

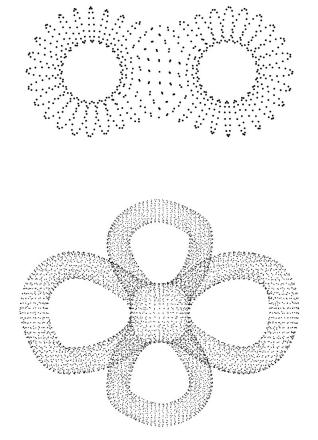
Approximating Loops in a Shortest Homology Basis from Point Data

Tamal K. Dey

Department of Computer Science & Engineering The Ohio State University

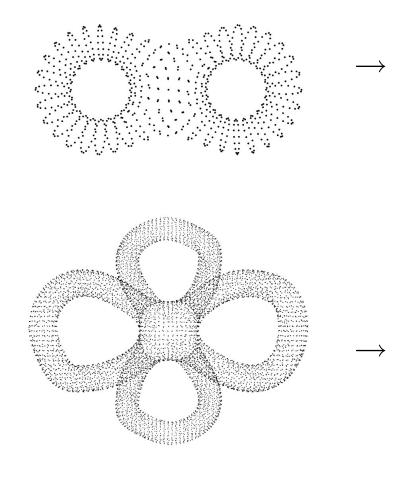
Joint work with Jian Sun and Yusu Wang

Our Goal



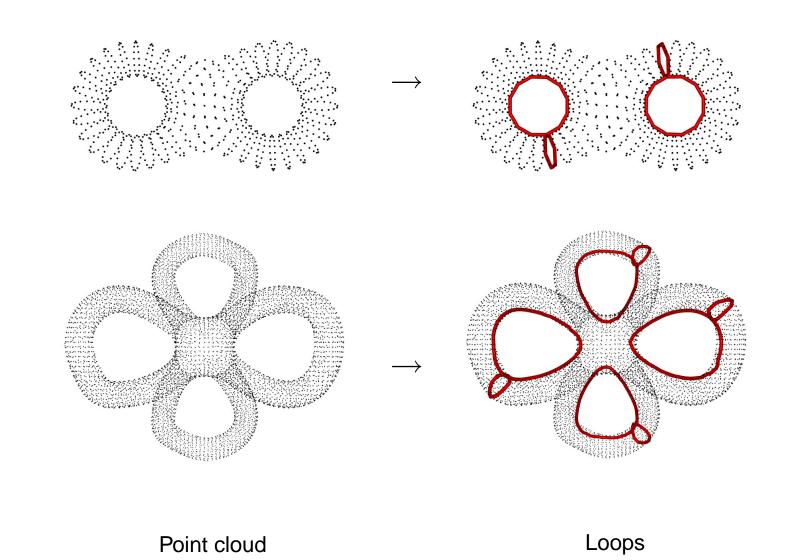
Point cloud

Our Goal

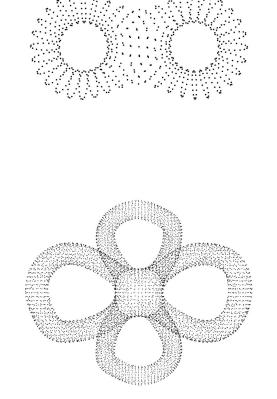


Point cloud

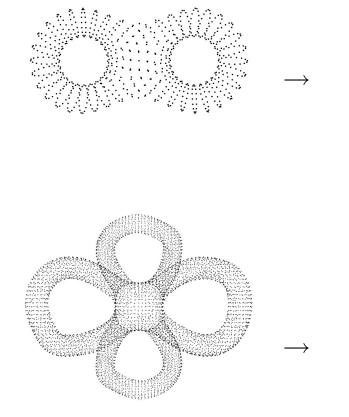
Our Goal



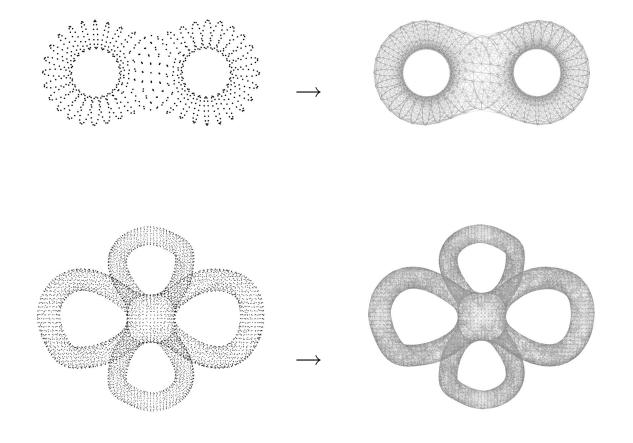
Approximating Loops in a Shortest Homology Basis from Point Data - p.2/31



