Detecting boundaries for surface reconstruction using
CO-COnes

Tamal K. Dey Joachim Giesen Naveen Leekha Rephael Wenger *

Abstract

There are many surface reconstruction algorithms that perform satisfactorily on well-
sampled, smooth surfaces with no boundary. However, these algorithms have severe problems
handling surfaces with boundaries. In this paper we present a boundary detection algorithm
and apply it for surface reconstruction in conjunction with the Co-CONE algorithm of [3]. We
report the effectiveness of the algorithm with a number of experimental results. Theoretically,
we justify the algorithm partially though a complete theory eludes us at the moment.

1 Introduction

Many applications in CAD, computer graphics and scientific computations involve approximating
a surface from its samples. A piecewise linear approximation to the surface which is sought in
surface reconstruction is often appropriate for visual aids. They also form the control net for
generating limit surfaces with higher continuity using subdivision methods [19].

The two dimensional version of the problem, namely curve reconstruction has been well studied
[4, 9, 10, 15, 16, 18] in the literature. Among the algorithms proposed in the literature for surface
reconstruction, the earlier ones [5, 6, 8, 12, 17| concentrated on the empirical results and did not
focus so much on the theoretical guarantees. Very recently, starting with the breakthrough of [1]
three algorithms have been proposed with the guarantee that the output surface is homeomorphic
and geometrically close to the sampled surface. They are the CRUST algorithm by Amenta and
Bern [1], the CO-CONE algorithm by Amenta, Choi, Dey and Leekha [3], and the natural neighbor
interpolation algorithm by Boissonnat and Cazals [7]. The theoretical guarantee provided by these
algorithms requires that the sampled surface be smooth and have empty boundary. All these
algorithms run into serious problems if these conditions are not met. In practice, the samples do
come from surfaces with non-smoothness and non-empty boundaries. In this paper we focus on
the reconstruction of surfaces with non-empty boundary. Qur approach concentrates around the
Co-CONE algorithm which we find quite effective in practice.

Similar to the CRUST algorithm, the CO-CONE algorithm selects a set of candidate triangles
from the Delaunay triangulation of the input samples. This is followed with a pruning step that
deletes triangles with bare edges in a cascaded manner. Finally, a simple walk extracts the output
manifold. Tt is essential that the pruning step does not delete desired edges and triangles which
are incident to the boundary of the surface or else repeated pruning could delete the entire surface.
On the other hand, we do not want to include triangles that cover “obvious" holes in the surface.
Therefore it is important that the boundary is detected before the pruning step.

To solve the boundary detection problem one might use distance information inherent in the
sample points. However, for this distance information to be meaningful, the surface has be sampled

*Department of CIS, Ohio State University, Columbus, OH 43210.
e-mail: {tamaldey,giesen,leekha,wenger}@cis.ohio-state.edu

uniformly. In general it is not reasonable to sample a surface uniformly, since that would require
the most tiny feature on the surface to determine the overall sampling density. This can result
in very large data sets. On the other hand, non-uniform sampling can lead to ambiguity as to
whether it is coming from a surface with or without boundary, see Figure 1 for an illustration in
two dimensions as pointed out in [10].

(2) (b) (c)

Figure 1: (a) shows a set of sample points that are equally likely to originate from the curves (b)
or (c).

We present an algorithm that, for sufficiently dense samples, identifies all interior vertices
correctly. It might also declare some of the boundary vertices interior. That means, the algorithm
is conservative in identifying interior vertices. For example, in the sample shown in Figure 1(a)
no boundary would be detected which is justified since the samples can be argued to belong to
the closed curve in Figure 1(c) even if they actually originate from the curve in Figure 1(b). A
boundary detection step is invoked in the CO-CONE algorithm to determine the vertices on the
boundary. This step also excludes any triangle that fills up “obvious" holes in the surface. Then,
the pruning step does not attempt to delete any triangle incident on a boundary vertex and thus
does not run the risk of deleting the entire surface. We employ the method on a number of
experimental data that are sampled from surfaces with non-empty boundary. The effectiveness of
the algorithm is exhibited through these empirical results.

