Computing Homology Cycles with Certified Geometry

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

Collaborators
A. Hirani(UIUC), B. Krishnamoorthy(WSU), J. Sun(Tsinghua U.) and
Y. Wang(OSU)

Cycles: Medical Imaging \& Molecular Biology

Cycles: Computer-Aided Design

Cycles: Computer Graphics

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]
- General case: Persistence algorithm [ELZO0]

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]
- General case: Persistence algorithm [ELZ00]
- All are geometry-oblivious

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]
- General case: Persistence algorithm [ELZO0]
- All are geometry-oblivious

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]
- General case: Persistence algorithm [ELZO0]
- All are geometry-oblivious

Topological cycles: Homology

- Rank: Smith-Normal-Form; Special cases [DE95]
- Representative cycles:
- Surfaces [VY90,DS95]
- Volumes: [DG96]
- General case: Persistence algorithm [ELZO0]
- All are geometry-oblivious

- Goal: ‘Geometry-oblivious’ to 'Geometry-aware’

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]

OHBP: Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]
- H_{1} basis for simplicial complexes: Dey-Sun-Wang [SoCG10]

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]

OHCP: Optimal Homologous Cycle Problem

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]
- Special cases: Dey-Hirani-Krishnamoorthy [STOC10]

Chain

- Let \mathcal{K} be a finite simplicial complex

Chain

- Let \mathcal{K} be a finite simplicial complex

Simplicial complex

Chain

- Let \mathcal{K} be a finite simplicial complex

Simplicial complex

Definition

A p-chain in \mathcal{K} is a formal sum of p-simplices: $c=\sum_{i} a_{i} \sigma_{i}$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_{2}, \mathbb{R}$ etc.

Chain

- Let \mathcal{K} be a finite simplicial complex

$$
\text { 1-chain } a b-3 b c+c d\left(a_{i} \in \mathbb{Z}\right)
$$

Definition

A p-chain in \mathcal{K} is a formal sum of p-simplices: $c=\sum_{i} a_{i} \sigma_{i}$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_{2}, \mathbb{R}$ etc.

Chain

- Let \mathcal{K} be a finite simplicial complex

$$
\text { 1-chain } a b+b c+c d \quad\left(a_{i} \in \mathbb{Z}_{2}\right)
$$

Definition

A p-chain in \mathcal{K} is a formal sum of p-simplices: $c=\sum_{i} a_{i} \sigma_{i}$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_{2}, \mathbb{R}$ etc.

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

Simplicial complex

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z})

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

1-boundary $b c+c d+d e+e b=\partial_{2}(b c d+b d e)($ under $\mathbb{Z})$

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

2-chain bcd - bde (under \mathbb{Z})

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

1-boundary $b c+c d+2 d b+b e+e d=\partial_{2}(b c d-b d e)($ under $\mathbb{Z})$

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z}_{2})

Boundary

Definition

A p-boundary $\partial_{p+1} \mathbf{c}$ of a $(p+1)$-chain \mathbf{c} is defined as the sum of boundaries of its simplices

1-boundary $b c+c d+d b+b d+d e+e b=b c+c d+d e+e b=\partial_{2}(b c d+b d e)$ (under \mathbb{Z}_{2})

Cycle

Definition

A p-cycle is a p-chain that has an empty boundary

Cycle

Definition

A p-cycle is a p-chain that has an empty boundary

Simplicial complex

Cycle

Definition

A p-cycle is a p-chain that has an empty boundary

1-cycle $a b+b c+c d+d e+e a\left(\right.$ under \mathbb{Z}_{2})

Cycle

Definition

A p-cycle is a p-chain that has an empty boundary

1-cycle $a b+b c+c d+d e+e a\left(\right.$ under \mathbb{Z}_{2})

- Each p-boundary is a p-cycle: $\partial_{p} \circ \partial_{p+1}=0$

Groups

Definition

The p-chain group $C_{p}(\mathcal{K})$ of \mathcal{K} is formed by p-chains under addition

Groups

Definition
The p-chain group $C_{p}(\mathcal{K})$ of \mathcal{K} is formed by p-chains under addition
The boundary operator ∂_{p} induces a homomorphism

$$
\partial_{p}: C_{p}(\mathcal{K}) \rightarrow C_{p-1}(\mathcal{K})
$$

Groups

Definition
The p-chain group $C_{p}(\mathcal{K})$ of \mathcal{K} is formed by p-chains under addition
The boundary operator ∂_{p} induces a homomorphism

$$
\partial_{p}: C_{p}(\mathcal{K}) \rightarrow C_{p-1}(\mathcal{K})
$$

Definition

The p-cycle group $\mathrm{Z}_{p}(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_{p}