Point cloud

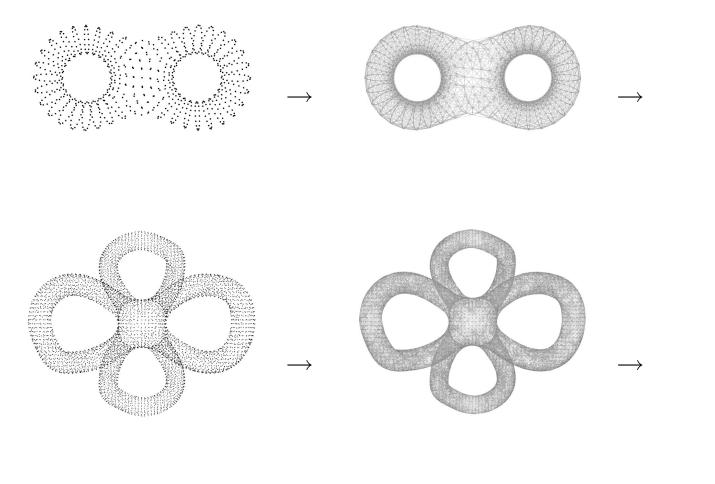


Point cloud



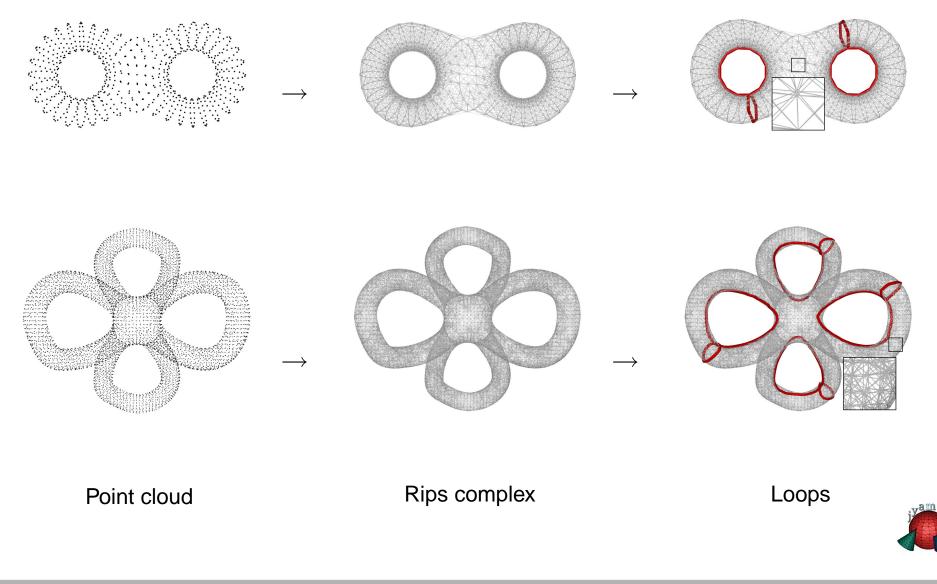
Point cloud

Rips complex



Point cloud

Rips complex

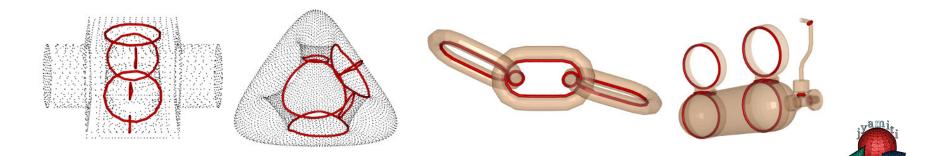


Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem.

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem.
- An algorithm to compute a set of loops from point data that approximate a **shortest** basis of the homology group H₁(M) of the sampled manifold M.

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem.
- An algorithm to compute a set of loops from point data that approximate a **shortest** basis of the homology group H₁(M) of the sampled manifold M.
- A polynomial time algorithm for computing a shortest basis of H₁(*K*) for any finite simplicial complex *K* embedded in an Euclidean space.

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem.
- An algorithm to compute a set of loops from point data that approximate a **shortest** basis of the homology group H₁(M) of the sampled manifold M.
- A polynomial time algorithm for computing a shortest basis of H₁(*K*) for any finite simplicial complex *K* embedded in an Euclidean space.



Background

 Algorithms for computing homology groups from the point data [CO08].

Background

- Algorithms for computing homology groups from the point data [CO08].
- Cycles from persistence algorithms[ELZ02] lack geometry.

Background

- Algorithms for computing homology groups from the point data [CO08].
- Cycles from persistence algorithms[ELZ02] lack geometry.
- Reconstruction of the sampled space (can be costly).

- Algorithms for computing homology groups from the point data [CO08].
- Cycles from persistence algorithms[ELZ02] lack geometry.
- Reconstruction of the sampled space (can be costly).
- Rips, Čech or witness complexes are less constrained.
 We use Rips complex.