2 Basics

2.1 Definitions of boundaries

For a compact surface S with boundary we can distinguish interior points from the boundary
points. An interior point has a neighborhood homeomorphic to the open disc

]D)2={:1:€R2 Dz < 1}

A boundary point, on the other hand, has a neighborhood homeomorphic to the halfdisc D? N JHI?Ir
which is open in the halfspace

H = {(z,y) € R* : = > 0}.

In the surface reconstruction problem the surface S is given only through a finite set of sample
points P. Even though all points in P may be interior points of S, the existence of a non empty
boundary should reflect itself in the sample points. We are looking for a definition of interior and
boundary points for a finite sample from a surface that captures the intuitive difference between

interior and boundary points. We base our definition on the restricted Delaunay triangulation as
introduced in [13].

Restricted Delaunay triangulation: Let P be a sample of a compact surface S with or without
boundary embedded in R®. Denote the Voronoi diagram of P by Vp. The restriction of Vp on
the surface S defines the restricted Voronoi diagram containing the restricted Voronoi cells V, s =
Vp N'S. The dual of the restricted Voronoi diagram defines the restricted Delaunay triangulation
Dpgs.

Specifically, an edge pq is in Dp g iff V,, s NV, g = 0; a triangle pgr is in Dp g iff V, s NV, s N
Vs = 0 and a tetrahedron pgrs is in Dp g iff V, s NV, s NV, 5NV, g = 0. Figure 2 shows two
examples of restricted Delaunay triangulations of the same point set in two dimensions.

(2) (b) ()

Figure 2: (a) shows the Voronoi diagram of the sample points from Figure 1(a) clipped within a
bounding box, (b) shows the restricted Delaunay triangulation of the points in Figure 1(a) with
respect to the curve in Figure 1(b), and (¢) shows the restricted Delaunay triangulation of the
same point set with respect to the curve in Figure 1(c).

In the continuous case the definitions of interior and boundary points are based on the notion
of neighborhood. We use the restricted Delaunay triangulation to define the neighborhood of a
sample point.

Neighborhood of a sample point: The neighborhood of a sample point p is the union of the
interiors of all simplices incident to p in the restricted Delaunay triangulation together with the
point p itself.

Using this definition of neighborhood we can define interior vertices analogous to the definition
in the continuous case. All points that are not interior are called boundary points.

Definition 1 (Interior and boundary vertices) A sample point p from a sample P of S is
called interior vertex if its neighborhood is homeomorphic to the open disc D?. Sample points that
are not interior are called boundary vertices.

2.2 Flat vertices

Our goal is to detect boundary vertices algorithmically and to exploit this information for surface
reconstruction. Given only a finite sample P from a surface S embedded in R® we cannot construct
the restricted Delaunay triangulation Dp s, because the surface S is unknown to us. Therefore
we cannot exploit our definition of interior and boundary vertices algorithmically.

To cope with this problem we define flat vertices and show that all interior vertices are flat for
sufficiently sampled smooth compact surfaces. This definition uses the definitions of poles and the

width and heights of Voronoi cells. The benefit we get from the definition of flat vertices is that it
can be exploited algorithmically.

In what follows we will denote the ray from p to y with ¢ for any sample point p and y in the
Voronoi region V.

Poles: Given a finite point set P C R3, let V,, be the Voronoi cell of a point p € P. We borrow
the definition of poles from [1]. The vertex v of the Voronoi cell V;, which is farthest from the
point p is called the positive pole of V,,. In case V,, is unbounded, vI‘f is taken as a point at infinity
and 17;,F is taken as the ray from p to infinity in the direction given by the average directions of
unbounded Voronoi edges towards infinity. The negative pole of V,, is the farthest Voronoi vertex
v, € V), from p such that v, - 17; < 0. Basically, negative pole is the farthest Voronoi vertex in
the “opposite direction” of the positive pole.

Width and height of Voronoi cells: The width w(V,,) of the Voronoi cell V,, of p is defined as
the diameter of the set, {y € V,, : Z(#,%,") = £ }see also Figure 3. The height h*(V}) of V, in
the direction v is defined as the length [pv;i| of 7} and the height h~(V}) in the direction v, is
defined as the length |pv, | of ¥ .

Figure 3: A Voronoi cell V), together with the normalized pole vector 17; and the set of vectors in
V), orthogonal to 7} .

