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CONVEX DECOMPOSITION OF POLYHEDRA AND ROBUSTNESS*
CHANDERJIT L. BAJAJ' aND TAMAL K. DEYT

Abstract. This paper presents a simple algorithm to compute a convex decomposition of a nonconvex
polyhedron of arbitrary genus (handles) and shells (internal voids). For such a polyhedron S with n edges and
T notches (features causing nonconvexity in polyhedra), the algorithm produces a worst-case optimal O(r?)
number of convex polyhedra S;, with U¥_, S; = S, in O(nr? +77/2) time and O(nr + r®/2) space. Recently,
Chazelle and Palios have given a fast O((n + 72) log r) time and O(n + r2) space algorithm to tetrahedralize
a nonconvex polyhedron. Their algorithm, however, works for a simple polyhedron of genus zero and with
no shells (internal voids). The algorithm, presented here, is based on the simple cut and split paradigm of
Chazelle. With the help of zone theorems on arrangements, it is shown that this cut and split method is quite
efficient. The algorithm is extended to work for a certain class of nonmanifold polyhedra. Also presented is
an algorithm for the same problem that uses clever heuristics to overcome the numerical inaccuracies under
finite precision arithmetic. ;

Key words. computational geometry, robust computations, geometric modeling, finite element analysis,
computational complexity
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1. Introduction. The main purpose behind decomposition operations is to simplify
a problem for complex objects into a number of subproblems dealing with simple objects.
In most cases, a decomposition in terms of a finite union of disjoint convex pieces is use-
ful, and this is always possible for polyhedral models [5], [12]. Convex decompositions
lead to efficient algorithms, for example, in geometric point location and intersection
detection; see [12]. Our motivation stems from the use of geometric models in SHILP;!
a solid model creation, editing, and display system developed at Purdue {1]. Specifically,
a disjoint convex decomposition of simple polyhedra allows for more efficient algorithms
in motion planning, in the computation of volumetric properties, and in the finite ele-
ment solution of partial differential equations.

The surface 65 of a polyhédron S is called a 2-manifold if each point on §S has
an e-neighborhood that is homeomorphic to an open 2D ball or half-ball {2]. Polyhe-
dra, having 2-manifold surfaces are called manifold polyhedra. Nonmanifold polyhedra
may have incidences as illustrated in Fig. 1. Manifold polyhedra with holes are homeo-
morphic to torii with one or more handles. Manifold polyhedra with internal voids are
homeomorphic to three-dimensional annuli, that is, spheres with internal voids.

We represent polyhedra with their boundaries, which consist of zero-dimensional
faces, called vertices; one-dimensional faces, called edges; and two-dimensional faces,
called facets. A reflex edge of a polyhedron is an edge where the inner dihedral angle
subtended by two incident facets is greater than 180°. Manifold polyhedra can be non-
convex only due to refiex edges. Notches in manifold polyhedra refer to reflex edges
only. In nonmanifold polyhedra, however, notches refer to other types of incidences as
well; see Fig. 1.

The problem of partitioning a nonconvex polyhedron S into a minimum number of
convex parts is known to be NP-hard [22], [24]. Rupert and Seidel [25] also show that
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FiG. 1. Nonmanifold incidences or special notches.

the problem of determining whether a nonconvex polyhedron can be partitioned into
tetrahedra without introducing Steiner points is NP-hard. For a given polyhedron S with
n edges of which r are reflex, Chazelle [5], [6] established a worst-case O(r?) lower bound
on the number of convex polyhedra needed for complete convex decomposition of S. He
gave an algorithm that produces a worst-case optimal number O(r?) convex polyhedra
in O(nr3) time and in O(nr?) space. Recently, Chazelle and Palios [7] have given an
O((n + r?)logr) time and O(n + r?) space algorithm to tetrahedralize a subclass of
nonconvex polyhedra. The allowed polyhedra for their algorithm are all homeomorphic
to a 2-sphere, i.e., have no holes (genus 0) and shells (internal voids).

Results. In §3, we present an algorithm to compute a disjoint convex decomposition
of a manifold polyhedron S that may have an arbitrary number of holes and shells. Given
such a polyhedron S with n edges of which r are reflex, the algomhm produces a worst-
case optimal O(r2) number of convex polyhedra S; with UE_; S; = S in O(nr? + r™/2)
time and in O(nr + r°/2) space. We extend this algorithm to work for nonmanifold
polyhedra that do not have abutting edges or facets but may have incidences as illus-
trated in Fig. 1. The algorithm presented in this paper is based on the repeated cutting
and splitting of polyhedra with planes that resolve notches. Chazelle, in [5], first used
this method. We improve this method to obtain better time and space bounds based
on a refined complexity analysis and the use of efficient algorithms for certain subprob-
lems. In §4, we give an algorithm for the same convex decomposition problem that uses
sophisticated heuristics based on geometric reasoning to overcome the inaccuracies in-
volved with finite precision arithmetic computations. This algorithm runs in approxi-
mately O(nr? + nrlogn + %) time and O(nr + r°/2) space.

2. Preliminaries.

2.1. Notches. Our algorithm applies to polyhedra that are nonconvex due to the
presence of the following four features, called notches.

1. Type 1 notches: These notches are caused by isolated vertices and edges on a
facet. An isolated vertex or edge on a facet is not adjacent to any other edge of
the facet. See Fig. 1(a).

2. Type 2 notches: These notches are caused by the edges along which more than
two facets meet, as illustrated in the Fig. 1(b). If there are 2k (k > 1) facets
incident on e;, we assume that they form k notches.

3. Type 3 notches: These notches are caused by vertices where two or more groups
of features (facets, edges) touch each other, as illustrated in the Fig. 1(c). The
features within a group are reachable from one another while remaining only
on the surface of S and not crossing the vertex. Actually, type 1 notches are a
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subclass of these notches. For convenience in the description, we exclude type

1 notches from type 3 notches. The number of groups attached to the vertex

determines the number of type 3 notches associated with that vertex.

4. Type 4 notches: These notches are caused by reflex edges. A manifold polyhe-

dron can have only this type of notches.
The notches of type 1, type 2, and type 3 are called special notches, as they are present
only in nonmanifold polyhedra. In our algorithm, we first remove all special notches
from S, creating only manifold polyhedra. Subsequently, type 4 notches of the manifold
polyhedra are removed by repeatedly cutting and splitting the polyhedra with planes
resolving the notches. Let an edge g with fi, f as its incident facets be a notch in a
manifold polyhedron. A plane P, that passes through g is called a notch plane if both
angles (f1, P,) and (P, f2), as measured from the inner side of f; and f, are not reflex.
In other words, a notch plane resolves the reflex angle of a notch. Clearly, for each notch
g, there exist infinite choices for P,. Note that P; may intersect other notches, thereby
producing subnotches as well. See Fig. 2.

another notch
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FIG. 2. A notch and its noich plane, the cross-sectional map, and a cut.

2.2. Data structure. Let S be a polyhedron, possibly with holes and shells, and hav-
ing s vertices: {vy,vs,---,Vs}, n edges: {e1, ez, -,€,}, and g facets: {f1,f2, -, fo}-
These lists of vertices, edges, and facets of S are stored similarly to the star-edge repre-
sentation of polyhedra [19].

Vertices: Each vertex is a record with two fields.
1. vertex.coordinates: contains the three-dimensional coordinates of the vertex.
2. vertex.adjacencies: contains pointers to the edges incident on the vertex.
Edges: Each edge is a record with two fields.

1. edge.vertices: contains pointers to the incident vertices.

2. edge.orientededges: contains pointers to the record called orientededges, which
represent different orientations of an edge on each facet incident on it. The
orientation of an edge on a facet f is such that a traversal of the oriented edge
has the facet f to its right.