- Algorithms for computing homology groups from the point data [CO08].
- Cycles from persistence algorithms[ELZ02] lack geometry.
- Reconstruction of the sampled space (can be costly).
- Rips, Čech or witness complexes are less constrained.
 We use Rips complex.
- 2-manifold triangulations [EW05].

- Algorithms for computing homology groups from the point data [CO08].
- Cycles from persistence algorithms[ELZ02] lack geometry.
- Reconstruction of the sampled space (can be costly).
- Rips, Čech or witness complexes are less constrained.
 We use Rips complex.
- 2-manifold triangulations [EW05].
- NP-hard for higher dimenisonal homology groups [CF10].

• $H_j(\mathbb{T})$: *j*-dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .

- $H_j(\mathbb{T})$: *j*-dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of
 1-dimensional cycles g, also called **loops**.

- $H_j(\mathbb{T})$: *j*-dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of
 1-dimensional cycles g, also called **loops**.
- A minimal set {[g₁], ..., [g_k]} generating H₁(T) is called its basis.

- $H_j(\mathbb{T})$: *j*-dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of
 1-dimensional cycles g, also called **loops**.
- A minimal set {[g₁], ..., [g_k]} generating H₁(T) is called its basis.
- Here $k = \operatorname{rank}(\mathsf{H}_1(\mathbb{T}))$.

- $H_j(\mathbb{T}): j$ -dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of 1-dimensional cycles g, also called **loops**.
- A minimal set {[g₁], ..., [g_k]} generating H₁(T) is called its basis.
- Here $k = \operatorname{rank}(\mathsf{H}_1(\mathbb{T}))$.
- We associate a weight $w(g) \ge 0$ with each loop g in \mathbb{T} .

- $H_j(\mathbb{T}): j$ -dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of
 1-dimensional cycles g, also called **loops**.
- A minimal set {[g₁], ..., [g_k]} generating H₁(T) is called its basis.
- Here $k = \operatorname{rank}(\mathsf{H}_1(\mathbb{T}))$.
- We associate a weight $w(g) \ge 0$ with each loop g in \mathbb{T} .
- The length of a set of loops $G = \{g_1, ..., g_k\}$ is given by $Len(G) = \sum_{i=1}^k w(g_i)$.

- $H_j(\mathbb{T}): j$ -dimensional homology group of \mathbb{T} under \mathbb{Z}_2 .
- The elements of H₁(T) are equivalent classes [g] of 1-dimensional cycles g, also called **loops**.
- A minimal set {[g₁], ..., [g_k]} generating H₁(T) is called its basis.
- Here $k = \operatorname{rank}(\mathsf{H}_1(\mathbb{T}))$.
- We associate a weight $w(g) \ge 0$ with each loop g in \mathbb{T} .
- The length of a set of loops $G = \{g_1, ..., g_k\}$ is given by $Len(G) = \sum_{i=1}^k w(g_i)$.
- A shortest basis of H₁(T) is a set of k loops with minimal length generating H₁(T).

Theorem 1

- Let \mathcal{K} be a finite simplicial complex with non-negative weights on edges.
- A shortest basis for $H_1(\mathcal{K})$ can be computed in $O(n^4)$ time where $n = |\mathcal{K}|$.

• $H_1(\mathcal{K})$ is a vector space and supports matroid theory.

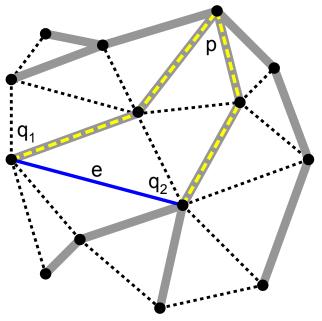
- $H_1(\mathcal{K})$ is a vector space and supports matroid theory.
- If a set of loops L in K contains a shortest basis, then the greedy set G chosen from L is a shortest basis by matroid theory.

- $H_1(\mathcal{K})$ is a vector space and supports matroid theory.
- If a set of loops L in K contains a shortest basis, then the greedy set G chosen from L is a shortest basis by matroid theory.
- The greedy set *G* is an ordered set of loops $\{g_1, ..., g_k\}$ satisfying the following conditions: g_1 is the shortest loop in \mathcal{L} nontrivial in $H_1(\mathcal{K})$;
 - g_{i+1} is the shortest loop in \mathcal{L} independent of $g_1, ..., g_i$.

Canonical loop

- Let T be a shortest path tree in \mathcal{K} rooted at p.
- For $q_1, q_2 \in P$, $sp_T(q_1, q_2)$ denotes the unique path from q_1 to q_2 through p in T.
- Let E_T be the set of edges in T.
- The canonical loop
 for a non-tree edge e is defined as

$$T(e) = \operatorname{sp}_T(p, q_1) \circ e \circ \operatorname{sp}_T(q_2, p).$$



A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.

- A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.
- **Proposition** Loops in a shortest basis of $H_1(\mathcal{K})$ are tight.