Now, we are prepared to give the definition of flat vertices. Flatness depends on a parameter
p-

Definition 2 (Flat vertex) A sample point p € P is called o flat vertex if
pu(Vy) < WH(V,) and pu (V) < h™ (V)

for p > 4, i.e. the Voronoi cell V), is long and thin in the directions of the pole vectors 1')'; and T, .

3 Justification

Our goal is to exploit the definition of flat vertices in a boundary detection algorithm. We
determine if a vertex is flat, and consider it a boundary vertex if it is not. A partial justification
of this assertion is given by Theorem 1.

For the proof of Theorem 1 we need some definitions and facts on samplings of smooth surfaces.
The medial axis of a smooth surface S C R? is the closure of the set of points that have more than
one closest point on S. The local feature size f(p) at a point p € S is the least distance of p to

the medial axis. The medial balls at p are defined as the balls that touch S tangentially at p and
are centered on the medial axis. A point set P C S is called an e-sample of a surface S if every
point p € S has a sample within distance of ¢ f(p).

Let us state two useful lemmas from [1] that are proved for smooth compact surfaces without
boundaries. Here we want to use them for surfaces which may have a non-empty boundary. The
first lemma states that the local feature size is 1-Lipschitz continuous.

Lemma 1 For any two points p and q¢ on a smooth compact surface S C R® we have:

f(p) £ flg)+Ip—ql

ProoF. The proof in [1] is also valid for smooth surfaces with non empty boundary. O

The second lemma states an angle bound for some vectors in the Voronoi cell of an interior
point.

Lemma 2 Let p be an interior sample point in an e-sample P of a smooth compact surface S.
Let y be any point in the Voronoi cell V,, such that |yp| > vf(p). The angle between § and the
normal to the surface ny, (oriented in the same direction) is at most

sin~! (ﬁ) + sin™! (1 - 8)

PrOOF. We can copy almost the entire proof given in [1] but some minor adjustments are
necessary to incorporate surfaces with non-empty boundary.

The proof in [1] makes use of the fact that a smooth compact surface S with empty boundary
divides the space R® in two components that are not connected. One of these components is
bounded the other one is unbounded. In fact, the proof needs that, given two points in a Voronoi
cell such that one lies in the bounded and the other one in the unbounded component of R?, then
the line segment connecting these points has to intersect the surface S at least once.

Here we are only concerned with interior points. Since p is an interior point, the interior of the
restricted Voronoi cell V,, g is homeomorphic to the open disc D?, i.e. V,,\V,,s is disconnected. This
means that the two sides of the surface S in the Voronoi cell V; are well defined. The convexity
of V,, implies that a line segment connecting two points on opposite sides of S in the Voronoi cell
Vp has to lie entirely in V,,. Thus this line segment intersects V), s at least once and we can apply
the same reasoning as in the proof in [1]. O

The following theorem states that all interior vertices of a sufficiently dense sample of a smooth
surface are flat. Note that this theorem is only concerned with interior vertices. It is also possible
that boundary vertices are flat vertices.

Theorem 1 Let P be an e-sample of a smooth compact surface S for e < 0.1. Then all interior
vertices in P are flat.

PrOOF. We have to check that the conditions stated Definition 2 are fulfilled for an interior
vertex p.

We have [pvf| > f(p), because the two medial balls have radii at least f(p) and the centers of
these medial balls must lie in V,. That is, the height h*(V},) of the the Voronoi cell V,, is at least

f).

Lemma 2 and the estimate on |pv;f| imply that the angle ¢ between the positive pole vector
7} and the surface normal n,, (oriented in the same direction) satisfies

€
< 2sin™? .
¢ < 2sin (1_6)

