Computing Homology Cycles with Certified Geometry

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

Collaborators A. Hirani(UIUC), B. Krishnamoorthy(WSU), J. Sun(Tsinghua U.) and Y. Wang(OSU)

イロト 人間ト イヨト イヨト

Motivation

Cycles: Medical Imaging & Molecular Biology

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation

Cycles: Computer-Aided Design

3

イロト イヨト イヨト イヨト

Cycles: Computer Graphics

• Rank: Smith-Normal-Form; Special cases [DE95]

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:

3

ヘロア ヘロア ヘビア・

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]

3

ヘロア ヘロア ヘビア・

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]

3

ヘロア ヘロア ヘビア・

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]
 - General case: Persistence algorithm [ELZ00]

- 4 週 ト - 4 三 ト - 4 三 ト

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]
 - General case: Persistence algorithm [ELZ00]
 - All are geometry-oblivious

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]
 - General case: Persistence algorithm [ELZ00]
 - All are geometry-oblivious

• • = • • = •

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]
 - General case: Persistence algorithm [ELZ00]
 - All are geometry-oblivious

A B F A B F

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
 - Surfaces [VY90,DS95]
 - Volumes: [DG96]
 - General case: Persistence algorithm [ELZ00]
 - All are geometry-oblivious

• Goal: 'Geometry-oblivious' to 'Geometry-aware'

• Compute an optimal set of cycles forming a basis

3

イロン イヨン イヨン イヨン

• Compute an optimal set of cycles forming a basis

• • = • • = •

• Compute an optimal set of cycles forming a basis

• • = • • = •

• Compute an optimal set of cycles forming a basis

• First solution for surfaces: Erickson-Whittlesey [SODA05]

Dey (2010)

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]
- H₁ basis for simplicial complexes: Dey-Sun-Wang [SoCG10]

• Compute an optimal cycle in a given class.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• Compute an optimal cycle in a given class.

A B A A B A

• Compute an optimal cycle in a given class.

Dey (2010)

A B F A B F

• Compute an optimal cycle in a given class.

伺下 イヨト イヨト

• Compute an optimal cycle in a given class.

 Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]

Dey (2010)

• Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]

・ 同 ト ・ ヨ ト ・ ヨ ト

• Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]
- Special cases: Dey-Hirani-Krishnamoorthy [STOC10]

イロト イヨト イヨト イヨト

 $\bullet\,$ Let ${\cal K}$ be a finite simplicial complex

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• Let \mathcal{K} be a finite simplicial complex

Simplicial complex

3

イロン イヨン イヨン イヨン

• Let ${\mathcal K}$ be a finite simplicial complex

Simplicial complex

Definition

A *p*-chain in \mathcal{K} is a formal sum of *p*-simplices: $c = \sum_{i} a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.

- 4 回 ト - 4 回 ト

• Let \mathcal{K} be a finite simplicial complex

1-chain ab - 3bc + cd $(a_i \in \mathbb{Z})$

Definition

A *p*-chain in \mathcal{K} is a formal sum of *p*-simplices: $c = \sum_{i} a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.

• Let ${\mathcal K}$ be a finite simplicial complex

1-chain ab + bc + cd $(a_i \in \mathbb{Z}_2)$

Definition

A *p*-chain in \mathcal{K} is a formal sum of *p*-simplices: $c = \sum_{i} a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Simplicial complex

Dey	(2010)

通 ト イヨ ト イヨト

Definition

A *p*-boundary $\partial_{p+1}\mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z})

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

1-boundary $bc + cd + de + eb = \partial_2(bcd + bde)$ (under \mathbb{Z})

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

2-chain bcd - bde (under \mathbb{Z})

Dey (2010)

通 ト イヨ ト イヨト

Boundary

Definition

A *p*-boundary $\partial_{p+1}\mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

1-boundary $bc + cd + 2db + be + ed = \partial_2(bcd - bde)$ (under \mathbb{Z})

