ(M). ThenH

r,2r
1 (R(P )) andH1(M)

are isomorphic and a basis forHr,2r
1 (R(P )) is shortest if and only if it is shortest forH1(Cr(P )).

Proof: From Proposition 3.3 and Proposition 3.4, we have the following isomorphisms:

H
r,2r
1 (R(P )) ≈ H1(Cr(P )) ≈ H1(M).

Let A = {a1, · · · , ak} be a shortest basis forHr,2r
1 (R(P )). Eachai is a cycle inRr(P ) and hence in

Cr(P ). ObviouslyA is a homology cycle basis ofH1(Cr(P )) as the inclusion map fromCr(P ) to Rr(P )
induces a homomorphism. Thus, a shortest basis forH1(Cr(P )) must be no longer than that ofH

r,2r
1 (R(P )).

Similarly if A = {a1, · · · , ak} is a shortest basis ofH1(Cr(P )), then eachai must be inRr(P ) and survive
in R2r(P ) as it must survive inC4r(P ). ThusA is a homology cycle basis forHr,2r

1 (R(P )) and hence a
shortest basis ofHr,2r

1 (R(P )) is no longer than that ofH1(Cr(P )). This proves the proposition.

3.2 Bounding the lengths

Our idea is to argue that a shortest basis ofH1(Cr(P )) can be mapped to a homology cycle basis ofH1(M)
by the maph of Proposition 3.3. We argue that the lengths of the homology cycle basis cannot change too
much in the process.

Let g be any closed curve inM . Following [3], we define a procedure to approximateg by a cycleĝ in
the1-skeleton ofCr(P ). This procedure calledDecomposition methodis not part of our algorithm, but is
used in our argument about length approximations of cycles inM .

Decomposition method If ℓ = Len(g) > r−2ε > 0, we can writeℓ = ℓ0+(ℓ1+ℓ1+. . .+ℓ1)+ℓ0 where
ℓ1 = r− 2ε andr− 2ε > ℓ0 ≥ (r− 2ε)/2. Starting from an arbitrary point, sayx, split g into pieces whose
lengths coincide with the decomposition ofℓ. This produces a sequence of pointsx = x0, x1, . . . , xm = x
alongg which divide it according to the lengths constraints. Because of our sampling condition, each point
xi has a pointpi ∈ P within ε distance. We define a cyclêg = {p0p1 . . . pm} with consecutive points joined
by line segments. Proposition 3.6 shows thatĝ resides in the1-skeleton ofCr(P ).

Proposition 3.6 Given a closed curveg on M with Len(g) > r − 2ε > 0, Decomposition methodfinds a
cycleĝ from the1-skeleton ofCr(P ) such that:Len(ĝ) ≤ r

r−2ε
Len(g).
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Proof: From the construction and sampling condition, it follows that, for1 ≤ i ≤ m − 2,

d(pi, pi+1) ≤ d(xi, pi) + d(xi, xi+1) + d(xi+1, pi+1)

< 2ε + ℓ1 = r =
r

(r − 2ε)
ℓ1

Similarly,

d(p0, p1) ≤
r

r − 2ε
ℓ0 andd(pm−1, p0) ≤

r

r − 2ε
ℓ0.

Since r
r−2ε

ℓ0 < r, each edgepipi+1 belongs toCr(P ). Therefore, we obtain a cyclêg = p0p1 . . . pm in the
1-skeleton ofCr(P ) whose length satisfies:

Len(ĝ) = Σm−1
i=0 d(pi, pi+1) ≤

r

r − 2ε
Len(g).

Consider a homology cycle basis ofH1(M) where each cycle is a closed geodesic onM . For a smooth,
compact manifold such a basis always exists by a well known result in differential geometry [19]. Let
G = {g1, . . . , gk} be this set of geodesic cycles. By Proposition 3.6, we claim that there is a set of cycles
Ĝ = {ĝ1, . . . , ĝk} in Cr(P ) whose length is within a small factor of the length ofG. However, we need to
show thatĜ indeed a homology cycle basis ofH1(Cr(P )). We show this by mapping eacĥgj ∈ Ĝ to M
by the homotopy equivalenceh (Proposition 3.3) and arguing that[h(ĝj)] = [gj ] in H1(M). Sinceh is a
homotopy equivalence map, it follows that the isomorphismh∗ : H1(Cr(P )) → H1(M) maps the class[ĝj ]
to [gj ]. This implies thatĜ is a homology cycle basis ofH1(Cr(P )).