Let C be the set of all points y € V}, such that the acute angle between § and the hyperplane
orthogonal to n, passing through p is no more than ¢. The acute angle between ¢ and the normal
n, (oriented in the same direction as) is larger than n/2 — ¢. From Lemma 2 (applying the
contrapositive of the implication stated there) we get |py| < vf(p) where v fulfills the following

inequality
-1 = .1 g ™
— —) >=—¢.
sin (1/(1—6))+Sln (1_6)_2 ¢

Plugging in € < 0.1 we get v < 1/8. That is, the width of the Voronoi cell V,, is at most f(p)/4.
Next we show that the height h~(V},) of the Voronoi cell is at least f(p). Let m be the cen-
ter of the medial ball such that 7 does not point in the same direction as 17’; . We know that
|[pm| > f(p) and m € V,,. Let v be the Voronoi vertex in V,, farthest from p such that ¥ points in
the same direction as 171. By the convexity of V,, we have |pv| > f(p). This implies v ¢ C. Hence
we have 7 - 4} < 0. That is, v, = v and h™(V},) > f(p). Combining these inequalities we get
ht(Vp),h™ (Vp) > 4w(V,). Thus the conditions in Definition 2 are fulfilled. O

4 A boundary detection algorithm

Definition 2 and Theorem 1 suggest a boundary detection algorithm. From Theorem 1 we know
that all interior vertices are flat. That is, the set of non-flat vertices is a subset of the boundary
vertices. Here we consider this subset as the boundary of the surface. The following algorithm
checks the conditions stated in Definition 2 to detect flat vertices. The input is a sample point
p € P with a parameter p that measures the height vs. width ratio for V},. The return value is
false if p is a flat vertex, and true if p is not a flat vertex, i.e. only if p is a boundary vertex.

ISBOUNDARY (p € P, p)
1 compute the width w(V},) and the heights ht(V,),h™ (V})
2 if pu(V,) < h* (V) and pu(V,) < h=(V;)
3 return false
4 return true

First the width and heights of the Voronoi cell V,, of the point p in the Voronoi diagram of
the point set P are computed (line 1). If the conditions stated in Definition 2 are fulfilled, then
the algorithm returns false (line 3). Otherwise it returns true, i.e. we consider this vertex as a
boundary vertex.

Figure 4 shows two triangulations of the dataset FOOT. The first triangulation is computed
with the CO-CONE algorithm [3] without boundary detection. The second triangulation is com-
puted with the modified CO-CONE algorithm that we are going to describe in the next section.
The modification makes use of the algorithm ISBOUNDARY. In the example in Figure 4(d), the
sampled data is missing points on the heel of the foot, creating a “hole” in the foot. However, our
algorithm fails to detect the boundary of this hole and fills in the hole because there is a natural
extension of the surface that closes the hole. In section 6 we show that this boundary is detected
with an increased value of p (Figure 6).

SKIKEX

:‘
;
£
s
e

, mmu

XY
V' VA
u#%"“ ORERER

(c) (d)

Figure 4: (a) A triangulation of the dataset FOOT without boundary detection, (b) a triangulation
of the same dataset with boundary detection using the algorithm, ISBOUNDARY, (c) a part of the
foot with detected boundary and (d) a non detected boundary at the heel of the foot.

5 The CO-CONE algorithm

Our goal is to reconstruct a smooth compact surface S C R® which may have a non-empty
boundary from a finite sample P C S. For this purpose we modify the CO-CONE algorithm [3]
such that it is capable of reconstructing surfaces with boundary. Like the CRUST the CO-CONE
algorithm consists of three steps:

(1) CANDIDATETRIANGLEEXTRACTION. In this step a set of candidate triangles for the recon-
struction is extracted from the Delaunay triangulation of the sample points. In general the
underlying space of these triangles is not a manifold, but a manifold with boundary can be
extracted in the next two steps.

(2) PRUNING. The candidate triangles are already close to a manifold for sufficiently dense
samples. We want to extract a manifold from this set by walking on the outside or inside of
this set. During the walk we may encounter the problem of entering a triangle ¢ which has
a bare edge, i.e., an edge incident to a single triangle, namely t. The purpose of this step is
to get rid of these edges with their incident triangles.

(3) WALK. We walk on the out- or inside of the set of triangles that remained after pruning
and report the triangles walked over.

For the first step of the CO-CONE algorithm we need the definition of co-cones. Co-cones
depend on a parameter 6.

Definition 3 (Co-cone) The set Cp of points y € V, for which Z(¥, v}) lies in the interval
[7/2 —0,7/2 + 8] for some 6 € (0,7/2) is called the co-cone of p with opening angle 6.