Groups

Definition
The p-chain group $C_{p}(\mathcal{K})$ of \mathcal{K} is formed by p-chains under addition
The boundary operator ∂_{p} induces a homomorphism

$$
\partial_{p}: C_{p}(\mathcal{K}) \rightarrow C_{p-1}(\mathcal{K})
$$

Definition

The p-cycle group $\mathrm{Z}_{p}(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_{p}

Definition
The p-boundary group $\mathrm{B}_{p}(\mathcal{K})$ of \mathcal{K} is the image $\operatorname{im} \partial_{p+1}$

Homology

Definition

The p-dimensional homology group is defined as $\mathrm{H}_{p}(\mathcal{K})=\mathrm{Z}_{p}(\mathcal{K}) / \mathrm{B}_{p}(\mathcal{K})$

Homology

Definition

The p-dimensional homology group is defined as $\mathrm{H}_{p}(\mathcal{K})=\mathrm{Z}_{p}(\mathcal{K}) / \mathrm{B}_{p}(\mathcal{K})$

Definition

Two p-chains c and c^{\prime} are homologous if $c=c^{\prime}+\partial_{p+1} d$ for some chain d

Homology

Definition

The p-dimensional homology group is defined as $\mathrm{H}_{p}(\mathcal{K})=\mathrm{Z}_{p}(\mathcal{K}) / \mathrm{B}_{p}(\mathcal{K})$

Definition

Two p-chains c and c^{\prime} are homologous if $c=c^{\prime}+\partial_{p+1} d$ for some chain d

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles

PCD and simplicial complex as input

Point cloud

PCD and simplicial complex as input

Point cloud

Loops

PCD \rightarrow complex

Point cloud

PCD \rightarrow complex

Point cloud

Rips complex

PCD \rightarrow complex

Point cloud

Rips complex

Loops

Contributions

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem

Contributions

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a shortest basis of the homology group $\mathrm{H}_{1}(\mathcal{M})$ of the sampled manifold \mathcal{M}

Contributions

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a shortest basis of the homology group $\mathrm{H}_{1}(\mathcal{M})$ of the sampled manifold \mathcal{M}
- A polynomial time algorithm for computing a shortest basis of $\mathrm{H}_{1}(\mathcal{K})$ for any finite simplicial complex \mathcal{K} embedded in a Euclidean space

Contributions

- Inference of topology and geometry of a hidden manifold from its point data is a fundamental problem
- An algorithm to compute a set of loops from point data that approximates a shortest basis of the homology group $\mathrm{H}_{1}(\mathcal{M})$ of the sampled manifold \mathcal{M}
- A polynomial time algorithm for computing a shortest basis of $\mathrm{H}_{1}(\mathcal{K})$ for any finite simplicial complex \mathcal{K} embedded in a Euclidean space

Previous Work

- Algorithms for computing homology groups from point data [CO08]

Previous Work

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)

Previous Work

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained

Previous Work

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained
- We use Rips complex

Previous Work

- Algorithms for computing homology groups from point data [CO08]
- Reconstruction of the sampled space (can be costly)
- Rips, Čech or witness complexes are less constrained
- We use Rips complex
- NP-hard for higher dimensional homology groups [CF10]

Basis

- Let $\mathrm{H}_{j}(\mathcal{T})$ denote the j-dimensional homology group of \mathcal{T} under \mathbb{Z}_{2}

Basis

- Let $\mathrm{H}_{j}(\mathcal{T})$ denote the j-dimensional homology group of \mathcal{T} under \mathbb{Z}_{2}
- The elements of $\mathrm{H}_{1}(\mathcal{T})$ are equivalence classes $[g]$ of 1-dimensional cycles g, also called loops

Basis

- Let $\mathrm{H}_{j}(\mathcal{T})$ denote the j-dimensional homology group of \mathcal{T} under \mathbb{Z}_{2}
- The elements of $\mathrm{H}_{1}(\mathcal{T})$ are equivalence classes $[g]$ of 1-dimensional cycles g, also called loops