Orientededges: each orientededge is a record with four fields.

1. orientededge.edge: contains pointers to the defining edge.

2. orientededge.facet: contains pointers to the facet on which the orientededge is
incident.
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3. orientededge.orientation: contains information about the orientation of the edge
on the facet.

4. orientededge.nextorientededge: contains pointers (possibly more than one) to the
next orientededges on the oriented edge cycle on a facet. See facet cycles below.

Facets: each facet is a record with two fields.

1. facet.equation: contains the equation of the plane supporting the facet.

2. facet.cycles: contains pointers to a collection of oriented edge cycles bounding
the facet. The traversal of each oriented edge cycle always has the facet to the
right. Each oriented edge cycle is represented with a linked list of orientededges

" on the cycle. If there is an isolated vertex on the facet (Fig. 1(a)) a pointer to
the vertex is included in facet.cycles as a degenerate oriented edge cycle. An
isolated edge is represented with the oriented edge cycle of two orientededges.
For a nonmanifold polyhedron, a facet may have configurations as shown in Fig.
3 where a vertex or an edge is considered more than once in the oriented edge
cycles, though an oriented edge is included only once.

2.3. Useful lemmas. Let the polygonal boundary refer to an oriented edge cycle em-
bedded on a plane with no edge intersecting the other except at their endpoints. The
traversal of a polygonal boundary may pass through an edge or a vertex more than once.
In the rest of the paper, we use the term polygon to mean a connected region on a plane
that is bounded by one or more polygonal boundaries. For example, such a polygon cor-
responding to the facet f is shown in Fig. 3. Let G be a polygon with vertices vy, vz, - - -, Uk
in clockwise order. A vertex v; is a reflex vertex of G if the outer angle between the ori-
ented edges d;_; = (vi_1,v;) and d; = (vi, vi+1) s less than or equal to 180°. The outer
angle between two consecutive oriented edges d;_; and d; is measured in the anticlock-
wise direction from d; to d;_;. Note that with this definition, v4,vs of the nonsimple
facet in Fig. 3 are reflex vertices, though vs is not. The vertices that are not reflex ver-
tices are called normal vertices of G. The boundary of a polygon G can be partitioned
into z-monotone (or y-monotone) maximal pieces called monotone chains, i.¢., vertices
of a monotone chain have z-coordinates (or y-coordinates) in either strictly increasing
or decreasing order. See Fig. 4.

In subsequent sections, we use the following lemmas.

LEMMA 2.1. Let G be a polygon with r reflex vertices.. The number of monotone chains
cin G is bounded as ¢ < 6(1 + ).

Proof. The proof follows from Theorem 3, [5,p. 22]. -~ O

LEMMA 2.2. Let G be a polygon with s normal vertices. There are at most O(s) mono-
tone chains in G.

VAR AR AR R R R

two oriented edges
on the same facet

FiG. 3. A nonsimple facet.
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treer Y is a monotone chain.

cerr vy is a monotone chain.

FiG. 4. Monotone chains in a polygon.

Proof. Let v be the vertex of G with the minimum y-abscissa, and let B be the bound-
ary obtained by removing the vertex v and an e-ball around v from the boundary of G.
Add six more edges to B, as shown in Fig. 5, to construct a new polygon G’. The polygon
G' is oppositely oriented with respect to G. Note that each reflex vertex of G’ corre-
sponds to a normal vertex of G. Thus G’ has no more than s reflex vertices, and accord-
ing to Lemma 2.1, its boundary is partitioned into O(s) monotone chains. The polygon
G cannot have more monotone chains than G’, which implies that G has O(s) monotone
chains. O

FI1G. 5. Constructing a polygon of opposite orientation .

In the following lemma, the line segments of a line that are interior to a polygon are
called chords.

LEMMA 2.3. Let G be a polygon (possibly with holes) with T reflex vertices. No line can
intersect G in more than v + 1 chords.

Proof. The proof proceeds inductively. The case for » = 0 is trivial. In the general
step, consider a polygon G with r = k > 1 reflex vertices. Take an arbitrary reflex vertex,
and resolve it by a cut through it. The cut may separate G into two polygons G; and Go
of r; and r, reflex vertices, respectively, such that r; + r, < k — 1. Furthermore, the
number of chords of a line L in G cannot exceed the sum of the number of chords in
G, and G,. Therefore, using the induction hypothesis, one can conclude that the line L
intersects G in no more than r; + 1+ 79 + 1 < k + 1 chords. If, however, the cut does
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not split G, one ends up with a polygon G’ of at most k — 1 reflex vertices. Since the line
L may intersect the cut, just performed, the number of chords in G is less than or equal
to that in G’, which again implies that the former is less than orequal to k — 1+ 1 <
k4. O

LEMMA 2.4. Let p be a set of k polygons with r reflex vertices. No line can intersect p
in more than r + k chords.

' Proof. The proof follows immediately from Lemma 2.3. 0

2.4. Nesting of polygons. The following polygon nesting problem arises as a subprob-
lem in our polyhedral decomposition. Let p be a set of k polygons G;,i = 1,---,k,
none of which intersects others along its boundary. Corresponding to each polygon
G, we define ancestor(G;) as the set of polygons containing G;. The polygon G in
ancestor(G;) is called the parent of G; if ancestor(G;)=ancestor(G;) — Gi. Note that
there may not exist any such Gy, since ancestor(G;) may be empty. In that case, we
say that the parent of G; is null. Any polygon with parent Gy, is called the child of Gy.
In Fig. 6, ancestor(Gg) = {Gl,Gg}, parent(G4) = (Gg), children(G2) = {G3,G4},
ancestor(Gs) =null=children(Gs). The nesting structure of p is an acyclic directed graph
(a forest of trees) in which there is a node n; corresponding to each polygon G; in g, and
a directed edge from a node n; to n; if and only if G, is the parent of G;. The polygon
nesting problem is to compute the nesting structure of a set of nonintersecting polygons.

FIG. 6. Nested polygons.

LEMMA 2.5. The problem of polygon nesting for a set of nonintersecting polygons can
be solved in O(s + tlogt) time assuming exact numerical computations where s is the to-
tal number of vertices, and t is the total number of monotone chains present in all input
polygons.

Proof. See [4]. Though the algorithm given in [4] uses a slightly different type of
monotone chains, called subchains, it also works for the monotone chains as defined in
this paper. Further, the algorithm of [4] can be straightforwardly adapted to the input
set of polygons as defined in this paper. O
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3. Convex decomposition.

3.1. Sketch of the algorithm. Given a polyhedron S, it is first split along the vertices
and edges of special notches to produce manifold polyhedra. Reflex edges of a manifold
polyhedron are removed by slicing it with notch planes. Notch planes may possibly in-
tersect other notches to create subnotches. In general, the notch elimination process
produces a number of subpolyhedra. At a generic step of the algorithm, all subnotches
of a notch, present in possibly different subpolyhedra, are eliminated with a single notch
plane. Slicing a manifold polyhedron with a plane may produce nonmanifold subpoly-
hedra with special notches. See Fig. 7. As before, these nonmanifold subpolyhedra are
split along the special notches to produce only manifold polyhedra. If the notch plane,
however, does not pass through a vertex of the polyhedron being cut, manifold property
is preserved in the resulting subpolyhedra.

nonmani fold
polyhedron

Fi1G. 7. An example where the manifold property is not preserved after a cut.

Algorithm ConvDecomp(S)
Step 1: Remove all special notches from S. This produces manifold polyhedra.
Step 2: Assign a notch plane for each notch in the manifold polyhedra produced in Step 1.
Step 3: repeat

Let g1, 99, - -, gx be the subnotches of a notch g

present in the polyhedra S;, S, - - -, S Let P, be

the notch plane assigned to g. Remove g1, g2, - -, g«

from S, 52, - - -, Sk by the notch plane F,.