- A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.
- **Proposition** Loops in a shortest basis of $H_1(\mathcal{K})$ are tight.
- Let C_p be the set of all canonical loops with respect to p:

 $C_p = \{T(e) : e \in E \setminus E_T\}.$

- A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.
- **Proposition** Loops in a shortest basis of $H_1(\mathcal{K})$ are tight.
- Let C_p be the set of all canonical loops with respect to p:

$$C_p = \{T(e) : e \in E \setminus E_T\}.$$

• **Proposition** $\cup_{p \in P} C_p$ contains all tight loops and hence any shortest basis.

- A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.
- **Proposition** Loops in a shortest basis of $H_1(\mathcal{K})$ are tight.
- Let C_p be the set of all canonical loops with respect to p:

$$C_p = \{T(e) : e \in E \setminus E_T\}.$$

- **Proposition** $\cup_{p \in P} C_p$ contains all tight loops and hence any shortest basis.
- Let G_p be the greedy set chosen from C_p .

- A simple cycle *l* is **tight** if it contains a shortest path between every pair of points in *l*.
- **Proposition** Loops in a shortest basis of $H_1(\mathcal{K})$ are tight.
- Let C_p be the set of all canonical loops with respect to p:

$$C_p = \{T(e) : e \in E \setminus E_T\}.$$

- **Proposition** $\cup_{p \in P} C_p$ contains all tight loops and hence any shortest basis.
- Let G_p be the greedy set chosen from C_p .
- **Proposition** The greedy set chosen from $\bigcup_{p \in P} G_p$ is a shortest basis of $H_1(\mathcal{K})$.

Proposition CANONGEN (p, \mathcal{K}) outputs G_p .

 $CANONGEN(p, \mathcal{K})$

1: Construct a shortest path tree T in \mathcal{K} with p as the root.

Proposition CANONGEN (p, \mathcal{K}) outputs G_p .

CANONGEN (p, \mathcal{K})

- 1: Construct a shortest path tree T in \mathcal{K} with p as the root.
- 2: For each non-tree edge $e = (q_1, q_2) \in E \setminus E_T$, let T(e) be the canonical loop of e.

Proposition CANONGEN (p, \mathcal{K}) outputs G_p .

CANONGEN (p, \mathcal{K})

- 1: Construct a shortest path tree T in \mathcal{K} with p as the root.
- 2: For each non-tree edge $e = (q_1, q_2) \in E \setminus E_T$, let T(e) be the canonical loop of e.
- 3: Run the persistence algorithm based on the following filtration of \mathcal{K} : vertices in $P = \operatorname{Vert}(\mathcal{K})$, tree edges in T, non-tree edges in the canonical order, triangles in \mathcal{K} . Return the set of canonical loops associated with $k = \operatorname{rank}(\mathsf{H}_1(\mathcal{K}))$ edges unpaired after the algorithm.

$SPGEN(\mathcal{K})$

- 1: For each $p \in P = Vert(\mathcal{K})$, set $G_p := CANONGEN(p, \mathcal{K})$.
- 2: Sort all loops in $\cup_p G_p$ by lengths in the increasing order.
- 3: Let $g_1, ..., g_{k|P|}$ be this sorted list. Initialize $G := \{g_1\}$.
- 4: for i := 2 to k|P|, do
- 5: **if** |G| = k, **then**
- 6: Exit the for loop.
- 7: else if g_i is independent of loops in G, then
- 8: Add g_i to G.
- 9: **end if**
- 10: end for
- **11: Return** *G*.

I I H E OHIO STATE UNIVERSITY

• How to determine if g is independent of loops in G?

- How to determine if g is independent of loops in G?
- For each loop $g'_1, ..., g'_s$ in G we add triangles to fill it.

- How to determine if g is independent of loops in G?
- For each loop $g'_1, ..., g'_s$ in G we add triangles to fill it.
- We choose a dummy vertex, say v, and add triangles vv_iv_{i+1} for each edge v_iv_{i+1} of the loops to be filled.

- How to determine if g is independent of loops in G?
- For each loop $g'_1, ..., g'_s$ in G we add triangles to fill it.
- We choose a dummy vertex, say v, and add triangles vv_iv_{i+1} for each edge v_iv_{i+1} of the loops to be filled.
- These triangles destroy the generators g'₁, ..., g'_s. They destroy g as well if and only if g is dependent on g'₁, ..., g'_s
 [Chen-Freedman].

- How to determine if g is independent of loops in G?
- For each loop $g'_1, ..., g'_s$ in G we add triangles to fill it.
- We choose a dummy vertex, say v, and add triangles vv_iv_{i+1} for each edge v_iv_{i+1} of the loops to be filled.
- These triangles destroy the generators g'₁, ..., g'_s. They destroy g as well if and only if g is dependent on g'₁, ..., g'_s
 [Chen-Freedman].
- Whether g is rendeded trivial can be determined by augmenting the filtration of K with the simplices in K'\K and continuing the persistence algorithm.