Now we can state the first step of the Co-CONE algorithm.

CANDIDATETRIANGLEEXTRACTION (P C R?, 0 € (0,7/2), p)

1 compute the Voronoi diagram Vp

2 CandidateTriangles := DelaunayTriangles

3 for each sample p € P

4 if ISBOUNDARY(P, p) = false

5 for each Voronoi edge e € V,,

6 ifC,ne#0

7 e.Mark.insert(p)

8 for each Voronoi edge e € Vp

9 for each p € DUALTRIANGLE(e) N P
10 if (1ISBOUNDARY (p, p) = false and (p € e.Mark))
11 CandidateTriangles.delete(DUALTRIANGLE(e))
12 return CandidateTriangles

First the set CandidateTriangles is initialized to the set of all Delaunay triangles (line 2).
This set gets filtered subsequently. We supply each Voronoi edge e with a set Mark that collects
the samples for which e lies in the co-cone with opening angle 8 (line 6). This check is done only
if the sample is not a boundary vertex. In other words, only flat vertices mark the Voronoi edges
that lie in their co-cones. Next, we look at the markings of the Voronoi edges and delete their dual
triangles from the candidate set if they are not marked by an adjacent sample which is flat (lines
9-11). In essence, we rely only on the triangles that are chosen by flat vertices and a triangle is in
the candidate set only if all of its flat vertices have chosen it.

The second step PRUNING removes triangles incident to sharp edges in a cascaded manner as
was originally suggested in [1]. An edge e is called sharp if there are two consecutive triangles
incident to e such that the angle between them is more than 37/2. An edge is also called sharp
if it has only one incident triangle. We have to be careful in this step not to trigger the cascaded
deletion of the desired surface by deleting a triangle incident on a boundary vertex which has a
bare edge. So, we remove a triangle only if it is not incident on a boundary vertex.

Let K be a two dimensional simplicial complex.

PRrRUNING (K,p)

1 Pending := 0

2 for each edge e € K

3 Pending.push(e)

4 while Pending # 0

5 e := Pending.pop()

6 if ISSHARP(e) = true

7 for each t € e.Triangles

8 if V(p € t N P) ISBOUNDARY(p, p) = false
9

K = K\{t}
10 for each €' € t.Edges\{e}
11 Pending.push(e’)
12 return K

First a stack Pending is initialized empty (line 1). Then all edges in the complex K are pushed
onto this stack (lines 2 and 3). Together with every triangle ¢ we store a list Edges of its edges.
With each edge e we store a set Triangles of triangles incident to e. We assume that we have
a function ISSHARP available that requires an edge e as input and returns true if e is sharp and
false if e is not sharp. As long as the stack Pending is not empty, an edge e is popped from
the stack. If this edge is sharp, all those incident triangles are removed from the complex K that
are not incident to a boundary vertex. All edges other than e that are incident to the deleted
triangle ¢ are pushed onto the stack Pending (lines 4 — 11). These edges may become sharp due
to the deletion of the triangle ¢t. Observe that during deleting triangles we not only check if it
is incident to a sharp edge, but also check if it is incident to any boundary vertex. Finally, the
reduced complex K is returned (line 12).

The third step WALK extracts a manifold.

WALK (K)
1 Surface:=10
2 choose arbitrary oriented t € K
3 Surface.insert(t)
4 Pending := 0
5 for each € € t.Edges
6 Pending.push((€,t))
7 while Pending # ()
8 (€,t) := Pending.pop()
9 if e.processed = false
10 e.processed := true
11 t' := SURFACENEIGHBOR(K, €, t)
12 ift' #0
13 Sur face.insert(t")
14 for each & € t'.Edges\{é}
15 Pending.push((e',t'))