Definition

A minimal set $\left\{\left[g_{1}\right], \ldots,\left[g_{k}\right]\right\}$ generating $\mathrm{H}_{1}(\mathcal{T})$ is called its basis Here $k=\operatorname{rank} \mathrm{H}_{1}(\mathcal{T})$

Shortest Basis

- We associate a weight $w(g) \geq 0$ with each loop g in \mathcal{T}

Shortest Basis

- We associate a weight $w(g) \geq 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G=\left\{g_{1}, \ldots, g_{k}\right\}$ is given by

Shortest Basis

- We associate a weight $w(g) \geq 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G=\left\{g_{1}, \ldots, g_{k}\right\}$ is given by

$$
\operatorname{Len}(G)=\sum_{i=1}^{k} w\left(g_{i}\right)
$$

Shortest Basis

- We associate a weight $w(g) \geq 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G=\left\{g_{1}, \ldots, g_{k}\right\}$ is given by

$$
\operatorname{Len}(G)=\sum_{i=1}^{k} w\left(g_{i}\right)
$$

Definition

A shortest basis of $H_{1}(\mathcal{T})$ is a set of k loops with minimal length that generates $\mathrm{H}_{1}(\mathcal{T})$

Theorem 1

Theorem
Let \mathcal{K} be a finite simplicial complex with non-negative weights on edges. A shortest basis for $H_{1}(\mathcal{K})$ can be computed in $O\left(n^{4}\right)$ time where $n=|\mathcal{K}|$

Approximation from Point Cloud

- Let $P \subset \mathbb{R}^{d}$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^{d}$ embedded isometrically

Approximation from Point Cloud

- Let $P \subset \mathbb{R}^{d}$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^{d}$ embedded isometrically
- We want to approximate a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ from P

Approximation from Point Cloud

- Let $P \subset \mathbb{R}^{d}$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^{d}$ embedded isometrically
- We want to approximate a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ from P
- Compute a complex \mathcal{K} from P

Approximation from Point Cloud

- Let $P \subset \mathbb{R}^{d}$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^{d}$ embedded isometrically
- We want to approximate a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ from P
- Compute a complex \mathcal{K} from P
- Compute a shortest basis of $\mathrm{H}_{1}(\mathcal{K})$

Approximation from Point Cloud

- Let $P \subset \mathbb{R}^{d}$ be a point set sampled from a smooth closed manifold $\mathcal{M} \subset \mathbb{R}^{d}$ embedded isometrically
- We want to approximate a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ from P
- Compute a complex \mathcal{K} from P
- Compute a shortest basis of $\mathrm{H}_{1}(\mathcal{K})$
- Argue that if P is dense, a subset of computed loops approximate a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ within constant factors

Complexes

- Let $P \subset \mathbb{R}^{d}$ be a point set

Complexes

- Let $P \subset \mathbb{R}^{d}$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Complexes

- Let $P \subset \mathbb{R}^{d}$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The Čech complex $\mathcal{C}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^{r}(P)$ iff $\operatorname{Vert}(\sigma) \subseteq \mathrm{P}$ and $\cap_{p \in \operatorname{Vert}(\sigma)} B(p, r / 2) \neq 0$

Complexes

- Let $P \subset \mathbb{R}^{d}$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The Čech complex $\mathcal{C}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^{r}(P)$ iff $\operatorname{Vert}(\sigma) \subseteq \mathrm{P}$ and $\cap_{p \in \operatorname{Vert}(\sigma)} B(p, r / 2) \neq 0$

Definition
The Rips complex $\mathcal{R}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^{r}(P)$ iff $\operatorname{Vert}(\sigma)$ are within pairwise Euclidean distance of r

Complexes

- Let $P \subset \mathbb{R}^{d}$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The Čech complex $\mathcal{C}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^{r}(P)$ iff $\operatorname{Vert}(\sigma) \subseteq \mathrm{P}$ and $\cap_{p \in \operatorname{Vert}(\sigma)} B(p, r / 2) \neq 0$

Definition
The Rips complex $\mathcal{R}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^{r}(P)$ iff $\operatorname{Vert}(\sigma)$ are within pairwise Euclidean distance of r

Proposition

For any finite set $P \subset \mathbb{R}^{d}$ and any $r \geq 0, \mathcal{C}^{r}(P) \subseteq \mathcal{R}^{r}(P) \subseteq \mathcal{C}^{2 r}(P)$