Remove special notches produced by this slicing operation.

until all notches are eliminated.

end.

Step 1 of the algorithm is described in §3.3. Step 2 can be performed trivially in O(r)
time. The slicing step of the algorithm (Step_3) needs to be performed carefully and is
detailed below in §3.2.

3.2. Intersecting a manifoid polyhedron with a notch plane. Let S be a manifold
polyhedron with 7 notches and p edges. By S, we denote any polyhedron S7, Sa, - - -, Sk
that is encountered in Step 3 of the above algorithm ConvDecomp. The notch plane P,:
az + by + cz + d = 0 defines two closed half-spaces ng :ax+by+cz+d > 0and
P; :azx+ by +cz +d < 0. To cut a polyhedron S with the plane P, it is essential to
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compute

St = cl(int(PY) N int(S)),
ST = d(int(P7) N int(S)),

where cl(O) and int(O) denote the closure and interior of the geometric object O. Since
polyhedra are represented with their boundaries, we need to compute the boundaries
5S¢ and 687 of Sf and S", respectively. To compute §S¢ and 657, it is essential to com-
pute the features of §S¢ and 657 lying on Py, which are given by

GP! = P,n§St,
GP; = P,N6S".

We refer to GPg and G P; as cross-sectional maps. Note that for a polyhedron 5 and a
plane P,, the cross-sectional maps G P; and G P; may be different. See, for example, Fig.
2. In general, GPj and GP; consist of a set of isolated points, segments, and polygons,
possibly with holes. The unique polygons Q¢ and Qj on GP_f and GFy, respectively,
containing the notch g on their boundary, are called cuts. Note that to remove a notch
g, it is sufficient to slice S along only the cut instead of the entire cross-sectional map.

Instead of computing Q and Q] separately, we first compute the cut Qg = Q¢ UQ;
and then refine it to obtain Qﬁ, and Q7. This calls for computing the cross-sectional map
GP, = GP! U GPj. The polygon corresponding to the cut @, may have a vertex or an
edge appearing more than once while traversing its boundary. If an edge appears more
than once in traversing the boundary of Qﬁ, or Q7, the edge must make the corresponding
subpolyhedron nonmanifold. See Fig. 7. It is interesting to observe that there can be at
most four facets incident upon that edge since the original polyhedron being sliced was
a manifold.

An additional fact is that a single slicing along the cut may not separate the polyhe-
dron S into two different pieces; see Fig. 2. In this case, two facets corresponding to Qg
and Q7 are created that may overlap geometrically and be considered distinct, so that
the polyhedron is treated as manifold polyhedron.

The algorithm to cut a polyhedron S with a notch plane P, consists of two basic
steps.

e Step I: Computing the cut Q,: This calls for computing inner (holes) and outer
boundaries of the polygon Q.
e Step II: Splitting the polyhedron S.
Step 1 is detailed below in §3.2.1 and Step 11 in §3.2.2.

3.2.1. Computation of the cut Q,. Step A. First, all boundaries present in the cross-
sectional map G P, are computed. To do this, all the facets of S are visited in turn. If the
notch plane intersects a facet f, all intersection points are computed. Note that f must
be a simple facet (no vertex or edge is traversed twice along its boundaries) since S is
a manifold polyhedron. Let ay, az, - - - , ax be the sorted sequence of intersection points
along the line of intersection P,N f. We call an intersection point a new intersection vertex
if it does not coincide with any vertex of the facet f and we call it an old intersection vertex
otherwise. It is essential to decide consistently whether there should be an edge between
two consecutive intersection vertices a; and a;; of this sorted sequence. This is done by
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scanning the vertices in sorted order and deciding whether we are “inside” or “outside”
the facet as we leave a vertex to go to the next one. If a; is a new intersection vertex,
there can be an edge between a; and a;;1 only if there is no edge between a;—; and a;
and vice versa. On the other hand, if a; is an old intersection vertex, there can be an
edge between a; and a;4; irrespective of the presence of an edge between a;_1, a;.

10

A A
CAVOAVEF SV\/%

F1G. 8. Generating new and old edges.

Switching between “inside” and “outside” of the facet is carried out properly, even
with degeneracies, using a multiplicity code at each intersection vertex. During the scan
of the sorted sequence of intersection vertices, a counter is maintained. The counter is
initialized to zero and is incremented by the multiplicity code at each vertex. Our status
toggles between “inside” and “outside” of the facet as the counter toggles between the
“odd” and “even” count. A new intersection vertex is assigned a multiplicity code of
1. An old intersection vertex has a multiplicity code of 1 if both of its incident oriented
edges on the facet f do not lie in the same half-space of P, and a multiplicity code
of 2 otherwise. If there is an old edge (edge of f) between two vertices a; and a;+1,
multiplicity codes are assigned to them as follows. If another two incident oriented edges
on a;, a;+; on the facet f lie in the same open half-space of the notch plane, assign a
multiplicity code of 1 to both of them. Otherwise, assign multiplicity codes of 1 and 2 to
a; and a4 in any order. In Fig. 8, there is an old edge between a3 and a4. The status
(“outside”) with which one enters the vertex ag is same as the one with which one leaves
the vertex aq. This is enforced by assigning a multiplicity code of 1 on the two vertices
that increments the counter by an “even” amount and prevents it from toggling. In the
same example, there is another old edge between as and ag. The status (“outside”) with
which one enters the vertex as is different from the one with which one leaves the vertex
ag. This is enforced by assigning multiplicity codes of 1 and 2 on the two vertices in
any order which increment the counter by an “odd” amount and make it toggle. A new
edge from the vertex a; to a;4; is created if the count is “odd” on leaving the vertex
a;. In case there is an old edge between a; and a;+;, no new edge is created between
them. This process is repeated for all facets intersected by P, resulting eventually in
creating the 1-skeleton or the underlying graph of GP,. This underlying graph becomes
a directed graph if the oriented edges associated with the edges in G P, are considered.
Orientation of each such edge is determined in constant time since the orientations of
the facets intersecting the notch plane are known. A traversal in a depth-first manner in
this directed graph traces the boundaries of GP,.
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Timing analysis. According to Lemma 2.3, the notch plane P, intersects a facet f of
S in at most 2r; + 2 points where ; is the number of reflex vertices in f. Thus, sorting of
the intersection points on a facet takes at most O(u; log r;) time where u; is the number
of intersection points on the facet. Considering all such facets, we obtain the sorted
sequence of intersection vertices on the facets computed in O(p+u log r) time, where u is
the number of vertices in GP,. Generating the edges between these intersection vertices
takes no more than O(p) time altogether. The time taken for tracing the boundaries of
GP, is linear in the number of edges in GF,. Overall, the computation of GP, takes
O(p + ulogr) time.

Step B. Next, the inner and outer boundaries of Q are determined from GF,. It is
trivial to determine the boundary B, containing the notch g. One can determine whether
B, is an inner or outer boundary of Q, by checking the orientations of the edges on the
boundary.

Case(i). By is an outer boundary of Q. Let I; be the polygon corresponding to
an inner boundary (hole) of Q,. The polygon I; has at least one vertex that is normal.
Since the boundary of I; constitutes an inner boundary of @, the normal vertices of I;
are reflex vertices of Q. Definitely, reflex vertices of Q, lie on notches of S. This implies
that all inner boundaries of Q, will have a vertex where P, intersects a notch of S. The
set W of boundaries having at least one such vertex is determined. The boundaries in the
set W U B, are called interesting boundaries. The polygon nesting algorithm applied on
the polygons constituted by the interesting boundaries detects the children of By. The
boundaries of these children constitute the inner boundaries of Q.