- 4 回 ト - 4 回 ト

Boundary

Definition

A *p*-boundary $\partial_{p+1}\mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z}_2)

通 ト イヨ ト イヨト

Boundary

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

1-boundary $bc + cd + db + bd + de + eb = bc + cd + de + eb = \partial_2(bcd + bde)$ (under \mathbb{Z}_2)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

3

イロン イヨン イヨン イヨン

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

Simplicial complex

<ロ> (日) (日) (日) (日) (日)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

- 4 同 6 4 日 6 4 日 6

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

• Each *p*-boundary is a *p*-cycle: $\partial_p \circ \partial_{p+1} = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

イロン イヨン イヨン イヨン

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

 $\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$

◆□ > ◆舂 > ◆臣 > ◆臣 > ○

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

 $\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$

Definition

The *p*-cycle group $Z_p(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_p

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

 $\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$

Definition

The *p*-cycle group $Z_p(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_p

Definition

The *p*-boundary group $B_p(\mathcal{K})$ of \mathcal{K} is the image im ∂_{p+1}

ヘロン 人間 とくほと くほとう

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two *p*-chains *c* and *c'* are homologous if $c = c' + \partial_{p+1}d$ for some chain *d*

< 回 > < 回 > < 回 >

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two *p*-chains *c* and *c'* are homologous if $c = c' + \partial_{p+1}d$ for some chain *d*

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles

イロト イポト イヨト イヨト

PCD and simplicial complex as input

Point cloud

Dey (2010)

∃ ► < ∃ ►</p>

PCD and simplicial complex as input

$\mathsf{PCD} \rightarrow \mathsf{complex}$

Point cloud

Dey (2010)

<ロ> (日) (日) (日) (日) (日)

$\mathsf{PCD} \rightarrow \mathsf{complex}$

<ロ> (日) (日) (日) (日) (日)

$\mathsf{PCD} \rightarrow \mathsf{complex}$

• Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem

3

<ロ> (日) (日) (日) (日) (日)

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a **shortest** basis of the homology group $H_1(\mathcal{M})$ of the sampled manifold \mathcal{M}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a **shortest** basis of the homology group $H_1(\mathcal{M})$ of the sampled manifold \mathcal{M}
- A polynomial time algorithm for computing a shortest basis of H₁(K) for any finite simplicial complex K embedded in a Euclidean space

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a **shortest** basis of the homology group $H_1(\mathcal{M})$ of the sampled manifold \mathcal{M}
- A polynomial time algorithm for computing a shortest basis of H₁(\mathcal{K}) for any finite simplicial complex \mathcal{K} embedded in a Euclidean space

(人間) トイヨト イヨ)

Background

Previous Work

• Algorithms for computing homology groups from point data [CO08]

3

イロト イヨト イヨト イヨト

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained

- 4 同 6 4 日 6 4 日 6

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained
- We use Rips complex

- 4 週 ト - 4 三 ト - 4 三 ト

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained
- We use Rips complex
- NP-hard for higher dimensional homology groups [CF10]

- 4 目 ト - 4 日 ト - 4 日 ト

• Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2

3

Basis

- Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2
- The elements of H₁(*T*) are equivalence classes [g] of 1-dimensional cycles g, also called loops

3

Basis

- Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2
- The elements of H₁(*T*) are equivalence classes [g] of 1-dimensional cycles g, also called loops

Definition

A minimal set $\{[g_1], ..., [g_k]\}$ generating $H_1(\mathcal{T})$ is called its basis Here $k = \operatorname{rank} H_1(\mathcal{T})$

イロト イ理ト イヨト イヨト

Shortest Basis

• We associate a weight $w(g) \ge 0$ with each loop g in T

3

Shortest Basis

- We associate a weight $w(g) \ge 0$ with each loop g in T
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