Point set P

\ulcorner

Balls $B(p, r / 2)$ for $p \in P$

Čech complex $\mathcal{C}^{r}(P)$

Rips complex $\mathcal{R}^{r}(P)$

Approximation Theorem

Theorem

Let $\mathcal{M} \subset \mathbb{R}^{d}$ be a smooth, closed manifold with I as the length of a shortest basis of $\mathrm{H}_{1}(\mathcal{M})$ and $k=\operatorname{rank} \mathrm{H}_{1}(\mathcal{M})$.
Given a set $P \subset \mathcal{M}$ of n points which is an ε-sample of \mathcal{M} and $4 \varepsilon \leq r \leq \min \left\{\frac{1}{2} \sqrt{\frac{3}{5}} \rho(\mathcal{M}), \rho_{c}(\mathcal{M})\right\}$, one can compute a set of loops G in $O\left(n n_{e}^{2} n_{t}\right)$ time where

$$
\frac{1}{1+\frac{4 r^{2}}{3 \rho^{2}(\mathcal{M})}} / \leq \operatorname{Len}(\mathrm{G}) \leq\left(1+\frac{4 \varepsilon}{r}\right) I .
$$

Here n_{e}, n_{t} are the number of edges and triangles in $\mathcal{R}^{2 r}(P)$

Optimal Homologous Cycle Problem: Our Goal

- How to compute a shortest cycle in a given class?

Optimal Homologous Cycle Problem: Our Goal

- How to compute a shortest cycle in a given class?

Optimal Homologous Cycle Problem: Our Goal

- How to compute a shortest cycle in a given class?

Optimal Homologous Cycle Problem: Our Goal

- How to compute a shortest cycle in a given class?

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular
- We characterize the complexes for which this is true

Our Result

- OHCP is NP-hard if \mathbb{Z}_{2} coefficient is used.
- What if we switch to \mathbb{Z} ?
- Then this problem can be cast as a linear programming problem \Rightarrow polynomial time algorithm
- Are the solutions integral?
- Yes, if the constraint matrix is totally unimodular
- We characterize the complexes for which this is true
- For such complexes, the optimal cycle can be computed in polynomial time $)^{-}$

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square submatrix is 0,1 or -1 .

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square submatrix is 0,1 or -1 .

Theorem

Let A be an $m \times n$ totally unimodular matrix and \mathbf{b} an integral vector, i.e. $\mathbf{b} \in \mathbb{Z}^{m}$. Then the polyhedron $\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0\right\}$ is integral meaning that \mathcal{P} is the convex hull of the integral vectors contained in \mathcal{P}. In particular, the extreme points (vertices) of \mathcal{P} are integral. Similarly the polyhedron $\mathcal{Q}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x} \geq \mathbf{b}\right\}$ is integral.

Optimization

- Consider an integral vector $\mathbf{b} \in \mathbb{Z}^{m}$ and a real vector $\mathbf{f} \in \mathbb{R}^{n}$.

Optimization

- Consider an integral vector $\mathbf{b} \in \mathbb{Z}^{m}$ and a real vector $\mathbf{f} \in \mathbb{R}^{n}$.
- Consider the integer linear program

Program

$$
\begin{aligned}
& \min \mathbf{f}^{T} \mathbf{x} \\
& \text { subject to } \quad A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0 \\
& \text { and } \quad \mathbf{x} \in \mathbb{Z}^{n} .
\end{aligned}
$$

Optimization

- Consider an integral vector $\mathbf{b} \in \mathbb{Z}^{m}$ and a real vector $\mathbf{f} \in \mathbb{R}^{n}$.
- Consider the integer linear program

Program

$$
\begin{aligned}
& \min \mathbf{f}^{T} \mathbf{x} \\
& \text { subject to } \quad A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0 \\
& \text { and } \quad \mathbf{x} \in \mathbb{Z}^{n} .
\end{aligned}
$$

Corollary
Let A be a totally unimodular matrix. Then the integer linear program above can be solved in time polynomial in the dimensions of A.

Norm

- A p-chain $\sum_{i=0}^{m-1} x_{i} \sigma_{i}$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^{m}$.

Norm

- A p-chain $\sum_{i=0}^{m-1} x_{i} \sigma_{i}$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^{m}$.

Definition

For $\mathbf{v} \in \mathbb{R}^{m}$, the 1 -norm $\|\mathbf{v}\|_{1}$ is defined as $\sum_{i}\left|v_{i}\right|$.