Approximation from point cloud

• Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $M \subset \mathbb{R}^d$ embedded isometrically.

Approximation from point cloud

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $M \subset \mathbb{R}^d$ embedded isometrically.
- We want to approximate a shortest basis of $H_1(M)$ from P.

Approximation from point cloud

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $M \subset \mathbb{R}^d$ embedded isometrically.
- We want to approximate a shortest basis of $H_1(M)$ from P.
- Compute a complex K from P. Compute a shortest basis of H₁(K). Argue that if P is dense, a subset of computed loops approximate a shortest basis of H₁(M) within constant factors.

Complexes

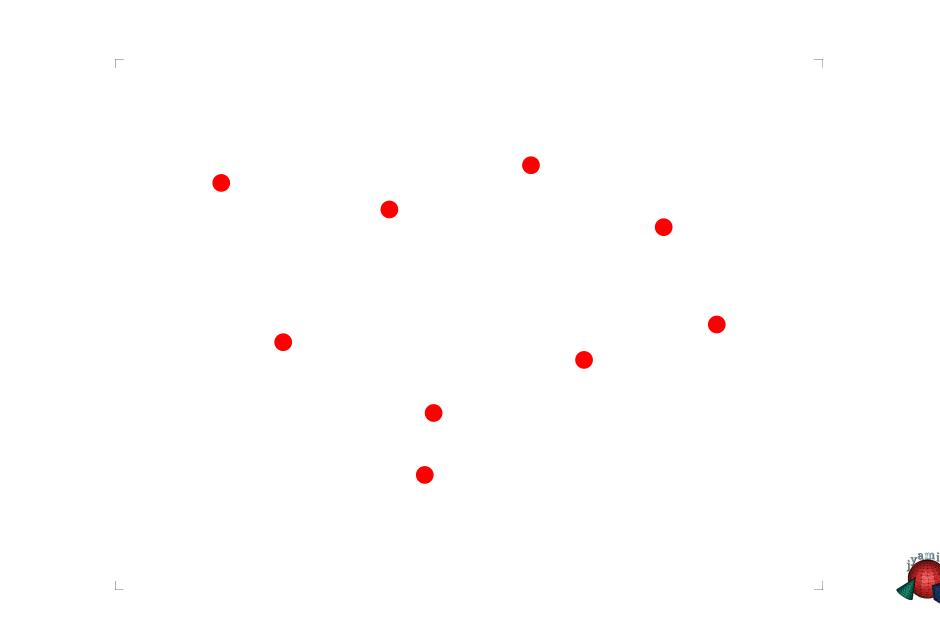
• Let $P \subset \mathbb{R}^d$ be a point set. B(p, r) denotes an open *d*-ball centered at p with radius r.

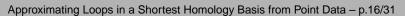
Complexes

- Let $P \subset \mathbb{R}^d$ be a point set. B(p, r) denotes an open *d*-ball centered at p with radius r.
- The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma)$, the vertices of σ , are in Pand $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$.

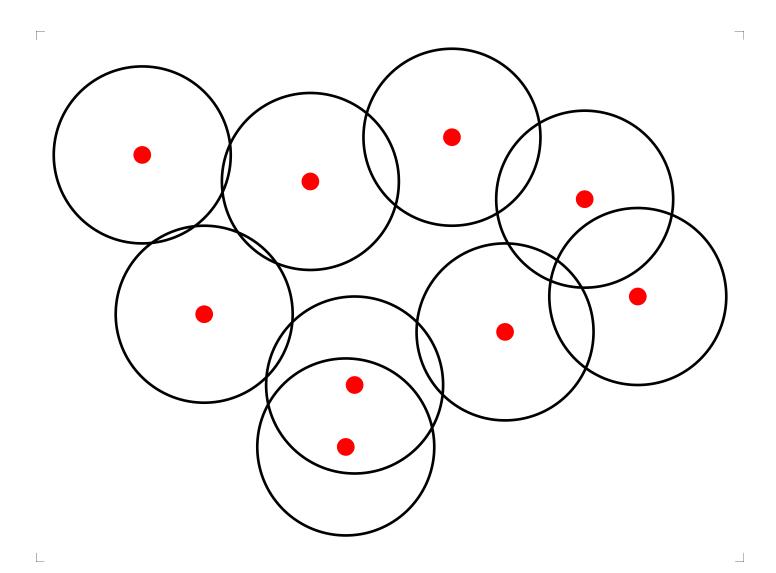
- Let $P \subset \mathbb{R}^d$ be a point set. B(p, r) denotes an open *d*-ball centered at p with radius r.
- The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma)$, the vertices of σ , are in Pand $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$.
- The **Rips complex** $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ if and only if $Vert(\sigma)$ are within pairwise Euclidean distance of r.