Timing analysis. The set W can be created in O(u) time where w is the number of
vertices present in the cross-sectional map. Certainly, the number of interesting bound-
aries is O(t) where t is the number of notches intersected by the notch plane Py. The
interesting boundaries that are outer boundaries of some polygon in the cross-sectional
map have O(t) reflex vertices, since these vertices are generated by the intersection of a
notch of S with the notch plane. On the other hand, the interesting boundaries that are
inner boundaries of some polygon in the cross-sectional map have O(t) normal vertices.
Thus, according to Lemmas 2.1 and 2.2, there are at most O(t) monotone chains in the
interesting boundaries. If there are v’ vertices in the interesting boundaries, the chil-
dren of B, can be determined in O(u' +1log t) time using the polygon nesting algorithm
(Lemma 2.5). Thus, in this case, the inner and outer boundaries of Q4 can be detected
in O(u + o’ + tlogt) = O(p + tlogt) time, since v = O(u) = O(p).

Case(ii). By is an inner boundary of Q. The boundaries that completely contain the
boundary B, inside are determined. This can be done by checking the containment of
any point on B, with respect to all boundaries in the cross-sectional map. These bound-
aries, together with B, are the interesting boundaries. The polygon nesting algorithm,
applied on these interesting boundaries, detects the boundaries of the parent polygon
of B,. This boundary is the outer boundary of Q. Note that @, may have other inner
boundaries different from B,. Once the outer boundary of Q, i computed, all of its
inner boundaries can be obtained applying the technique used in Case ().

Timing analysis. Detection of all boundaries containing B, takes O(u) time. The set
of interesting boundaries can be partitioned into two classes according to whether they
are inner or outer boundaries of some polygon. It is not hard to see that there can be at
most one more outer boundary than inner boundaries in this set. Hence, the number of
interesting boundaries is of the order of inner boundaries present in the cross-sectional
map. As discussed in Case (i), the number of inner boundaries must be bounded above by
the number of notches intersected by the notch plane. Thus, there are O(t) interesting
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boundaries. Further, as explained before, the number of monotone chains present in
these interesting boundaries can be at most O(t). Hence, the outer boundary of Qg
can be determined in O(p + tlogt) time. Detection of other inner boundaries that are
different from B, takes another O(p + tlog t) time. Thus, in this case also all outer and
inner boundaries of @, can be detected in O(p + tlogt) time.

Combining all these costs together, we see that the “cut computation” takes O(p +
tlogt+ ulogr) time.

3.2.2. Splitting S. Separation of S along the cut Q) is carried out by splitting facets
that are intersected by Q4. Suppose f is such a facet, which is to be split at a;, az, - - - , ag.-
The splitting of f consists of splitting the edges on which a new intersection vertex lies
and the old intersection vertices. For this splitting operation, the intersection vertices
on each facet f are visited and for each such intersection vertex, constant time is spent
for setting relevant pointers. The facet f may be split into several subfacets. The inner
boundaries of f that are not intersected by P, remain as inner boundaries of some of
these subfacets. The polygon nesting algorlthm determines the inclusions of these inner
boundaries into proper subfacets. The cut @, isrefined to yicld Qf and Q7. Itis observed
that the differences between Q’z and Q7 are caused by the edges of S that lie completely
on P,. Hence, to refine Qg , one needs to determine which of the edges of S are to be
transferred to Qf} (Qj, respectively). This can be done using the following simple rule.
An old edge e must be transferred to Q% ( QF, respectively) if any facet (or a part of it)
that is adjacent to e and not coplanar with P, lies in Ps‘f ( Py, respectively). A copy of Qg
is created and one of the two Qs is designated for Qg and another for Q7. From a copy,
all those edges that are not to be transferred to it are deleted. Note that the transfer of
edges lying on @, takes care of the facets lying on Q,. Two oppositely oriented facets
at the same geometric location corresponding to the cuts Qg and Q7 are created. All
modified incidences are adjusted properly. A depth-first traversal in the modified vertex
list either completes the separation of S by collecting all the pertinent features of each
piece or reveals the fact that S is not separated into two different pieces by the cut. In
the latter case, either the number of holes or the number of shells in S is reduced by one.

Timing analysis. Adjustment of all incidences in the internal structure of S cannot
take more than O(p) time since each edge is visited only O(1) times. The polygon nesting
takes O(p+r log r) time since there can be at most O(r) holes in the facets of S contain-
ing O(r) monotone chains. Further, creation of Qg and Q7 from @, and the depth-first
traversal in the modified vertex list cannot exceed O(p) time. Hence, the “splitting op-
eration” takes O(p + rlog r) time.

3.3. Elimination of special notches and its analysis. For a nonmanifold polyhedron
S, nonconvexity results from four types of notches, as discussed in §2.1. Let § have n
edges and r notches. The counting of special notches is described in §2.1. A preprocess-
ing is carried out as follows to remove the notches of the first three types, called special
notches.

Removal of type 1 notches. As can be observed from Fig. 1(a), the vertex or the edge
causing the nonconvexity is detached from the facet on which it is incident as an isolated
vertex or an isolated edge. Identifying these vertices and edges and detaching them from
the corresponding facets take at most O(n) time.

Removal of type 2 notches. Here, more than two facets are incident on an edge e;.
Let these facets be fi, fa,---, fr,. Let C be a cross-section obtained as the intersection
of the facets incident on e; with the plane P that is normal to the edge e;. C consists of
edgese; = (f; NP). The facets around e; are sorted circularly by a simple circular sort
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of the edges e;’s around e; N P. The adjacent facets that enclose a volume of S are paired.
Let this pairing be (f1, f2), (f3, f4), - - - (fri—1, fr;)- Anedge between each pair of facets
is created and the edge e; is deleted. All these edges are at the same geometric location
of e;. All incidences are adjusted properly. Sorting of facets around the edge e; takes
O(r;logr;) time. Further, for all type 2 notches, the adjustment time of all incidences
in the internal representation of S cannot exceed O(n). Thus, the removal of all type 2
notches takes at most (n + rlog r) time. '

Removal of type 3 notches. Let v be a vertex that corresponds to a type 3 notch. In
this case, we group together all features (edges and facets) that are incident on v and
are reachable from one another while remaining always on the surface of S and never
crossing v. This gives a partition of the features incident on v into smaller groups. For
each such group, a vertex at the same geometric location of v is created and all incidences
are adjusted properly. This, in effect, removes the nonconvexity caused by v. All such
vertices causing type 3 notches in S can be identified in O(n) time by edge-facet-edge
traversal on the internal data structure of S. Removal of all such notches takes at most
O(n) time. This is due to the fact that each edge can be adjacent to at most two type 3
notches and thus is visited only O(1) times. Thus, all type 3 notches can be removed in
O(n) time.

Finally, a mixture of cases may occur where an isolated vertex is also a type 3 notch
or an isolated edge is also a type 2 notch. All these cases are handled by first eliminating
all type 1 notches and then eliminating type 3 notches followed by type 2 notches.

Removal of all the above notches generates at most O(n) new edges and produces
at most k manifold polyhedra where k is the number of special notches in S.

3.4. Worst-case complexity analysis. Combining the costs of the “cut computation”
of §3.2.1 and the “splitting operation” of §3.2.2 yields the following lemma.

LEMMA 3.1. A manifold polyhedron S having p edges can be partitioned with a notch
plane P, of a notch gin O(p+tlogt + (u + r)logr) time and in O(p) space where t is the
number of notches intersected by P,, and u is the number of vertices in GP,.