3

Shortest Basis

- We associate a weight $w(g) \ge 0$ with each loop g in T
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

$$\mathsf{Len}(\mathsf{G}) = \sum_{i=1}^k \mathsf{w}(\mathsf{g}_i)$$

3

Background

Shortest Basis

- We associate a weight $w(g) \ge 0$ with each loop g in T
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

$$\mathsf{Len}(\mathsf{G}) = \sum_{i=1}^k \mathsf{w}(\mathsf{g}_i)$$

Definition

A shortest basis of $H_1(\mathcal{T})$ is a set of k loops with minimal length that generates $H_1(\mathcal{T})$

・ロン ・四 ・ ・ ヨン

Theorem 1

Theorem

Let \mathcal{K} be a finite simplicial complex with non-negative weights on edges. A shortest basis for $H_1(\mathcal{K})$ can be computed in $O(n^4)$ time where $n = |\mathcal{K}|$

• • = • • = •

Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold
M ⊂ ℝ^d embedded isometrically

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^d$ embedded isometrically
- \bullet We want to approximate a shortest basis of $\mathsf{H}_1(\mathcal{M})$ from ${\it P}$

(日) (周) (王) (王)

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^d$ embedded isometrically
- \bullet We want to approximate a shortest basis of $\mathsf{H}_1(\mathcal{M})$ from ${\it P}$
- Compute a *complex* \mathcal{K} from P

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^d$ embedded isometrically
- \bullet We want to approximate a shortest basis of $\mathsf{H}_1(\mathcal{M})$ from ${\it P}$
- Compute a *complex* \mathcal{K} from P
- \bullet Compute a shortest basis of $H_1(\mathcal{K})$

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲

- Let $P \subset \mathbb{R}^d$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^d$ embedded isometrically
- \bullet We want to approximate a shortest basis of $\mathsf{H}_1(\mathcal{M})$ from ${\it P}$
- Compute a *complex* \mathcal{K} from P
- Compute a shortest basis of $H_1(\mathcal{K})$
- Argue that if P is *dense*, a subset of computed loops approximate a shortest basis of H₁(M) within constant factors

ヘロア ヘロア ヘヨア ヘヨア

• Let $P \subset \mathbb{R}^d$ be a point set

3

イロト イヨト イヨト イヨト

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

3

イロン イヨン イヨン イヨン

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

- 4 目 ト - 4 日 ト - 4 日 ト

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $Vert(\sigma)$ are within pairwise Euclidean distance of r

・ロト ・聞ト ・ ヨト

Background

Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open d-ball centered at p with radius r

Definition

The Čech complex $C^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^{r}(P)$ iff $\operatorname{Vert}(\sigma) \subseteq P$ and $\bigcap_{p \in \operatorname{Vert}(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff Vert(σ) are within pairwise Euclidean distance of r

Proposition

For any finite set $P \subset \mathbb{R}^d$ and any $r \geq 0$, $\mathcal{C}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \mathcal{C}^{2r}(P)$

イロト イポト イヨト イヨト

Point set P

Balls B(p, r/2) for $p \in P$

23 / 42

Čech complex $C^r(P)$

24 / 42

Rips complex $\mathcal{R}^r(P)$

25 / 42

Approximation Theorem

Theorem

Let $\mathcal{M} \subset \mathbb{R}^d$ be a smooth, closed manifold with l as the length of a shortest basis of $H_1(\mathcal{M})$ and $k = \operatorname{rank} H_1(\mathcal{M})$. Given a set $P \subset \mathcal{M}$ of n points which is an ε -sample of \mathcal{M} and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(\mathcal{M}), \rho_c(\mathcal{M})\}$, one can compute a set of loops G in $O(nn_e^2n_t)$ time where

$$\frac{1}{1+\frac{4r^2}{3\rho^2(\mathcal{M})}} I \leq \mathsf{Len}(\mathsf{G}) \leq (1+\frac{4\varepsilon}{\mathsf{r}})\mathsf{I}.$$

Here n_e , n_t are the number of edges and triangles in $\mathcal{R}^{2r}(P)$

< 回 > < 回 > < 回 >

• How to compute a shortest cycle in a given class?