16 return Surface

First we initialize the set Sur face empty (line 1). Then we choose an arbitrary triangle ¢ from
the complex K, orient it and insert it in the the set Surface (lines 2 and 3). Next we initialize
the stack Pending empty (line 4). From the orientation of the chosen triangle ¢ we derive an
orientation for all edges incident to t. These edges are stored in a field Edges associated with
every triangle. We denote an oriented edge e by €. For each oriented edge e of triangle ¢, we
push the pair (€,t) onto the stack (lines 5 and 6). As long as the stack Pending is not empty, we
pop its top element (€,t) (line 8). If the edge e is not processed so far we use the field processed
to mark it processed and compute the surface neighbor of (€,t), i.e. the triangle ¢' incident to e
that ‘best fits’ ¢ (lines 9-11). If ¢’ does not exist, the triangle ¢ is incident to the boundary. We
insert ¢’ in the set Surface (lines 12 and 13). We assume that the function SURFACENEIGHBOR
orients t' such that its orientation matches the orientation of ¢ and push all the pairs of oriented
edges € besides € incident to ¢’ together with the triangle ¢' itself onto the stack Pending (lines
14 and 15). Finally we return the surface Sur face (line 16). The above method works under the
assumption that the surface is orientable, i.e., surfaces like Mobius strip are not allowed.

The return value ¢’ of SURFACENEIGHBOR(C, €, t) is the topmost triangle triangle among the

set of triangles incident to e whose normals (oriented according to the orientation of ¢) make an

angle smaller than § with the normal of ¢, see Figure 5.

Figure 5: The surface neighbor of the dark grey shaded triangle is the topmost triangle among
the light grey shaded triangles.

Putting the three steps CANDIDATETRIANGLEEXTRACTION, PRUNING and WALK together
gives the Co-CONE algorithm.

Co-conNE (P C R®, 0 € (0,7/2), p)
1 K:=CANDIDATETRIANGLEEXTRACTION (P, 6, p)
2 K':=PRUNING (K)
3 K'":=WaALK (K')
4 return K"

6 Implementation and results

We implemented the CO-CONE algorithm in C++. For the computation of the Delaunay trian-
gulation and the Voronoi diagram we used the ghull code [20] from the Geometry Center at the
University of Minnesota. Two major problems cropped up while experimenting with the real data.

First, numerical problems caused ghull to produce incorrect configurations. In ghull the input
points are perturbed with a small random offset to avoid degenerate configurations, e.g. three
points on a line or four points on a circle. The perturbations do not prevent numerical problems.
Some of the predicates used in the Voronoi diagram computation such as sidedness or insphere
tests are very sensitive to numerical errors. Secondly, some of the sampled surfaces have high
curvature at places where they are undersampled. A small deviation of the samples from the
surface in the vicinity of these regions causes the effect of non-smoothness.

Both of these errors contribute to turning some interior vertices as “false boundary vertices”.
These points are detected as interior by ISBOUNDARY, but its incident triangles after the co-cone
step do not form a flat disk. Thus, the pruning step runs the risk of deleting the desired output
since it does not recognize these “false boundary vertices”. To cope with the problem, we employ
a safety check HASUMBRELLA to each vertex.

An uwmbrella incident to a vertex p € K is a set of triangles incident to p which form a
topological closed disc D?. An umbrella is called sharp if it contains a sharp edge. HASUMBRELLA
deletes the sharp edges and their incident triangles in a cascaded manner. But, unlike pruning
this cascaded deletion is applied only to edges and triangles incident to the vertex being checked.
If the vertex retains a triangle after this cascaded deletion, HASUMBRELLA returns true.

HASUMBRELLA (K, p € K)
1 Umbrella := p.Triangles
2 Pending := ()
3 for every edge e € p.Edges
4 Pending.push(e)
5 while Pending # 0
6 e := Pending.pop()

10

7 if ISSHARP(e) = true

8 for each t € e.T'riangles
9 for each €' € t.Edges\{e}
10 Pending.push(e’)
11 Umbrella.delete(t)
12 if Umbrella = 0)
13 return false

14 return true

First the set Umbrella is initialized to the set of triangles incident to p (line 1). Next we
initialize the stack Pending empty (line 2). Then we push all edges e incident to p onto the stack
Pending (lines 3 and 4). We assume that the edges incident to p are stored in the set Edges and
the triangles incident to p are stored in the set Triangles. As long as the stack Pending is not
empty we pop its top element. If this element is a sharp edge e, we delete all triangles incident to
e in the complex K from the set Umbrella, and push all edges incident to such a triangle besides
the edge e onto the stack Pending (lines 5-11). Finally we return false if the set Umbrella is
empty and true otherwise.