The following two-dimensional subproblem is essential for the analysis of ConvDe-
comp. Let L be a set of r lines in two-dimensions that form a line arrangement A[12].
Let E be a set of edges removed from A such that all cells in A — E are convex. Let
us denote the new arrangement A — E as A—. Let C be a set of cells in A~ intersected
by a line I. The total number of edges in the cells in C' determines the zone complexity
2(l, A=,r) of l in A~. Of course, the contribution of a line in any single cell is counted
only once, although it may have several consecutive segments on it in that cell. Let
q(r) = max{z(l, A~,r)|lis any line in any such arrangement A~ }. In Lemma 3.2 below,
we derive a nontrivial upper bound for g(r). Now suppose that a polyhedron S with n
edges and r notches has been sliced with y < r notch planes so far. Let Sy, 52, -, Sk
be the polyhedra in the current decomposition, where each S; contains a subnotch g; of
anotch g in S. Let z; be the number of edges on Q.

LEMMA 3.2. z = Y&, @; = O(n + r3/2).

Proof. Consider the cut @, produced by the intersection of S with Py. The region in
Q, is divided into smaller cells by the segments of notch lines produced by the intersection
of other notch planes with Py. It is important to note that consecutive segments of a
notch line may have gaps in them. We focus on the cells Q,, Qg,, - - -, Qg, adjacent to
the subnotches g1, g2, - - - , gx of the notch g.

Consider separately the set of notch line segments that divides Q,. These line seg-
ments and the line L, corresponding to the notch g produce an arrangement T of line
segments on the notch plane P,. Notice that the arrangement T can be thought of as
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an arrangement A~ for some arrangement A of y lines. The cells adjacent to the line
Ly in this arrangement form the zone Z of L,. Let the set of vertices and edges of Z,
be denoted as V, and E,, respectively. Note that in each single cell of Z,, consecutive
segments of a line form a single edge. Actually one can verify that this notion of edges is
consistent with our notion of cuts. Overlaying Q, on T produces Qo1 Qgzy -+, Qg,- See
Fig. 9. These are the cells in TUQ, that are adjacent to the line L,. Let V, and E;, denote
the sets of vertices and edges, respectively, in Qg,,Qg,,- -+, Q,, - The vertices in I/;;' can
be partitioned into three disjoint sets, namely, T3, T,, Ts. The set T} consists of vertices
formed by the intersections of two notch line segments; T consists of vertices of Q,, and
T3 consists of vertices formed by the intersections of the notch line segments with the
edges of Q,. Certainly, |T1| = O(|E,|) = O(q(y)). If Q, has v’ vertices, |T2| < .

To count the number of vertices in T3, we first assume that Qg does not have any
holes. Consider an edge e in E, that contributes one or more edge segments to E} as a
result of intersections with Q,. There must be at least one reflex vertex of Q, present
between two such successive edge segments of e. Charge one unit cost to the reflex vertex
that lies to the left (or right) of each segment, and charge one unit cost to e itself for the
leftmost (or rightmost) segment. We claim that each reflex vertex of Qg is charged at
most once by this method. Suppose, on the contrary, a reflex vertex is charged twice by
this procedure. That reflex vertex must appear between two segments of two edges in
Eg, as shown in Fig. 9(b). As can be easily observed, all four edge segments cannot be
adjacent to the regions incident on the edge g of Qg- This contradicts our assumption
that all these four edge segments are present in E;. Hence the total charge incurred
upon the reflex vertices of Q, and the edges of E, can be at most O(rg +4q(y)), where r
is the number of reflex vertices present in Qg- This implies that as a result of intersections
with Qg, at most O(r, + g(y)) segments of edges in E, contribute to E;. Hence |T3| =
O(rg + a(y))-

Consider next the case where Q, has holes. We refer to the polygon corresponding
to a hole in Q as a hole-polygon. From Q, create a polygon Q;, that does not have any
hole, by merging all polygons into a single polygon as follows. Let H; and H, be two
hole-polygons that have at least two visible vertices v;, vo, i.€., the line segment joining
v1,v2 does not intersect any other edge. Split v; and v, and join them with the line
segments, as shown in Fig. 10 to merge H,, H,. Repeat this process successively for all
hole-polygons until they are merged into a single polygon. Finally, connect the boundary
of this new polygon to the outer boundary of Qg to create Q. Consider superimposing

(a) (b)

F16.9. Superimposing a cut on an arrangement of notch line segments.
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FiG. 10. Merging polygons to create Qy from Qq.

Q) on Zg. Let T denote the set of vertices formed by the intersection of edges of E,
and those of Q. The distance between split vertices of @ can be kept arbitrarily small
to preserve all intersections between the edges of @, and those of Z,. This ensures that
|Ts| < |T%|. The polygon Q; has at most O(u) vertices since the original polygon Qg had
' vertices, and at most O(u’) extra vertices are added to form Q;, from Q. Furthermore,
the polygon Q; can have at most O(u') reflex vertices. Applying the previous argument
on the superimposition of Q; on Z,, we get |Ts| < |T3| = O + g(y))-

Putting all these together, we have V| = [Ty |+|T| + T3] = O(rg+4q(y) +u'). Cer-
tainly, r, < 7,y < r,and v’ < n. This gives [V, = O(n+ g(r)). Since 0 QDo 00
form a planar graph, we have = = |Eg| = O(|V,]) = O(n + q(r)). Now we show that
g{r) = O(r3/?), which completes the proof.

Let C be the set of cells intersected by a line in an arrangement A~ formed out of
an arrangement A of 7 lines. Form a bipartite graph G = (V1 U Vg, E), where each node
in V; corresponds to a cell in C and each node in Vs corresponds to a line in A. An edge
¢ € E connects two vertices v; € Vi, vz € V2 if the line corresponding to v, contributes
an edge to the cell corresponding to v;. Observe that any four lines in A can contribute
simultaneously to at most two cells in C since they are convex [12]. This means that G
cannot have K> 5” as a subgraph. Then using results from forbidden graph theory [20],
G can have at most O(cr/? + r) edges, where |C| = c. Since [C] < 7+ 1, we have
g(r) = O(IE)) = 0(*?). O

LEMMA 3.3. The total number of edges in the final decomposition of a polyhedron S
with r notches and n edges is O(nr +1°/%).

Proof. Edges in the final decomposition consist of newly generated edges by the
cuts, and the edges of S that are not intersected by any notch plane. By Lemma 3.2, the
total number of edges present in all cuts corresponding to the subnotches of a notch is
O(n-+r%/2). This implies that each notch plane generates O(n+r%/?) new edges. Thus,
r notch planes generate O(nr + r%/2) new edges. Hence, the total number of edges in
the final decomposition is O(n + nr + r%/%) = O(nr + 2. B

LEMMA 3.4. Let Sy, Sa,- - -, Sk be the polyhedra in the current decomposition, where

2]t is a complete bipartite graph G = (V1 U V2, E) where [V1| = 2 and |Vz| = 5.
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Proof. Consider the cross-sectional map G P,. The lines of intersection between P,
and other notch planes, called the notch lines, divide this map into smaller facets. These
facets are present in the cross-sectional maps in S1,82,- -+, S, i.e., in U, GPg;. The
vertices in U¥_, GP,, can be partitioned into three sets, viz., T1, T5, and T5. The set T3
consists of vertices that are created by intersections of two notch lines. The set T consists
of vertices of G Py, and the set T3 consists of vertices that are created by intersections
of edges of GP, and notch lines . Since there are at most r notch lines, |T3| = O(r?).
Certainly, |T;| = O(n). By Lemma 2.4, each notch line can intersect GP, in at most
O(r) chords, since GP, can have at most r polygons containing no more than r reflex
vertices altogether. This gives [T3| = O(r?). Thus,

k
u=Y u=|T|+I|Te| +|T5|
i=1

= O(n+1?). - ' 0

As discussed in [6], one can always produce a worst-case optimal number (O(r?)) of
convex polyhedra by carefully choosing the notch planes. _