- Let $P \subset \mathbb{R}^d$ be a point set. B(p, r) denotes an open *d*-ball centered at p with radius r.
- The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma)$, the vertices of σ , are in Pand $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$.
- The **Rips complex** $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ if and only if $Vert(\sigma)$ are within pairwise Euclidean distance of r.
- **Proposition** For any finite set $P \subset \mathbb{R}^d$ and any $r \ge 0$, one has $\mathcal{C}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \mathcal{C}^{2r}(P)$.



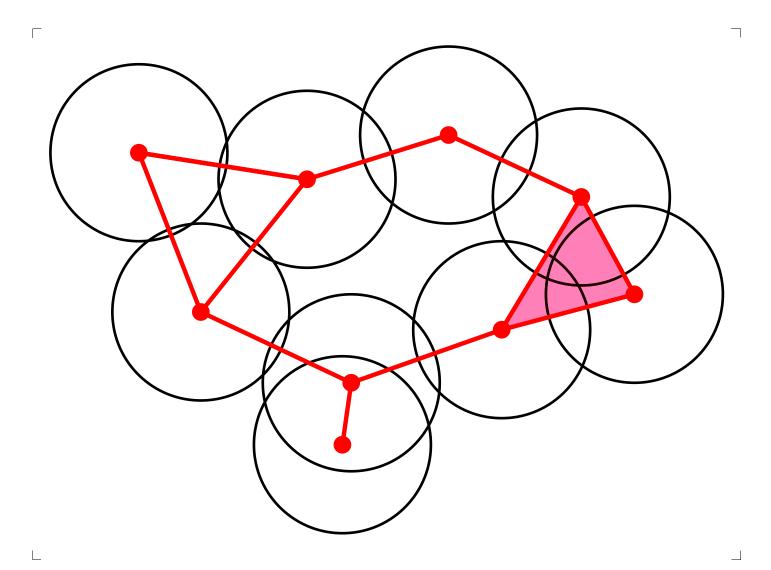


Balls B(p, r/2) for $p \in P$



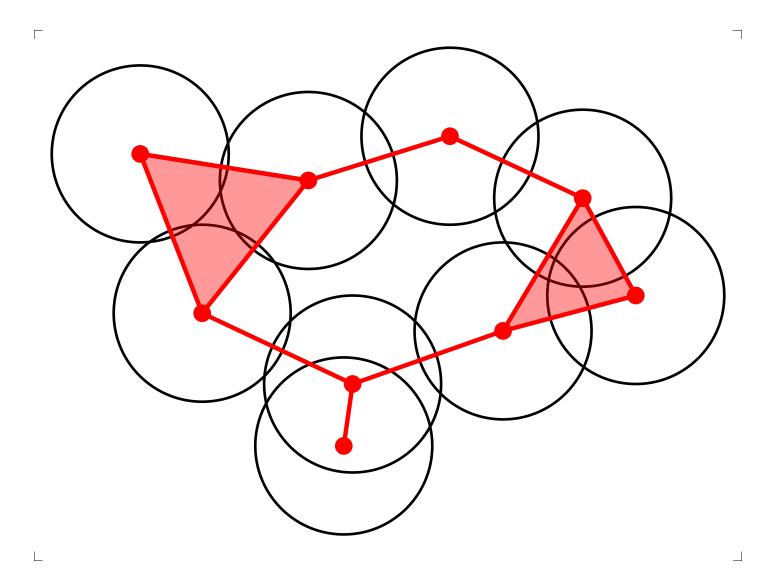
Approximating Loops in a Shortest Homology Basis from Point Data - p.17/31

Čech complex $C^r(P)$



j**vami**ti

Rips complex $\mathcal{R}^r(P)$



Approximating Loops in a Shortest Homology Basis from Point Data - p.19/31

• Geodesic ball: $B_M(p,r) = \{q \mid d_M(p,q) < r\}.$

- Geodesic ball: $B_M(p,r) = \{q \mid d_M(p,q) < r\}.$
- There is a $r_p > 0$ for each $p \in M$ where r_p is the supremum r so that $B_M(p,r)$ is convex (the minimizing geodesics between any two points in $B_M(p,r)$ lie in $B_M(p,r)$).

- Geodesic ball: $B_M(p,r) = \{q \mid d_M(p,q) < r\}.$
- There is a $r_p > 0$ for each $p \in M$ where r_p is the supremum r so that $B_M(p,r)$ is convex (the minimizing geodesics between any two points in $B_M(p,r)$ lie in $B_M(p,r)$).
- Convexity radius of M: $\rho_c(M) = \inf_{p \in M} r_p$.

- Geodesic ball: $B_M(p,r) = \{q \mid d_M(p,q) < r\}.$
- There is a $r_p > 0$ for each $p \in M$ where r_p is the supremum r so that $B_M(p,r)$ is convex (the minimizing geodesics between any two points in $B_M(p,r)$ lie in $B_M(p,r)$).
- Convexity radius of M: $\rho_c(M) = \inf_{p \in M} r_p$.
- $\rho(M)$ is the **reach** defined as the minimum distance between *M* and its medial axis.