To prove thath(ĝj) is a representative of the class[gj ], we consider a tubular neighborhood ofgj of
radiusr which is smaller than the convexity radiusρc(M). Then, we show that each segmentpipi+1 of ĝj

is mapped to a curveh(pipi+1) which lies within this tubular neighborhood. Because of this containment,
h(pipi+1) must be homotopic to a geodesic segment ofgj . All these homotopies together provide a homo-
topy betweenh(gj) andgj . First we show that the tubular neighborhood of a segment ofgj that we consider
is indeed simply connected.

Proposition 3.7 Let γ = γ(p, q) be a minimizing geodesic between two pointsp, q ∈ M . Consider its
tubular neighborhoodTubs(γ) on M that consists of the points onM within a geodesic distances from
γ, i.e., Tubs(γ) = {x ∈ M : miny∈γ dM (x, y) < s}. Then ifs < ρc(M), Tubs(γ) is contractible, in
particular, Tubs(γ) is simply connected.

Proof: We show thatTubs(γ) deformation retracts toγ. For any pointx ∈ Tubs(γ), consider an open
geodesic ballB of radiuss. We claim thatγ ∩ B has a unique pointxm which is at a minimum geodesic
distance fromx. Suppose not, that is, there is another minimumx′

m. The geodesic segmentγ(xm, x′
m) on

γ goes outside the open geodesic ballB′ = BM (x, dM (x, xm)). Sinces < ρc(M), B′ has a radius less
than the convexity radius. It follows that there is a unique minimizing geodesic betweenxm andx′

m lying
in B′. Then, we have two distinct minimizing geodesics betweenxm andx′

m, one lying inB′ and another
going outsideB′ though both of which lie inB. This is impossible sinceB also has a radius less than the
convexity radius.

Consider the retraction mapt : Tubs(γ) → γ wheret(x) = xm. One can construct a deformation
retraction that deforms the identity onTubs(γ) to t by moving each pointx along the minimizing geodesic
path that connectx to xm in γ.

Proposition 3.8 Let P ⊂ M be anε-sample and4ε ≤ r ≤ min{1
2ρ(M), ρc(M)}. If ĝ is the cycle on

Cr(P ) constructed from a geodesic cycleg in M by Decomposition method, then[h(ĝ)] = [g] whereh is
the homotopy equivalence defined in Proposition 3.3.
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Proof: Sinceg is a geodesic cycle, it follows from standard results in differential geometry [19] that
Len(g) > 2ρc(M). Thusĝ can be constructed from a geodesic cycleg usingDecomposition method. Each
vertexpi of ĝ is within anε Euclidean distance from the pointxi in g. Next, notice that, sinceCr(P ) uses
balls of radiusr/2, the stated range ofr satisfies the condition of Proposition 3.3. By Proposition 3.3, for
any pointy on the segmentpipi+1, h(y) is within r/2 Euclidean distance to eitherpi or pi+1. This implies
thath(y) is within r/2 + ε Euclidean distance, and hence, by Proposition 1.2, withinr geodesic distance
to eitherxi or xi+1. In addition, since the sub-curve of the geodesic cycleg betweenxi andxi+1, denoted
γ(xi, xi+1), is of lengthℓ1 = r − 2ε < ρc(M), γ(xi, xi+1) is a minimizing geodesic betweenxi andxi+1.
Thereforeh(pipi+1) ∈ Tubr(γ(xi, xi+1)). In particular, there are minimizing geodesicsγ(xi, h(pi)) and
γ(xi+1, h(pi+1)) that reside inTubr(γ(xi, xi+1)).

Consider the cycle formed by the three geodesic segmentsγ(xi, xi+1), γ(xi, h(pi)), γ(xi+1, h(pi+1)),
and the curveh(pipi+1). From Proposition 3.7, this cycle is contractible inM as it resides inTubr(γ(xi, xi+1)).
In fact, there is a homotopyHi that takesh(pipi+1) to γ(xi, xi+1) while Hi keepsh(pi) andh(pi+1) on the
geodesicsγ(xi, pi) andγ(xi+1, pi+1) respectively. We can combine all homotopiesHi for 0 ≤ i ≤ m to
define a homotopy betweenh(ĝ) andg. It follows that[h(ĝ)] = [g].