LEMMA 3.5. A manifold polyhedron S with r notches can be decomposed into 523 St
convex pieces if all subnotches of a notch are eliminated by a single notch plane. Further,
this convex decomposition is worst-case optimal since there exists a class of polyhedra that
cannot be decomposed into fewer than O(r?) convex pieces. M

Proof. See [6] for the proof. O

THEOREM 3.1. A manifold polyhedron S, possibly with holes and shells and having T
notches and . edges, can be decomposed into O(r?) convex polyhedra in O(nr? 4 r7/?)
time and O(nr + 5/2) space. _

Proof. Decomposition of a polyhedron consists of a sequence of cuts through the
notches of S, as illustrated in the algorithm ConvDecomp. Step 1 assigns a notch plane
for each notch in S in O(r) time. According to Lemma 3.5, ConvDecomp produces
worst-case optimal O(r2) convex pieces at the end since all subnotches of a notch are re-
moved by a single notch plane. Note that all holes and shells are removed automatically
by the notch elimination process. '

At a generic instance of the algorithm let Sy, S, -, Sk be k distinct (nonconvex)
polyhedra in the current decomposition, where each S; contains a subnotch g; of a notch
g that is going to be removed. Let S; have m; edges of which r; are notches. Let t; be
the number of notches intersected by Py in S; and t = Zi;l t; and u; be the number of
vertices in GP,, of S; and u = S ua kg .

Applying Lemma 3.1, removal of a notch g can be carried out in O(Zf=1(m,; +
t;logt; + (u; + ;) logr;)) time. Since m = Yr  m; = Ofnr +1°/2), YE i =0(r?),
u = O(n+7?), and since a notch plane can intersect at most r—1 notches givingt = O(r),
we have O(SF_, (m; + t: log; + (us + ) logrs)) = O(nr +1°/2).

As described before, elimination of a notch may produce nonmanifold polyhedra
having special notches. To remove them, the same method is used for eliminating special
notches as used for the original polyhedron. Note that the type 2 notches in these non-
manifold polyhedra can be adjacent to at most four facets. Hence, no logarithmic factor
appears in the time complexity of removing such notches. This implies that the elimina-
tion of special notches from the nonmanifold polyhedra produced as a result of cutting
each S; contains a subnotch g; of a notch g. Let u; be the total number of vertices in the
cross-sectional map in S;. Then we have u = E:“:l u; = O(n + r2) where u is the total
number of vertices in the cross-sectional maps in 81,52, -, Sk
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manifold polyhedra with notch planes can be carried out in totally O(m) = O(nr +7°/2)
time.

Thus, each notch elimination step takes O(nr + r%/?) time, and Step 3 of
ConvDecomp, which eliminates r notches, takes O(nr? + r7/2) time. Combining the
complexities of Step 2 and Step 3, we obtain an O(nr? + r7/2) time complexity for con-
vex decomposition of a manifold polyhedron. The space complexity of O(nr + 7°/%)
follows from Lemma 3.3. 0

THEOREM 3.2. A nonmanifold polyhedron S, possibly with holes and shells and having
r notches and n edges, can be decomposed into O(r?) convex polyhedra in O(nr2+r3logr)
time and O(nr + r°/2) space. _

Proof. Removal of all special notches from S is carried out in O(n + rlogr) time
and in O(n) space, as discussed before. Let S1, 82, - -, S; be the manifold polyhedra
created by this process. Let S; have n; edges of which r; are reflex. Using Theorem 3.1
on each of them, we conclude that S can be decomposed into O(r?) convex polyhedra in
O, nir? +1./%) = O(nr? +r7/?) time and in OO mars v ) =O(r +7°/%)
space.

4. Convex decomposition under finite precision arithmetic. When implementing
geometric operations stemming from practical applications, one cannot ignore the de-
generate geometric configurations that often arise, as well as the need to make specific
topological decisions based on imprecise finite precision numerical computations [19],
[27]. We model the inexact arithmetic computations by e-arithmetic [15], [17] where the
arithmetic operations +, —, =, X are performed with relative error of at most €. Under
this model, the absolute error in the distance computations of one polyhedral feature
from another is bounded by a certain quantity 6 = ke B, where B is the maximum value
of any coordinate and k is a constant; see, €.g., [23]. When making decisions about the
incidences of these polyhedral features (vertices, edges, facets) on the basis of the com-
puted distances (with signs), one can rely on the sign of the computations only if the
distances are greater than . On the other hand, if the computed distances are less than
5, one also needs to consider the topological constraints of the geometric configuration to
decide on a reliable choice. In particular, in regions of uncertainty, i.e., within the 6-ball,
the choices are all equally likely that the computed quantity is negative, zero, or positive.
Such decision points of uncertainity where several choices exist are either “independent”
or “dependent.” At the independent decision points, any choice may be made from the
finite set of local topological possibilities while the choices at the dependent decision

ints should ensure that they do not contradict any previous topological decisions. The
algorithm that follows this paradigm would never fail, though it may not always compute
a valid output. Such algorithms have been termed parsimonious by Fortune [15].

An algorithm under e-arithmetic is called robust if it computes an output which is
exact for some perturbed input. It is called stable if the perturbation required is small.
Recently, in [15], [16], [21], authors have given robust and stable algorithms for some
important geometric problems in two dimensions. Except [18], there is no known ro-
bust algorithm for any problem in three dimensions. The difficulty arises due to the fact
that the perturbations in the positions of the polyhedral features may not render a valid
polyhedron embedded in %3. In [18], Hopcroft and Kahn discuss the existence of a valid
polyhedron that admits the positions of the perturbed vertices of a convex polyhedron.
The case of nonconvex polyhedra is perceived to be hard and requires understanding the
deep interactions between topology and perturbations of polyhedral features of noncon-
vex polyhedra.

Karasick [19] gives an algorithm for the problem of polyhedral intersection where
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he uses geometric reasoning to avoid conflicting decisions about polyhedral features.
In this paper, we extend the results in [19] and provide an algorithm for the problem
of polyhedral decomposition that also uses geometric reasoning to avoid conflicting de-
cisions. As yet we are unable to prove our algorithm to be parsimonious. We report
various heuristics we have implemented in our effort to make the decomposition al-
gorithm more reliable in the presence of numerical errors in arithmetic computations.
These heuristics are useful in the sense that they give better results in practice than the
other algorithms, which assume exact arithmetic. We give an estimate of the worst-case
running time bound for the algorithm under the e-arithmetic model.

Related work. The issue of robustness in geometric algorithms has recently taken on
added importance because of the increasing use of geometric manipulations in computer-
aided design and solid modeling [3]. Edelsbrunner and Mucke [14] and Yap [29] suggest
using expensive symbolic perturbation techniques for handling geometric degeneracies.
Sugihara and Iri [28] and Dobkin and Silver [11] describe an approach to achieve con-
sistent computations in solid modeling by ensuring that computations are carried out
with sufficiently higher precision than used for representing the numerical data. There
are drawbacks, however, as high precision routines are needed for all primitive numer-
ical computations, making algorithms highly machine-dependent. Furthermore, the re-
quired precision for calculations is difficult to estimate a priori for complex problems.
Segal and Sequin [26] estimate various numerical tolerances, tuned to each computa-
tion, to maintain consistency. Milenkovic [23] presents techniques for computing the
arrangements of a set of lines in two dimensions robustly. He introduces the concept
of pseudolines that preserves some basic topological properties of lines and computes
the arrangements in terms of these pseudolines. Karasick [19] proposes using geomet-
ric reasoning and applies it to the problem of polyhedral intersections. Sugihara [27]
uses geometric reasoning to avoid redundant decisions and thereby eliminate topologi-
cal inconsistencies in the construction of planar Voronoi diagrams. Guibas, Salesin, and
Stolfi [17] propose a framework of computations, called e-geometry, in which they com-
pute an exact solution for a perturbed version of the input. So does Fortune [15], who
applies it to the problem of triangulating two-dimensional point sets. For more details
on robustness, see [8].