- Geodesic ball: $B_M(p,r) = \{q \mid d_M(p,q) < r\}.$
- There is a $r_p > 0$ for each $p \in M$ where r_p is the supremum r so that $B_M(p,r)$ is convex (the minimizing geodesics between any two points in $B_M(p,r)$ lie in $B_M(p,r)$).
- Convexity radius of M: $\rho_c(M) = \inf_{p \in M} r_p$.
- $\rho(M)$ is the **reach** defined as the minimum distance between *M* and its medial axis.
- *P* is an ε -sample of *M* if $B(x, \varepsilon) \cap P \neq \emptyset$ for each $x \in M$.

• Let $M \subset \mathbb{R}^d$ be a smooth, closed manifold with l as the length of a shortest basis of $H_1(M)$ and $k = rank H_1(M)$.

- Let $M \subset \mathbb{R}^d$ be a smooth, closed manifold with l as the length of a shortest basis of $H_1(M)$ and $k = rank H_1(M)$.
- Given a set $P \subset M$ of n points which is an ε -sample of Mand $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(M), \rho_c(M)\}$, one can compute a set of loops G in $O(nn_e^2n_t)$ time where

$$\frac{1}{1 + \frac{4r^2}{3\rho^2(M)}}l \le \operatorname{Len}(G) \le (1 + \frac{4\varepsilon}{r})l.$$

Here n_e, n_t are the number of edges and triangles in $\mathcal{R}^{2r}(P)$.

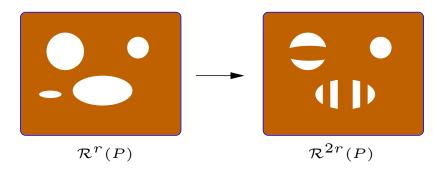
Using Rips complexes

• Let ι^* : $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$ and $H_1^{r,2r}(P) = im \iota^*$.

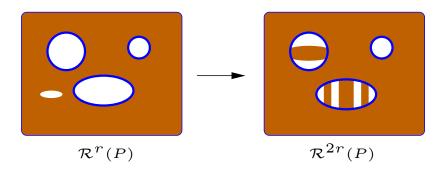
- Let ι^* : $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$ and $H_1^{r,2r}(P)=\text{im }\iota^*$.
- A shortest basis of $H_1^{r,2r}(\mathcal{R}(P))$ coincides with a shortest basis of $H_1(\mathcal{C}^r(P))$.

- Let ι^* : $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$ and $H_1^{r,2r}(P) = im \iota^*$.
- A shortest basis of $H_1^{r,2r}(\mathcal{R}(P))$ coincides with a shortest basis of $H_1(\mathcal{C}^r(P))$.
- A shortest basis of H₁(C^r(P)) has length within a small factor of the length of a shortest basis of H₁(M).

- Let ι^* : $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$ and $H_1^{r,2r}(P) = im \iota^*$.
- A shortest basis of $H_1^{r,2r}(\mathcal{R}(P))$ coincides with a shortest basis of $H_1(\mathcal{C}^r(P))$.
- A shortest basis of H₁(C^r(P)) has length within a small factor of the length of a shortest basis of H₁(M).
- We weight edges in R^{2r}(P), creating a complex K. Each edge e ∈ R^{2r}(P) \ R^r(P) has a large weight W. Other edges have lengths as their weights.



- Let ι^* : $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$ and $H_1^{r,2r}(P) = im \iota^*$.
- A shortest basis of $H_1^{r,2r}(\mathcal{R}(P))$ coincides with a shortest basis of $H_1(\mathcal{C}^r(P))$.
- A shortest basis of H₁(C^r(P)) has length within a small factor of the length of a shortest basis of H₁(M).
- We weight edges in R^{2r}(P), creating a complex K. Each edge e ∈ R^{2r}(P) \ R^r(P) has a large weight W. Other edges have lengths as their weights.



Theorem SHORTLOOP(P, r) computes a shortest basis for the persistent homology group $H_1^{r,2r}(\mathcal{R}(P))$.

SHORTLOOP(P, r)

1: Compute Rips complex $\mathcal{R}^{2r}(P)$.

Theorem SHORTLOOP(P, r) computes a shortest basis for the persistent homology group $H_1^{r,2r}(\mathcal{R}(P))$.

SHORTLOOP(P, r)

- 1: Compute Rips complex $\mathcal{R}^{2r}(P)$.
- 2: Let \mathcal{K} be $\mathcal{R}^{2r}(P)$ where edges of $\mathcal{R}^{2r}(P) \setminus \mathcal{R}^{r}(P)$ are weighted with large weight W.

Theorem SHORTLOOP(P, r) computes a shortest basis for the persistent homology group $H_1^{r,2r}(\mathcal{R}(P))$.