Proposition 3.9 Let P ⊂ M be anε-sample and4ε ≤ r ≤ min{1
2ρ(M), ρc(M)}. If G = {g1, . . . , gk}

andG′ = {g′1, . . . , g′k} are the cycles of a shortest basis ofH1(M) andH1(Cr(P )) respectively, then we
haveLen(G′) ≤ (1 + 4ε

r
)Len(G).

Proof: It is obvious that anygi must be a geodesic cycle. Letĝi be the cycle constructed byDecomposition
methodin the1-skeleton ofCr(P ). Thus, we have a set̂G = {ĝ1, · · · , ĝk}. By Proposition 3.8, there is a
homotopy equivalenceh : Cr(P ) → M so that[h(ĝj)] = [gi], which means that̂G is also a homology cycle
basis ofH1(Cr(P )). By Proposition 3.6,

Len(G′) ≤ Len(Ĝ) ≤ r

r − 2ε
Len(G) ≤ (1 +

4ε

r
)Len(G).

We now consider the opposite direction, and provide a lower bound for thetotal length of a shortest
basis ofH1(Cr(P )) in terms of the length of a shortest basis ofH1(M).

Proposition 3.10 Let P ⊂ M be anε-sample and4ε ≤ r ≤ min{1
2ρ(M), ρc(M)}. Let G and G′ be

defined as in Proposition 3.9. We haveLenG ≤ (1 + 4r2

3ρ2(M)
)Len(G′). Moreover, there exists a map

h : G′ → M so thath(G′) is a homology cycle basis ofH1(M) and the Hausdorff distance between each
cycleg ∈ G′ andh(g′) is at mostr2 .

Proof: We construct a set of cycles inM from G′. First, we show that the length of these cycles is at most
(1+ 4r2

3ρ2(M)
) times the length ofG′. Next, we show that the constructed cycles form a homology cycle basis

of H1(M).
For each cycleg′ ∈ G′, we construct̄g as follows. The vertices and edges ofg′ are vertices and edges

of Cr(P ). For an edgee = pq ∈ g′, p, q ∈ P thusp, q ∈ M . We connectp andq by a minimizing geodesic
γ(p, q) on M , and mape to this geodesic. Mapping each edge ing′ on M , we obtainḡ. Thus we obtain a

setḠ = {ḡ1, · · · , ḡk}. By Proposition 1.2,dM (p, q) ≤ (1 + 4d2(p,q)
3ρ2(M)

)d(p, q) ≤ (1 + 4r2

3ρ2(M)
)d(p, q). Hence

the length bound follows.
We now show that the set̄G is a homology cycle basis forH1(M). Consider mappingg′j ∈ G′ to M by

the homotopy equivalenceh. Each edgee = pq ∈ g′j is mapped to a curveh(pq). From Proposition 3.3,
we have thath(p) = p andh(q) = q and each point ofh(pq) is within r/2 Euclidean distance and hence
r geodesic distance to eitherp or q. This implies thath(pq) ⊂ Tubr(γ(p, q)). Then, by using similar
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argument as in Proposition 3.7, we claim thatγ(p, q) andh(pq) are homotopic. Combining all homotopies
for each edge ofg′j , we get thath(g′j) is homotopic toḡj . Sinceh is a homotopy equivalence,h(G′) and
henceḠ = {ḡ1, . . . , ḡk} are a homology cycle basis ofH1(M). Therefore,

Len(G) ≤ Len(Ḡ) ≤ (1 +
4r2

3ρ2(M)
)Len(G′).

The cycles inh(G′) form a homology cycle basis ofH1(M) and each cycleg′ ∈ G′ has a Hausdorff distance
of r/2 with h(g′) satisfying the last claim.

Thanks to Proposition 3.5, shortest bases inCr(P ) andH
r,2r
1 (R(P )) are same for an appropriate range

of r.

Theorem 3.11 LetP ⊂ M be anε-sample andr be a real positive with4ε ≤ r ≤ min{1
2

√

3
5ρ(M), ρc(M)}.

LetG andG′ be a shortest basis ofH1(M) andH
r,2r
1 (R(P )) respectively. We have

i. 1

1+ 4r2

3ρ2(M)

Len(G) ≤ Len(G′) ≤ (1 + 4ε
r

)Len(G).

ii. There is a maph : G′ → M so thath(G′) is a homology cycle basis ofH1(M) and the Hausdorff
distance between the underlying space ofg′ andh(g′) is at mostr/2 for eachg′ ∈ G′.