Norm

- A p-chain $\sum_{i=0}^{m-1} x_{i} \sigma_{i}$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^{m}$.

Definition
For $\mathbf{v} \in \mathbb{R}^{m}$, the 1 -norm $\|\mathbf{v}\|_{1}$ is defined as $\sum_{i}\left|v_{i}\right|$.

Definition
The weighted 1 -norm of \mathbf{v} is $\|W \mathbf{v}\|_{1}$, where W is $m \times m$ diagonal matrix.

Norm

- A p-chain $\sum_{i=0}^{m-1} x_{i} \sigma_{i}$ is defined by its coefficient vector $\mathbf{x} \in \mathbb{Z}^{m}$.

Definition

For $\mathbf{v} \in \mathbb{R}^{m}$, the 1 -norm $\|\mathbf{v}\|_{1}$ is defined as $\sum_{i}\left|v_{i}\right|$.

Definition
The weighted 1-norm of \mathbf{v} is $\|W \mathbf{v}\|_{1}$, where W is $m \times m$ diagonal matrix.

- Given a p-chain \mathbf{c} and a matrix W, we need to find a chain \mathbf{c}^{*} which has the minimal 1-norm $\left\|W \mathbf{c}^{*}\right\|$ among all chains homologous to \mathbf{c}

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer linear program by introducing some extra variables and constraints.

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer linear program by introducing some extra variables and constraints.
- Find the conditions under which the constraint matrix of the program is totally unimodular.

Central Idea

- Write OHCP as an integer program involving 1-norm minimization.
- Convert it to an integer linear program by introducing some extra variables and constraints.
- Find the conditions under which the constraint matrix of the program is totally unimodular.
- For this class of problems, relax the integer linear program to a linear program by dropping the constraint that the variables be integral.

Optimization Program

- Assume that \mathcal{K} contains m-simplices and $n(p+1)$-simplices.

Optimization Program

- Assume that \mathcal{K} contains $m p$-simplices and $n(p+1)$-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

Optimization Program

- Assume that \mathcal{K} contains $m p$-simplices and $n(p+1)$-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

$$
w_{i}=w\left(\sigma_{i}\right)
$$

Optimization Program

- Assume that \mathcal{K} contains $m p$-simplices and $n(p+1)$-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

$$
w_{i}=w\left(\sigma_{i}\right)
$$

- Given an integer valued p-chain \mathbf{c}, the problem to solve is

Optimization Program

- Assume that \mathcal{K} contains m-simplices and $n(p+1)$-simplices.
- W is a diagonal $m \times m$ matrix obtained from weights on simplices:

$$
w_{i}=w\left(\sigma_{i}\right)
$$

- Given an integer valued p-chain \mathbf{c}, the problem to solve is

Program

$$
\begin{aligned}
& \min \|W \mathbf{x}\|_{1} \\
& \text { such that } \mathbf{x}=\mathbf{c}+\left[\partial_{p+1}\right] \mathbf{y} \\
& \text { and } \mathbf{x} \in \mathbb{Z}^{m}, \mathbf{y} \in \mathbb{Z}^{n} .
\end{aligned}
$$

Integer Linear Program

Program

$$
\begin{aligned}
\min & \sum_{i}\left|w_{i}\right|\left(x_{i}^{+}+x_{i}^{-}\right) \\
\text {subject to } \quad & \mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right] \mathbf{y} \\
& \mathbf{x}^{+}, \mathbf{x}^{-} \geq 0 \\
& \mathbf{x}^{+}, \mathbf{x}^{-} \in \mathbb{Z}^{m}, \mathbf{y} \in \mathbb{Z}^{n}
\end{aligned}
$$

Linear Program

Program

$$
\begin{array}{ll}
\min & \sum_{i}\left|w_{i}\right|\left(x_{i}^{+}+x_{i}^{-}\right) \\
\text {subject to } & \mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right] \mathbf{y} \\
& \mathbf{x}^{+}, \mathbf{x}^{-} \geq 0
\end{array}
$$

Constraint Matrix Unimodularity

- The equality constraints can be rewritten as

Constraint Matrix Unimodularity

- The equality constraints can be rewritten as

$$
\mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right]\left(\mathbf{y}^{+}-\mathbf{y}\right)
$$

Constraint Matrix Unimodularity

- The equality constraints can be rewritten as

$$
\mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right]\left(\mathbf{y}^{+}-\mathbf{y}\right)
$$

- So the equality constraint matrix is $[I-I-B B]$, where $B=\left[\partial_{p+1}\right]$.

