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Surfaces [VY90,DS95]
Volumes: [DG96]
General case: Persistence algorithm [ELZ00]
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Background

Cycle

Definition

A p-cycle is a p-chain that has an empty boundary

a

b

c

d

e

1-cycle ab + bc + cd + de + ea (under Z2)

Each p-boundary is a p-cycle: ∂p ◦ ∂p+1 = 0
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Background
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Definition

The p-dimensional homology group is defined as Hp(K) = Zp(K)/Bp(K)

Definition

Two p-chains c and c ′ are homologous if c = c ′ + ∂p+1d for some chain d

(a) (b) (c)

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
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Algorithms for computing homology groups from point data [CO08]

Reconstruction of the sampled space (can be costly)

Rips, Čech or witness complexes are less constrained
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NP-hard for higher dimensional homology groups [CF10]
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Optimal Homology Basis Problem Background

Basis

Let Hj(T ) denote the j-dimensional homology group of T under Z2

The elements of H1(T ) are equivalence classes [g ] of 1-dimensional
cycles g , also called loops

Definition

A minimal set {[g1], ..., [gk ]} generating H1(T ) is called its basis
Here k = rank H1(T )
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We associate a weight w(g) ≥ 0 with each loop g in T

The length of a set of loops G = {g1, . . . , gk} is given by

Len(G) =
k

∑

i=1

w(gi)

Definition

A shortest basis of H1(T ) is a set of k loops with minimal length that
generates H1(T )
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Optimal Homology Basis Problem Background

Theorem 1

Theorem

Let K be a finite simplicial complex with non-negative weights on edges.
A shortest basis for H1(K) can be computed in O(n4) time where n = |K|
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Optimal Homology Basis Problem Background

Approximation from Point Cloud

Let P ⊂ R
d be a point set sampled from a smooth closed manifold

M ⊂ R
d embedded isometrically

We want to approximate a shortest basis of H1(M) from P

Compute a complex K from P

Compute a shortest basis of H1(K)

Argue that if P is dense, a subset of computed loops approximate a
shortest basis of H1(M) within constant factors
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Definition

The Čech complex Cr (P) is a simplicial complex where a simplex
σ ∈ Cr (P) iff Vert(σ) ⊆ P and ∩p∈Vert(σ)B(p, r/2) 6= 0

Definition

The Rips complex Rr (P) is a simplicial complex where a simplex
σ ∈ Rr (P) iff Vert(σ) are within pairwise Euclidean distance of r

Proposition

For any finite set P ⊂ R
d and any r ≥ 0, Cr (P) ⊆ Rr (P) ⊆ C2r (P)
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Optimal Homology Basis Problem Background

Approximation Theorem

Theorem

Let M ⊂ R
d be a smooth, closed manifold with l as the length of a

shortest basis of H1(M) and k = rank H1(M).
Given a set P ⊂ M of n points which is an ε-sample of M and

4ε ≤ r ≤ min{1
2

√

3
5ρ(M), ρc(M)}, one can compute a set of loops G in

O(nn2
ent) time where

1

1 + 4r2

3ρ2(M)

l ≤ Len(G) ≤ (1 +
4ε

r
)l.

Here ne , nt are the number of edges and triangles in R2r (P)
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Optimal Homologous Cycle Problem Introduction

Our Result

OHCP is NP-hard if Z2 coefficient is used.

What if we switch to Z?

Then this problem can be cast as a linear programming problem⇒
polynomial time algorithm

Are the solutions integral?

Yes, if the constraint matrix is totally unimodular

We characterize the complexes for which this is true

For such complexes, the optimal cycle can be computed
in polynomial time ,
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Optimal Homologous Cycle Problem Background

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square
submatrix is 0, 1 or -1.
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Optimal Homologous Cycle Problem Background

Total Unimodularity

Definition

A matrix is totally unimodular (TU) if the determinant of each square
submatrix is 0, 1 or -1.

Theorem

Let A be an m × n totally unimodular matrix and b an integral vector, i.e.
b ∈ Z

m. Then the polyhedron P = {x ∈ R
n|Ax = b, x ≥ 0} is integral

meaning that P is the convex hull of the integral vectors contained in P.
In particular, the extreme points (vertices) of P are integral. Similarly the
polyhedron Q = {x ∈ R

n|Ax ≥ b} is integral.
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Optimization
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Optimal Homologous Cycle Problem Background

Optimization

Consider an integral vector b ∈ Z
m and a real vector f ∈ R

n.

Consider the integer linear program

Program

min fTx

subject to Ax = b, x ≥ 0
and x ∈ Z

n.

Corollary

Let A be a totally unimodular matrix. Then the integer linear program
above can be solved in time polynomial in the dimensions of A.
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Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m−1
∑

i=0

xiσi is defined by its coefficient vector x ∈ Z
m.
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Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m−1
∑

i=0

xiσi is defined by its coefficient vector x ∈ Z
m.

Definition

For v ∈ R
m, the 1-norm ||v||1 is defined as

∑

i

|vi |.

Dey (2010) Homology Cycles 31 / 42



Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m−1
∑

i=0

xiσi is defined by its coefficient vector x ∈ Z
m.

Definition

For v ∈ R
m, the 1-norm ||v||1 is defined as

∑

i

|vi |.