Theorem 1.3 follows from Theorem 3.11, Theorem 2.1, and the time complexityanalysis in section 2.3.

4 Conclusions

We have given a polynomial time algorithm for approximating a shortest basis of the first homology group
of a smooth manifold from a point data. We have also presented an algorithm tocompute a shortest basis
for the first homology of any finite simplicial complex with non-negative weightson its edges.

We use Rips complexes for computations and useČech complexes for analysis. One may observe that
Čech complexes can be used directly in the algorithm. Since we know thatCr(P ) is homotopy equivalent
to M for an appropriate range ofr, we can compute a shortest basis forH1(Cr(P )) which can be shown
to approximate a shortest basis forH1(M) using our analysis. In technical terms, this will get rid of the
weighting in step 1 and also step 4 of SHORTCYCLE algorithm, and make Theorem 2.1 and Proposition 3.5
redundant. Although the time complexity does not get affected in the worst-case sense, computing the trian-
gles forČech complexes becomes harder numerically in high dimensions than those forthe Rips complexes.
This is why we chose to describe an algorithm using the Rips complexes.

Recently, new persistence algorithms based on matrix multiplications [26, 11] have been proposed which
have improved time complexity. It will be interesting to see how the time complexity of our algorithm can
be improved using similar techniques.

Computing a shortest basis for other homology groups withZ2 coefficients has been shown to be NP-
hard by Chen and Freedman [10]. A related topic that has been addressed in the literature is the problem of
homology localization which asks for computing a shortest cycle in a given homology class. The problem
has been shown to be NP-hard for a large number of cases [6, 10] withZ2 coefficient. Interestingly, it is
shown in [17] that the problem is polynomial time solvable for a class of spaces when the homology is
defined withZ instead ofZ2. Does similar disparity exist for the shortest basis problem between different
coefficient rings?
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Appendix

Proof of Proposition 3.2.
The proof is based on that of Nerve Lemma in [22] (Chapter 4.G). LetΓ be the barycentric subdivision

of C2r(P ). We consider the following sequence — we will describe the space∆P r and maps involved in
this sequence shortly.

C2r(P )
h→ Γ

∆q→
∆p

∆P r π→ P r. (1)

We prove the proposition by definingf = π ◦∆q ◦h and showing thatf is a homotopy equivalence meeting
the requirements stated in the proposition.

We first introduce the concept of mapping cylinder. For a mapf : X → Y , the mapping cylinder
Mf is the quotient space of the disjoint union(X × I)

⊔

Y with (x, 1) identified withf(x) ∈ Y , denoted
Mf = X

⊔

f Y , see Figure 2(a). It is obvious thatMf retracts toY under a deformation retraction. Let
eY be the retraction fromMf to Y . It is well-known (e.g., Corollary0.21 in [22]) that f is a homotopy
equivalence map if and only ifMf retracts toX under a deformation retraction. See Figure 2(b). In fact,
if eX in Figure 2(b) is a retraction under a deformation retraction, the mapg = eX ◦ iY is a homotopy
equivalence map fromY to X. We will use this fact later in the proof to define the map∆q : ∆P r → Γ.

We are now ready to explain each map in the composition of the mapf . SinceΓ is the barycentric
subdivision ofC2r(P ), we can takeh as an identity map between the underlying spaces ofC2r(P ) and
Γ. Index the points inP = {pi}m

i=1 arbitrarily. LetBi = B(pi, r). To facilitate the argument, label the
vertices inΓ usingBi’s and their finite intersections, see Figure 3. Under such labeling, the vertex set of
anyk-simplex∆k in Γ can be ordered as

∆k =
(

Bi0 ∩ · · · ∩ Bin , Bi0 ∩ · · · ∩ Bin−1 , . . . , Bi0 ∩ · · · ∩ Bin−k

)

, (2)

where the size of the index set in the label of each vertex decreases from n + 1 to n − k for somen. Each
edge (1-simplex) inΓ is associated with an inclusion map between the labels of its vertices. This induces
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Mf = X
⊔

f Y

f
g

iYeY

iX
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(b)