4.1. Intersection and incidence tests. In what follows, we assume the input polyhe-
dra to be manifold. Nonmanifold polyhedra can be handled as discussed in the earlier
sections. It is clear from the discussions of our algorithm in §3 that numerical compu-
tations arise in various intersections and incidence tests. We assume minimum feature
criteria for the input polyhedra wherein the distance between two distinct vertices or
between a vertex and an edge is at least §. To decide whether an edge is intersected by a
plane, one must decide the classification of its terminal vertices with respect to the same
plane. The same classification of a vertex is used to decide the classification of all the
features incident on that vertex. This, in effect, avoids conflicting decisions about the
polyhedral features. The decisions about different types of intersections and incidence
tests are carried out using three basic tools, namely, (i) vertex-plane classifications, (ii)
facet-plane classifications, and (iii) edge-plane classifications. The order of classifica-
tions is (i) followed by (ii) followed by (iii). In what follows, we assume that the equation
of any plane P, : a;& + by + c;z + d; is normalized, i.e., a? + b7 + =l

Vertex-plane classification. To classify the incidence of a vertex v; = (z;, ¥, z;) with
respect to the plane P : az + by + cz + d = 0, the normalized algebraic distance of v;
from P is computed, which is given by ax; + by; + cz; + d. The sign of this computation,
viz., zero, negative, or positive, classifies v; as “on” P (zero), “below” P (negative), or
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“above” P (positive) where “above” is the open half-space containing the plane normal
(a,b,c). The sign of the computations is accepted as correct if the above distance of v;
from P is larger than §. Otherwise, geometric reasoning is applied as detailed below to
classify the vertex v; with respect to the plane P. In the following algorithmic version
of the vertex-plane classification, the intersection between an edge e; incident on v; and
the plane P is computed as follows. Let e; be incident on planes Py, P>, where F; :
a;x + by + ¢iz + d; = 0. The intersection point r of e; and the plane P is determined
by solving the linear system Ar = d where

a bhoe
A=\ o B e | . and d = [~d,—dy,—d2,]" .

as 62 Ca

The linear system is solved using Gaussian elimination with scaled partial pivoting and
iterative refinement to reduce the numerical errors. ‘

Vertex-Plane-Classif (v;,P)
begin
Letv; = (z:,:, z:) be avertexincident on edgese; = (v, w), €2 = (Vi w2)," -, €k =
(‘Uir wk)- . :
LetP:azx+by+cz+d=0.
Compute [ = az; + by; + cz; +d.
if |l| > 6then  (*Comment: unambiguously decide via the sign of distance compu-
tation*)
if l > Othen
classify v; as “above”
else
classify v; as “below”
endif
else
loop
(*Comment: if the distance computation does not yield an unambiguous
classification for the vertex with respect to the plane, ensure that
the “above,” “below” classification is consistent with all edges
incident on that vertex. If such consistency cannot be ensured then
the vertex is classified as “maybeon” and left for the future facet-plane
classifications to decide its classification consistently.*)

Search for an edge e; incident on v; such that r = e; N P is at a distance
greater than 6 from v; and w; = (25, Y;, 2)-
Get the classification of w; if it is already computed.
Otherwise, compute I = az; + by; + ¢z;.
if |I'| > & then classify w; accordingly.
if the classification of w; is “below” or “above” then
if r is in between v; and w; then
classify v; oppositely to that of w;
else
classify v; same as that of w;
endif
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endif
endif
endloop
if no such edge e; is found then
classify v; as “maybeon”
(*Comment: To be classified later in the facet-plane classifications™)
endif
endif
end.

Facet-plane classification. If a facet f; does not lie on a plane P, the points of in-
tersection between them should necessarily be (i) collinear with the line of intersection
fiN P, and (ii) all vertices of f; on one side of the intersection line should have the same
classification with respect to the plane P. Vertices that have been temporarily classified
as “maybeon” are classified in such a way that they satisfy the above two properties (i) and
(ii) as closely as possible. Note that this heuristic forces the classification of “maybeon”
vertices to be more consistent than the one obtained by classifying them arbitrarily. An
algorithmic version of the facet-plane classification is given below.

Facet-Plane-Classif (f;, P)
begin
case
(i) All vertices of f; have been classified as “maybeon”:
- Classify f; as “on” the plane and change the classification of all incident vertices
to “on.”

(ii) At least one vertex v, of f; has been classified as “above,” or “below,” but no
edge of f; has its two vertices classified with opposite signs (“below” and “above”):
if there is only one “maybeon” vertex v; then
classify v; as “on” and consider v; as f; N P
else
take two “maybeon” vertices v;,v; and
classify v; and v; as “on.”
Let L be the line joining v;, v;.
Consider L as P.
loop
for each “maybeon” vertex vy on f; do
if vy is at a distance greater than 6 from L then
if v, and v, lie on opposite sides of L then
classify v, with the opposite classification of v,,.
else
classify vy with the classification of v,,.
endif
endif
endloop
endif
The vertices which are still not classified
classify them as “on”
(*Comment: these vertices are within a distance of 6
from L and hence will be collinear with L by a perturbation of
at most §. See Fig. 11.%)
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(iii) There is an edge e whose two vertices have opposite sign classifications:
if there is no other such edge then
let L be the line joining the intersection point of e and
P to any “maybeon” vertex v;.
classify v; as “on.”
consider L as f; N P.
apply methods of case (ii) to classify other “maybeon” vertices.
else
let L be the line which fits in least square sense all the points
of intersections and apply the methods of case (ii) to classify
remaining “maybeon” vertices.
endif
endcase
end.

P and ey are maybeon vqrt;'c.s.

pz ’ P ) gz Y
- et t ifi i
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ts th 1 ificati fp.
pz ,93 ge e classification o g

FiG. 11. Case (ii) of the facet-plane dassiﬁcarian.

Edge-plane classification. An edge can receive any of the three classifications which
are “not-intersected,” “intersected,” and “on”. The classifications of the vertices inci-
dent on an edge e; are used to classify it. An algorithmic version of the edge-plane
classification is given below.

Edge-Plane-Classif (e;, P)
begin
lLete; = (U,;,Uj).
case
(i) v; and v; are both classified as “on”:
classify e; as “on.”

(ii) Only one of v;, v;, say, v; is classified as “on”:
classify e; as “intersected” and consider v; as e; N P.
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(iiii) v; and v; are classified with one as “above” and another as “below”™:
classify e; as “intersected.” '
compute r = ¢; N P if it has not been computed yet.
if r does not lie within e then
choose a point at a distance of at least § from the vertex
which is nearest to the computed point and consider it as the intersection point
of €; and P.
endif

(iv) v; and v; are of same classifications and they are not “on”:
classify e; as “not-intersected.”

endcase
end.

Nesting of polygons with finite precision arithmetic. The polygon nesting problem as
discussed in §2.4 can be solved with finite precision arithmetic if the polygons are re-
stricted to a class of polygons called fleshy polygons. A polygon P is called fleshy if there
is a point inside P such that a square with the center (intersection of square’s diagonals)
at that point and with the sides of length 64¢B lies inside P. B and ¢ have been defined
earlier.