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• How to compute a shortest cycle in a given class?

• • = • • = •

• How to compute a shortest cycle in a given class?

• • = • • = •

• How to compute a shortest cycle in a given class?

- 4 同 6 4 日 6 4 日 6

Our Result

 \bullet OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Our Result

- \bullet OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to \mathbb{Z} ?

3

イロン イヨン イヨン イヨン

Our Result

- OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Result

- OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?

イロト イヨト イヨト

Our Result

- OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to Z?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular

- 4 同 6 4 日 6 4 日 6

Our Result

- OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to Z?
- Then this problem can be cast as a linear programming problem⇒ polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular
- We characterize the complexes for which this is true

- 4 目 ト - 4 日 ト - 4 日 ト

Our Result

- OHCP is NP-hard if \mathbb{Z}_2 coefficient is used.
- What if we switch to Z?
- Then this problem can be cast as a linear programming problem⇒ polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular
- We characterize the complexes for which this is true
- For such complexes, the optimal cycle can be computed in polynomial time ©

- 4 週 ト - 4 三 ト - 4 三 ト

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square submatrix is 0, 1 or -1.

- 4 回 ト - 4 回 ト

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square submatrix is 0, 1 or -1.

Theorem

Let A be an $m \times n$ totally unimodular matrix and **b** an integral vector, i.e. $\mathbf{b} \in \mathbb{Z}^m$. Then the polyhedron $\mathcal{P} = \{\mathbf{x} \in \mathbb{R}^n | A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0\}$ is integral meaning that \mathcal{P} is the convex hull of the integral vectors contained in \mathcal{P} . In particular, the extreme points (vertices) of \mathcal{P} are integral. Similarly the polyhedron $\mathcal{Q} = \{\mathbf{x} \in \mathbb{R}^n | A\mathbf{x} \ge \mathbf{b}\}$ is integral.

Optimization

• Consider an integral vector $\mathbf{b} \in \mathbb{Z}^m$ and a real vector $\mathbf{f} \in \mathbb{R}^n$.

3

ヘロア ヘロア ヘビア・

Background

Optimization

- Consider an integral vector $\mathbf{b} \in \mathbb{Z}^m$ and a real vector $\mathbf{f} \in \mathbb{R}^n$.
- Consider the *integer linear program*

Program

 $\min \mathbf{f}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}, \mathbf{x} > 0$ and $\mathbf{x} \in \mathbb{Z}^n$.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Background

Optimization

- Consider an integral vector $\mathbf{b} \in \mathbb{Z}^m$ and a real vector $\mathbf{f} \in \mathbb{R}^n$.
- Consider the *integer linear program*

Program

 $\min \mathbf{f}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}, \mathbf{x} > 0$ and $\mathbf{x} \in \mathbb{Z}^n$.

Corollary

Let A be a totally unimodular matrix. Then the integer linear program above can be solved in time polynomial in the dimensions of A.

• • = • • = •

• A *p*-chain $\sum_{i=0}^{m-1} x_i \sigma_i$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^m$.

æ

・ロト ・聞ト ・ヨト ・ヨト

• A *p*-chain $\sum_{i=0}^{m-1} x_i \sigma_i$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^m$.

Definition

```
For \mathbf{v} \in \mathbb{R}^m, the 1-norm ||\mathbf{v}||_1 is defined as \sum_i |v_i|.
```

・ロト ・聞ト ・ヨト ・ヨト

• A *p*-chain $\sum_{i=0}^{m-1} x_i \sigma_i$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^m$.

Definition

```
For \mathbf{v} \in \mathbb{R}^m, the 1-norm ||\mathbf{v}||_1 is defined as \sum_i |v_i|.
```

Definition

The weighted 1-norm of **v** is $||W\mathbf{v}||_1$, where W is $m \times m$ diagonal matrix.

イロト 不得下 イヨト イヨト

• A *p*-chain $\sum_{i=0}^{m-1} x_i \sigma_i$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^m$.