SHORTLOOP(P, r)

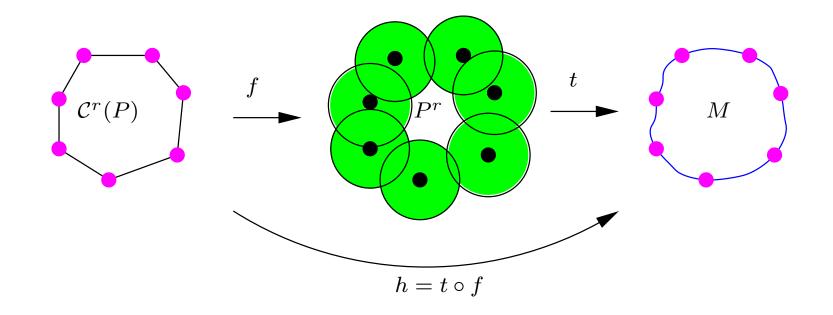
- 1: Compute Rips complex $\mathcal{R}^{2r}(P)$.
- 2: Let \mathcal{K} be $\mathcal{R}^{2r}(P)$ where edges of $\mathcal{R}^{2r}(P) \setminus \mathcal{R}^{r}(P)$ are weighted with large weight W.
- 3: Compute the shortest basis for $H_1(\mathcal{K})$.

Theorem SHORTLOOP(P, r) computes a shortest basis for the persistent homology group $H_1^{r,2r}(\mathcal{R}(P))$.

SHORTLOOP(P, r)

- 1: Compute Rips complex $\mathcal{R}^{2r}(P)$.
- 2: Let \mathcal{K} be $\mathcal{R}^{2r}(P)$ where edges of $\mathcal{R}^{2r}(P) \setminus \mathcal{R}^{r}(P)$ are weighted with large weight W.
- 3: Compute the shortest basis for $H_1(\mathcal{K})$.
- 4: Return first k loops from the computed basis where k is the rank of the $H_1(\mathcal{R}^r(P)) \to H_1(\mathcal{R}^{2r}(P))$.

Connecting $\mathcal{C}^r(P)$ and M



Bounding Lengths

• Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$
- Let g be a geodesic loop in M. There is a loop \hat{g} in $C^r(P)$ so that $[h(\hat{g})] = [g]$ where h is a homotopy equivalence and $Len(\hat{g}) \leq (1 + \frac{4\varepsilon}{r})Len(g)$.

Upper bound

• Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$

Upper bound

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$
- If $G = \{g_1, ..., g_k\}$ and $G' = \{g'_1, ..., g'_k\}$ are the generators of a shortest basis of $H_1(M)$ and $H_1(\mathcal{K})$ respectively, then we have $\text{Len}(G') \leq (1 + \frac{4\varepsilon}{r})\text{Len}(G)$.

Lower bound

• Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$

Lower bound

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$
- Let G and G' be defined as before.

Lower bound

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\rho(M), \rho_c(M)\}.$
- Let G and G' be defined as before.
- We have $\operatorname{Len}(G) \leq (1 + \frac{4r^2}{3\rho^2(M)})\operatorname{Len}(G')$.

Length Approximation Theorem

• Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(M), \rho_c(M)\}.$

Length Approximation Theorem

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(M), \rho_c(M)\}.$
- Let G and G' be a shortest basis of $H_1(M)$ and $H_1(\mathcal{K})$ respectively.

Length Approximation Theorem

- Let $P \subset M$ be an ε -sample and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(M), \rho_c(M)\}.$
- Let G and G' be a shortest basis of $H_1(M)$ and $H_1(\mathcal{K})$ respectively.
- $\hbox{ We have } \tfrac{1}{1+\frac{4r^2}{3\rho^2(M)}} \mathrm{Len}(G) \leq \mathrm{Len}(G') \leq (1+\tfrac{4\varepsilon}{r}) \mathrm{Len}(G).$

 Algorithms for shortest basis of the first homology groups of a simplicial complex and point sampled manifolds.

- Algorithms for shortest basis of the first homology groups of a simplicial complex and point sampled manifolds.
- What about higher dimensional homology groups? Recent results of [CF10] indicate that this problem is NP-hard.

- Algorithms for shortest basis of the first homology groups of a simplicial complex and point sampled manifolds.
- What about higher dimensional homology groups? Recent results of [CF10] indicate that this problem is NP-hard.
- What about shortest homologous loop/cycle? Under Z₂ the problem is NP-hard [CF10]. Under Z, surprisingly this optimization is polynomial time solvable for a large class [DHK10].

- Algorithms for shortest basis of the first homology groups of a simplicial complex and point sampled manifolds.
- What about higher dimensional homology groups? Recent results of [CF10] indicate that this problem is NP-hard.
- What about shortest homologous loop/cycle? Under Z₂ the problem is NP-hard [CF10]. Under Z, surprisingly this optimization is polynomial time solvable for a large class [DHK10].
- Software ShortLoop is available from authors' web-pages.

Thank you!

Approximating Loops in a Shortest Homology Basis from Point Data - p.31/31