Constraint Matrix Unimodularity

- The equality constraints can be rewritten as

$$
\mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right]\left(\mathbf{y}^{+}-\mathbf{y}\right)
$$

- So the equality constraint matrix is $[I-I-B B]$, where $B=\left[\partial_{p+1}\right]$.

Lemma
If $B=\left[\partial_{p+1}\right]$ is totally unimodular then so is $[I-I-B B]$.

Constraint Matrix Unimodularity

- The equality constraints can be rewritten as

$$
\mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{c}+\left[\partial_{p+1}\right]\left(\mathbf{y}^{+}-\mathbf{y}\right)
$$

- So the equality constraint matrix is $[I-I-B B]$, where $B=\left[\partial_{p+1}\right]$.

Lemma
If $B=\left[\partial_{p+1}\right]$ is totally unimodular then so is $[I-I-B B]$.

Theorem
If the boundary matrix $\left[\partial_{p+1}\right]$ of a finite simplicial complex of dimension greater than p is totally unimodular, the optimal homologous chain problem for p-chain can be solved in polynomial time.

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a $(p+1)$-dimensional compact orientable manifold, $\left[\partial_{p+1}\right]$ is TU irrespective of the orientation.

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a ($p+1$)-dimensional compact orientable manifold, $\left[\partial_{p+1}\right]$ is TU irrespective of the orientation.

Corollary

For a finite simplicial complex triangulating a ($p+1$)-dimensional compact orientable manifold, OHCP can be solved for p-chains in polynomial time.

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a $(p+1)$-dimensional compact orientable manifold, $\left[\partial_{p+1}\right]$ is TU irrespective of the orientation.

Corollary

For a finite simplicial complex triangulating a $(p+1)$-dimensional compact orientable manifold, OHCP can be solved for p-chains in polynomial time.

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by a collection of p-simplices and their proper faces.
A pure subcomplex is a subcomplex that is a pure simplicial complex.

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by a collection of p-simplices and their proper faces.
A pure subcomplex is a subcomplex that is a pure simplicial complex.

Theorem
[∂_{p+1}] is totally unimodular if and only if $\mathrm{H}_{p}\left(\mathcal{L}, \mathcal{L}_{0}\right)$ is torsion-free, for all pure subcomplexes $\mathcal{L}_{0}, \mathcal{L}$ of \mathcal{K} of dimensions p and $p+1$, respectively, where $\mathcal{L}_{0} \subset \mathcal{L}$. Hence, $O H C P$ for p-chains in such complexes are polynomial time solvable by linear programs.

A Special Case

Theorem
Let \mathcal{K} be a finite simplicial complex embedded in \mathbb{R}^{d+1}. Then, $\mathrm{H}_{d}\left(\mathcal{L}, \mathcal{L}_{0}\right)$ is torsion-free for all pure subcomplexes \mathcal{L}_{0} and \mathcal{L} of dimensions d and $d+1$ respectively, such that $\mathcal{L}_{0} \subset \mathcal{L}$.

A Special Case

Theorem
Let \mathcal{K} be a finite simplicial complex embedded in \mathbb{R}^{d+1}. Then, $\mathrm{H}_{d}\left(\mathcal{L}, \mathcal{L}_{0}\right)$ is torsion-free for all pure subcomplexes \mathcal{L}_{0} and \mathcal{L} of dimensions d and $d+1$ respectively, such that $\mathcal{L}_{0} \subset \mathcal{L}$.

Corollary

Given a d-chain c in a weighted finite simplicial complex embedded in \mathbb{R}^{d+1}, an optimal chain homologous to \mathbf{c} can be computed by a linear program.

Computed Optimal Cycles

Conclusions

- $O\left(n^{4}\right)$ algorithm for OHBP for simplicial complexes. Can it be improved?

Conclusions

- $O\left(n^{4}\right)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?

Conclusions

- $O\left(n^{4}\right)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?
- $O\left(n^{3}\right)$ algorithm for OHCP for special cases. Can it be improved?

Conclusions

- $O\left(n^{4}\right)$ algorithm for OHBP for simplicial complexes. Can it be improved?
- Are there interesting cases where higher dimensional version of OHBP solvable in polynmial time?
- $O\left(n^{3}\right)$ algorithm for OHCP for special cases. Can it be improved?
- What about efficient updates?

Thank You