Definition

```
For \mathbf{v} \in \mathbb{R}^m, the 1-norm ||\mathbf{v}||_1 is defined as \sum_i |v_i|.
```

Definition

The weighted 1-norm of **v** is $||W\mathbf{v}||_1$, where W is $m \times m$ diagonal matrix.

 Given a p-chain c and a matrix W, we need to find a chain c* which has the minimal 1-norm ||Wc*|| among all chains homologous to c

・ロト ・聞ト ・ヨト ・ヨト

Central Idea

• Write OHCP as an integer program involving 1-norm minimization.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer *linear* program by introducing some extra variables and constraints.

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer *linear* program by introducing some extra variables and constraints.
- Find the conditions under which the constraint matrix of the program is totally unimodular.

- 4 同 6 4 日 6 4 日 6

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer *linear* program by introducing some extra variables and constraints.
- Find the conditions under which the constraint matrix of the program is totally unimodular.
- For this class of problems, relax the integer linear program to a linear program by dropping the constraint that the variables be integral.

- 4 聞 と 4 直 と 4 画 と

• Assume that \mathcal{K} contains *m p*-simplices and *n* (*p* + 1)-simplices.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Assume that \mathcal{K} contains *m p*-simplices and *n* (*p* + 1)-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

- Assume that \mathcal{K} contains *m p*-simplices and *n* (*p* + 1)-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

$$w_i = w(\sigma_i).$$

- Assume that \mathcal{K} contains *m p*-simplices and *n* (*p* + 1)-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

$$w_i = w(\sigma_i).$$

• Given an integer valued *p*-chain **c**, the problem to solve is

- Assume that \mathcal{K} contains *m p*-simplices and *n* (*p* + 1)-simplices.
- W is a diagonal $m \times m$ matrix obtained from *weights* on simplices:

$$w_i = w(\sigma_i).$$

• Given an integer valued *p*-chain **c**, the problem to solve is

Program

$$\begin{array}{l} \min ||W\mathbf{x}||_1 \\ \text{such that} \quad \mathbf{x} = \mathbf{c} + [\partial_{p+1}]\mathbf{y} \\ \text{and} \quad \mathbf{x} \in \mathbb{Z}^m, \mathbf{y} \in \mathbb{Z}^n. \end{array}$$

Integer Linear Program

Program

$$\begin{array}{l} \min \sum_{i} |w_{i}|(x_{i}^{+}+x_{i}^{-}) \\ \text{subject to} \quad \mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+[\partial_{p+1}]\mathbf{y} \\ \mathbf{x}^{+},\mathbf{x}^{-}\geq 0 \\ \mathbf{x}^{+},\mathbf{x}^{-}\in\mathbb{Z}^{m},\mathbf{y}\in\mathbb{Z}^{n}. \end{array}$$

3

Linear Program

Program

$$\begin{array}{l} \min \sum_{i} |w_i| (x_i^+ + x_i^-) \\ \text{subject to} \quad \mathbf{x}^+ - \mathbf{x}^- = \mathbf{c} + [\partial_{p+1}] \mathbf{y} \\ \mathbf{x}^+, \mathbf{x}^- \ge 0 \end{array}$$

3

• The equality constraints can be rewritten as

3

• The equality constraints can be rewritten as

$$\mathbf{x}^+ - \mathbf{x}^- = \mathbf{c} + [\partial_{p+1}](\mathbf{y}^+ - \mathbf{y})$$

3

• The equality constraints can be rewritten as

$$\mathbf{x}^+ - \mathbf{x}^- = \mathbf{c} + [\partial_{p+1}](\mathbf{y}^+ - \mathbf{y})$$

• So the equality constraint matrix is [I - I - B B], where $B = [\partial_{p+1}]$.

3

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

• The equality constraints can be rewritten as

$$\mathbf{x}^+ - \mathbf{x}^- = \mathbf{c} + [\partial_{p+1}](\mathbf{y}^+ - \mathbf{y})$$

• So the equality constraint matrix is [I - I - B B], where $B = [\partial_{p+1}]$.