LEMMA 4.1. The problem of polygon nesting for k fleshy polygons with s vertices and t
monotone chains can be solved in O(k*+s(t+log s)) time under finite precision arithmetic.

Proof. See [4]. Since any vertical line (orthogonal to the z direction) can intersect
at most ¢ edges of a set of polygons having ¢ monotone chains, the above time bound
is obvious from the time analysis of the algorithm under finite precision arithmetic, as
given in [4]. O

4.2. Description of the algorithm. The same paradigm of cutting and splitting poly-
hedra along the cuts is followed to produce the convex decomposition of a nonconvex,
manifold polyhedron. One of the two planes supporting the facets incident on a notch
is chosen as a notch plane. This ensures that no new plane other than facet-planes is
introduced by the algorithm. As we have seen earlier, computations of intersection ver-
tices involve plane equations incident on those vertices. Thus, using the original plane
equations for such computations reduces the error propagation. Furthermore, this also
guarantees that all input assumptions about the supporting planes of the facets remain
valid throughout the iterative process of cutting and splitting the polyhedron. We ap-
ply heuristics at each numerical computation through geometric reasoning to make our
algorithm as parsimonious as possible.

In the construction of G P,, first all boundaries are computed. For this, one needs
to compute the intersection vertices on the facets of S. This is carried out by the vertex-
plane, edge-plane, and facet-plane classifications, as described before. Note that these
classifications use heuristics that make the numerical computations more reliable. After
computing all intersection vertices lying on a facet f, we sort them along the line of
intersection f N P,. Since the computed coordinates of these vertices are not exact,
sorting them on the basis of their coordinates is prone to error. We use the minimum
feature criteria and the orientations of the edges on a facet to obtain a topologically
correct sort.

Two intersection vertices can be closer than 6 if they lie on the edges meeting at a
vertex. Other possibilities do not occur because of the minimum feature assumptions.
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Using the orientations of these two edges on the facet f containing them, the exact or-
dering of the two new intersection vertices on f N P, can be determined. Generation of
edges between intersection vertices can be carried out exactly since it does not involve
any numerical computation.

The cut Q, is selected from GP, using the method of §3. The polygon nesting al-
gorithm, used for this purpose, is adapted to cope with the inexact numerical compu-
tations, as stated in Lemma 4.1. The polygon nesting algorithm with inexact arithmetic
computations requires all input polygons to be fleshy. Though in most of the cases this
is true, we do not know how to guarantee this property throughout the decomposition
process. Refinement of Q4 needs proper transferring of the edges of S that are decided
to be coplanar with Pg. This is done using the following simple heuristic. For an edge
e computed to be “on” the plane P,, we check all its oriented edges incident on facets
computed to be “oft” the notch plane P,. Suppose f is such a facet. Classify any vertex
v of f with respect to the oriented edge of e on f. If itis on the same side of e in which f
lies, e is transferred to GP; (GPZ, respectively) if v has been classified to lie in g
respectively). It is trivial to decide the side of e in which f lies.

Splitting S about the cuts Qg and Q completes the cutting of S with the notch plane
P,. This step again does not involve any numerical computations.

Note that we assume the minimum feature property to be valid throughout the iter-
ative process of cutting and splitting of polyhedra. Though for the original polyhedron
it is valid, it may not be preserved throughout the entire cutting process. The method
described in [26] can be used to eliminate this problem.

Complexity analysis. We use Lemmas 2.3 and 3.4 in our analysis, which is valid only
under the exact arithmetic model. Nonetheless, the analysis presented here gives a good
estimate of the complexity of the algorithm.

Consistent vertex-plane, edge-plane, and facet-plane classification take overall O(p)
time where p is the total number of edges of the polyhedron S. The above bound follows
from the fact that each edge of S is visited only O(1) times to determine the intersec-
tion points of S with the notch plane P,. The sorting of intersection vertices on the
facets adds O(ulogr) time where u is the total number of vertices in GFy. Once the
map GP, is constructed, it is trivial to recognize the boundary By containing the notch
g. The methods as described in §3 can be used to determine the interesting boundaries.
As discussed earlier, there are O(t) interesting boundaries containing O(t) monotone
chains where ¢ is the number of notches intersected by P,. Let u’ be the number of ver-
tices on the interesting boundaries. According to Lemma 4.1, the children and parent
of B, can be determined exactly in O(t* + u/(t + log ') time if the polygons corre-
sponding to the interesting boundaries are fleshy. Detection of children and parent of
the polygon containing the notch g, in effect, determines the inner and outer boundaries
of Q,. Obviously v’ = O(u). Combining the complexities of computing GP, and de-
tecting the inner and outer boundaries of @, we conclude that Q, can be computed in
O(p + % + u(t + logu) +ulog r) time.

At a generic instance of the algorithm, let S1, S2,- -, S,. be the k distinct (noncon-
vex) polyhedra in the current decomposition that contain the subnotches of a notch g
which is to be removed. Let p; be the number of edges in S; of which r; are reflex, u; be
the number of vertices in the cross-sectional map in S;, and ¢; be the number of notches
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given by

k
S=0 (Z(p, + tf + u;(t; + logu;) + u; logn))

i=1

=O0(p+ 73 +ur +ulogu+ulogr).
By Lemma 3.4, u = O(n + r2). This gives

F=0@+r®+ (n+r)r+(n+r?)logn)
= O(nr +nlogn + r2logn +r°)
= O(nr 4+ nlogn + r°).

To eliminate r notches, we need O(nr? + nrlogn + r?) time. Obviously, the space
complexity is O(p) = O(nr+7°/2). If § is a nonmanifold polyhedron, all special notches
are removed from S to produce manifold polyhedra, each of which is decomposed into
convex pieces by the method as discussed before. The complexity remains the same for
this case. ]

5. Conclusion. We have implemented our polyhedral decomposition algorithm un-
der floating point arithmetic in Common Lisp on UNIX workstations. The numerical
computations are all in C, callable from Lisp using interprocess communications. We
used 6 = 2-17 in the 32 bit machine with precision 2-24. Simple examples are shown
in Figs. 12 and 13.

The experimental results have been very satisfying. Test polyhedra are created, and
results are displayed in the X-11 window-based SHILP solid modeling and display system
[1]. The convex pieces generated can be easily triangulated to generate a triangulation
of the input nonconvex polyhedra. Of course, the facet triangulations between convex
pieces have to be kept consistent. To achieve this, the slicing along a notch has to be
carried out through all subpolyhedra intersecting the notch plane. The time complexity
does not increase for decompositions with this type of slicing, though space complexity
increases to O(nr + ). Details can be found in [9].

In finite element methods with triangular elements, nicely shaped tetrahedra are
preferred to reduce ill-conditioning as well as discretization error. In [10], we have given
a method to produce guaranteed quality triangulations of convex polyhedra. In Fig. 14,
an example of this triangulation is shown. For clarity, we show only the triangulations
on the facets. The convex decomposition method, coupled with this guaranteed quality
triangulation, gives a method for guaranteed quality triangulations of nonconvex poly-
hedra. However, this method has the limitation that the convex polyhedra produced
by the convex decomposition algorithm may be very bad in shape. An algorithm that
achieves guaranteed quality triangulations of nonconvex polyhedra directly is more prac-
tical. Currently, research is going on to find such an algorithm.
intersected by the notch plane in S;. Letp = 3°F . pj,u =35 w,andt = 30, ta.
Certainly, k = O(r) and t = O(r), since a notch can have at most 7 — 1 subnotches and
a notch plane can intersect at most r — 1 notches. The time S to remove the notch g is
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