Definition

The weighted 1-norm of v is ||W v||1, where W is m × m diagonal matrix.

Dey (2010) Homology Cycles 31 / 42



Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m−1
∑

i=0

xiσi is defined by its coefficient vector x ∈ Z
m.

Definition

For v ∈ R
m, the 1-norm ||v||1 is defined as

∑

i

|vi |.

Definition

The weighted 1-norm of v is ||W v||1, where W is m × m diagonal matrix.

Given a p-chain c and a matrix W , we need to find a chain c∗ which
has the minimal 1-norm ||W c∗|| among all chains homologous to c
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Optimal Homologous Cycle Problem Problem Formulation

Central Idea

Write OHCP as an integer program involving 1-norm minimization.
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Optimal Homologous Cycle Problem Problem Formulation

Central Idea

Write OHCP as an integer program involving 1-norm minimization.

Convert it to an integer linear program by introducing some extra
variables and constraints.

Find the conditions under which the constraint matrix of the program
is totally unimodular.

For this class of problems, relax the integer linear program to a linear
program by dropping the constraint that the variables be integral.
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Optimal Homologous Cycle Problem Problem Formulation

Optimization Program

Assume that K contains m p-simplices and n (p + 1)-simplices.
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Optimal Homologous Cycle Problem Problem Formulation

Optimization Program

Assume that K contains m p-simplices and n (p + 1)-simplices.

W is a diagonal m × m matrix obtained from weights on simplices:

wi = w(σi ).

Given an integer valued p-chain c, the problem to solve is

Program

min ||W x||1
such that x = c + [∂p+1]y

and x ∈ Z
m, y ∈ Z

n.
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Optimal Homologous Cycle Problem Problem Formulation

Integer Linear Program

Program

min
∑

i

|wi |(x
+
i + x−

i )

subject to x+ − x− = c + [∂p+1]y
x+, x− ≥ 0
x+, x− ∈ Z

m, y ∈ Z
n.
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Optimal Homologous Cycle Problem Problem Formulation

Linear Program

Program

min
∑

i

|wi |(x
+
i + x−

i )

subject to x+ − x− = c + [∂p+1]y
x+, x− ≥ 0
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Optimal Homologous Cycle Problem Problem Formulation

Constraint Matrix Unimodularity

The equality constraints can be rewritten as
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Optimal Homologous Cycle Problem Problem Formulation

Constraint Matrix Unimodularity

The equality constraints can be rewritten as

x+ − x− = c + [∂p+1](y
+ − y)

So the equality constraint matrix is [I −I −B B], where B = [∂p+1].

Lemma

If B = [∂p+1] is totally unimodular then so is [I −I −B B].

Theorem

If the boundary matrix [∂p+1] of a finite simplicial complex of dimension
greater than p is totally unimodular, the optimal homologous chain
problem for p-chain can be solved in polynomial time.

Dey (2010) Homology Cycles 36 / 42



Optimal Homologous Cycle Problem Manifolds

Orientable Manifolds

Theorem

For a finite simplicial complex triangulating a (p + 1)-dimensional compact
orientable manifold, [∂p+1] is TU irrespective of the orientation.
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Optimal Homologous Cycle Problem Manifolds

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by
a collection of p-simplices and their proper faces.
A pure subcomplex is a subcomplex that is a pure simplicial complex.

Dey (2010) Homology Cycles 38 / 42



Optimal Homologous Cycle Problem Manifolds

Total Unimodularity and Relative Torsion

Definitions

A pure simplicial complex of dimension p is a simplicial complex formed by
a collection of p-simplices and their proper faces.
A pure subcomplex is a subcomplex that is a pure simplicial complex.

Theorem

[∂p+1] is totally unimodular if and only if Hp(L,L0) is torsion-free, for all
pure subcomplexes L0,L of K of dimensions p and p + 1, respectively,
where L0 ⊂ L. Hence, OHCP for p-chains in such complexes are
polynomial time solvable by linear programs.
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Optimal Homologous Cycle Problem Manifolds

A Special Case

Theorem

Let K be a finite simplicial complex embedded in R
d+1. Then, Hd(L,L0)

is torsion-free for all pure subcomplexes L0 and L of dimensions d and
d + 1 respectively, such that L0 ⊂ L.
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Optimal Homologous Cycle Problem Manifolds

A Special Case

Theorem

Let K be a finite simplicial complex embedded in R
d+1. Then, Hd(L,L0)

is torsion-free for all pure subcomplexes L0 and L of dimensions d and
d + 1 respectively, such that L0 ⊂ L.

Corollary

Given a d-chain c in a weighted finite simplicial complex embedded in
R

d+1, an optimal chain homologous to c can be computed by a linear
program.
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Optimal Homologous Cycle Problem Experiments

Computed Optimal Cycles
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Conclusions

Conclusions

O(n4) algorithm for OHBP for simplicial complexes. Can it be
improved?
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Conclusions

Conclusions

O(n4) algorithm for OHBP for simplicial complexes. Can it be
improved?

Are there interesting cases where higher dimensional version of OHBP
solvable in polynmial time?

O(n3) algorithm for OHCP for special cases. Can it be improved?

What about efficient updates?
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Thank You
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