Figure 2: (a) the mapping cylinderMf = X
⊔

f Y [22]; (b) the maps amongX, Y andMf : iX andiY
are the inclusion maps fromX andY into Mf respectively,eY is a retraction fromMf to Y given by a
deformation retraction, andeX is a retraction fromMf to X given by a deformation retraction providedf
is a homotopy equivalence.

the following sequence of inclusion maps by considering only edges between two consecutive vertices in
Eqn (2) for anyk-simplex∆k in Γ:

(Bi0 ∩ · · · ∩ Bin) →֒ (Bi0 ∩ · · · ∩ Bin−1)

→֒ · · · →֒ (Bi0 ∩ · · · ∩ Bin−k
). (3)

We now give a brief account for the construction of∆P r used in the sequence of maps given in Eqn (1).
The readers are referred to [22] for more details.∆P r is realized using the concept of iterated mapping
cylinder defined over a sequence of maps. Specifically, the sequence of inclusion maps as shown in Eqn
(3) associated with anyk-simplex∆k in Γ induces an iterated mapping cylinder over∆k. We obtain∆P r

by gluing these iterated mapping cylinders over all simplices inΓ, see the top right most picture in Fig-
ure 3. There is a canonical projection∆p : ∆P r → Γ induced by projecting each finite intersection to its
corresponding vertex inΓ.

To define the map∆q in Eqn (1), consider the mapping cylinderM∆p. In Chapter 4.G of [22], the
Nerve Lemma was proved by showing thatM∆p retracts to∆P r under a deformation retraction; lete∆P r :
M∆p → ∆P r be the associated retraction. We set∆q := e∆P r ◦ iΓ whereiΓ is the inclusion map fromΓ
into M∆p. From our earlier discussion about Figure 2 (b),∆q is a homotopy equivalence (settingX = ∆P r

andY = Γ in the diagram of Figure 2 (b)). Furthermore, [22] showed that the retraction e∆P r in fact maps
a simplex∆k ∈ Γ to the iterated mapping cylinder defined over the same∆k, implying that∆q maps a
simplex∆k ∈ Γ into the iterated mapping cylinder defined by the sequence of inclusion maps associated
with ∆k.

On the other hand,∆P r can also be considered as the quotient space of the disjoint union of all the
productsBi0 ∩ · · · ∩ Bin × ∆n, as the subscripts range over set ofn + 1 distinct indices and anyn ≥ 0,
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Figure 3: Illustration of the maps and the spaces involved in Eq. 1.

with the identifications over the faces of∆n using inclusionsBi0 ∩ · · · ∩Bin →֒ Bi0 ∩ · · · ∩ B̂ij ∩ · · · ∩Bin

whereˆ means the corresponding term is missing. From this viewpoint, any pointx ∈ P r has a fiber
π−1(x) in ∆P r defined as follows. Letxi be a copy ofx in Bi for thoseBi containingx and define
π−1(x) = {∑i tixi :

∑

i ti = 1 andti ≥ 0}, see the bottom left most picture in Figure 3. It is easy to see
thatP r can be embedded into∆P r as a section of∆P r, denoteds(P r). Since points inπ−1(x) can move
linearly along line segments tos(x), s(P r) is a retract of∆P r. Takingπ as the retraction from∆P r to
s(P r), we haveπ as a homotopy equivalence. Thus,f = π ◦ ∆q ◦ h is a homotopy equivalence.

Observe that a pointy in an iterated mapping cylinder over a simplex∆k = (Bi0 ∩· · ·∩Bin , · · · , Bi0 ∩
· · · ∩ Bin−k

) in Γ is in the fiberπ−1(x) for somex in Bi0 . This means that if anl-simplex∆l is in the
closure of the star of a vertexp ∈ P in Γ, then any pointy in the iterated mapping cylinder over∆l is in the
fiber of a pointx ∈ B(p, r). Indeed, this follows from the previous statement by considering any simplex
∆k containingp and∆l. Now consider a simplexσ ∈ C2r(P ). Any simplex in the barycentric subdivision
of σ must be in the closure of the star of some vertex ofσ. Thusσ, under the map∆q ◦ h, is mapped into
the union of the iterated mapping cylinders defined over the simplices in the barycentric subdivision ofσ,
and thus , its image, under the mapπ, is further mapped into∪p∈Vert(σ)B(p, r).

In addition, it is clear that it is possible to choosef so that it fixes each vertex inC2r(P ). This proves
the proposition.
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