Lemma

If $B = [\partial_{p+1}]$ is totally unimodular then so is [I - I - B B].

・ロト ・聞ト ・ヨト ・ヨト

• The equality constraints can be rewritten as

$$\mathbf{x}^+ - \mathbf{x}^- = \mathbf{c} + [\partial_{p+1}](\mathbf{y}^+ - \mathbf{y})$$

• So the equality constraint matrix is [I - I - B B], where $B = [\partial_{p+1}]$.

Lemma

If
$$B = [\partial_{p+1}]$$
 is totally unimodular then so is $[I - I - B B]$.

Theorem

If the boundary matrix $[\partial_{p+1}]$ of a finite simplicial complex of dimension greater than p is totally unimodular, the optimal homologous chain problem for p-chain can be solved in polynomial time.

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensional compact orientable manifold, $[\partial_{p+1}]$ is TU irrespective of the orientation.

Manifolds

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensional compact orientable manifold, $[\partial_{p+1}]$ is TU irrespective of the orientation.

Corollary

For a finite simplicial complex triangulating a (p+1)-dimensional compact orientable manifold, OHCP can be solved for p-chains in polynomial time.

Manifolds

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a (p+1)-dimensional compact orientable manifold, $[\partial_{p+1}]$ is TU irrespective of the orientation.

Corollary

For a finite simplicial complex triangulating a (p + 1)-dimensional compact orientable manifold, OHCP can be solved for p-chains in polynomial time.

A B A A B A

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by a collection of p-simplices and their proper faces.

A pure subcomplex is a subcomplex that is a pure simplicial complex.

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by a collection of p-simplices and their proper faces.

A pure subcomplex is a subcomplex that is a pure simplicial complex.

Theorem

 $[\partial_{p+1}]$ is totally unimodular if and only if $H_p(\mathcal{L}, \mathcal{L}_0)$ is torsion-free, for all pure subcomplexes $\mathcal{L}_0, \mathcal{L}$ of \mathcal{K} of dimensions p and p+1, respectively, where $\mathcal{L}_0 \subset \mathcal{L}$. Hence, OHCP for p-chains in such complexes are polynomial time solvable by linear programs.

< 回 > < 三 > < 三 >

Manifolds

A Special Case

Theorem

Let \mathcal{K} be a finite simplicial complex embedded in \mathbb{R}^{d+1} . Then, $H_d(\mathcal{L}, \mathcal{L}_0)$ is torsion-free for all pure subcomplexes \mathcal{L}_0 and \mathcal{L} of dimensions d and d+1 respectively, such that $\mathcal{L}_0 \subset \mathcal{L}$.

A Special Case

Theorem

Let \mathcal{K} be a finite simplicial complex embedded in \mathbb{R}^{d+1} . Then, $H_d(\mathcal{L}, \mathcal{L}_0)$ is torsion-free for all pure subcomplexes \mathcal{L}_0 and \mathcal{L} of dimensions d and d+1 respectively, such that $\mathcal{L}_0 \subset \mathcal{L}$.

Corollary

Given a d-chain **c** in a weighted finite simplicial complex embedded in \mathbb{R}^{d+1} . an optimal chain homologous to **c** can be computed by a linear program.

Computed Optimal Cycles

• $O(n^4)$ algorithm for OHBP for simplicial complexes. Can it be improved?

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- $O(n^4)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?

(日) (同) (三) (三)

- $O(n^4)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?
- $O(n^3)$ algorithm for OHCP for special cases. Can it be improved?

▲圖▶ ▲屋▶ ▲屋≯

- $O(n^4)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?
- $O(n^3)$ algorithm for OHCP for special cases. Can it be improved?
- What about efficient updates?

・ 回 ト ・ ヨ ト ・ ヨ ト

Thank You

Dey (2010)

42 / 42

3

イロト イヨト イヨト イヨト