The boundary vertices detected in our implementation are the union of the boundary vertices
detected by the algorithm ISBOUNDARY and the vertices not detected by the algorithm HASUM-
BRELLA. We observe that PRUNING with this enlarged set of boundary vertices is safe. For samples
from smooth surfaces that fulfill the sampling condition we observe that UMBRELLACHECK is not
necessary.

In Definition 2 we choose the ratio p of the width to the heights of a Voronoi cell to be more
than 4. In practice a value of 1.1 gives good results. Increasing this ratio detects more points as
boundary as can be observed in Figure 6.

(a) (b)

Figure 6: Both figures show the reconstructed heel of the dataset FOOT for different values of p.
In (a) this ratio is 1.1 and in (b) it is 4.3.

We tested the CO-CONE algorithm on many data sets. All the tests were done on a Sun Ultra
Sparc II computer with 296 Mhz processor and 256 MByte of main memory. The basic data of
our experiments are summarized in Table 1. Observe that the number of triangles is roughly twice
the number of points, which is expected from Euler’s formula.

We show the output of the Co-CONE algorithm on these datasets in Figures 7 and 8. The
results were viewed and rendered using Geomview [14], provided by the Geometry Center at the
University of Minnesota.

11

number of | number of | running | ratio

object points triangles | time(sec.) p
CACTUS 3337 6538 38.4 1.1
CaT 10000 19891 111.8 1.1
ENGINE 11360 22354 131.4 1.1
Footr 20021 39985 243.5 1.1
MANNEQUIN 12772 25292 141.6 1.1
MONKEY 10000 19600 183.8 1.1
SAT 15371 29755 157.7 1.5

Table 1: Experimental data.

Let us shortly comment on the results for different data sets.

The dataset CAcTUs. This dataset contains a single boundary at the bottom of the cactus and
two undersampled regions where the two legs meet the main body of the cactus. The boundary
as well as the undersampled regions are correctly identified by the Co-CONE algorithm.

The dataset CAT. This dataset contains a single boundary at the bottom of the cat and
some undersampled regions, especially at the ears. The boundary and these regions are detected
correctly.

The dataset MONKEY. This dataset is created using the function (z,y) — 2 — 3zy? on the
unit square. The graph of this function is called monkey saddle. The monkey saddle contains a
single boundary which is perfectly detected for almost every value of the ratio p. No interior point
is detected as boundary point.

The dataset ENGINE. This dataset contains three connected components, two of them have
two boundaries. The third component contains no boundary. All boundaries are well detected.
In the Co-CONE algorithm without boundary detection one boundary at the back of the engine
is not detected, see Figure 8(a).

The dataset MANNEQUIN. This dataset contains one boundary at the bottom and under
sampled regions in eyes, mouth and ears. The boundary is detected perfectly.

The dataset SAT. This dataset contains a single boundary and no undersampled region. With
p = 1.1 the boundary is not completely detected. This changes when we choose p = 1.5. No
interior point is detected as a boundary point.

| object | 1. Step | 2. Step | 3. Step |

CACTUS 37.1 7.1 3.2
CAT 77.3 25.2 14.2
ENGINE 87.6 30.7 12.6
Foor 160.9 64.8 29.8
MANNEQUIN 97.5 33.3 15.8
MONKEY 159 28.2 9.6
SAT 103 40.9 24.8

Table 2: A closer look on the running time of the CO-CONE algorithm in seconds. The first step
is CANDIDATETRIANGLEEXTRACTION, the second step is PRUNING and the third step is WALK.

In Table 2 we give detailed report on the running times. Since the CO-CONE algorithm is logi-
cally split into three steps: CANDIDATETRIANGLEEXTRACTION, PRUNING and WALK, we measure

12

the CPU times for each of these three steps. As expected the first step, CANDIDATETRIANGLE-
EXTRACTION, is the most time consuming. This step includes the computation of the Voronoi
diagram of the sample points and the boundary detection. We add the time spent on the check
HASUMBRELLA to the time used for PRUNING, because this check makes the PRUNING safe. Both
PRUNING and WALK show super linear, but sub quadratic behavior. The total running time shows
the same behavior.

7 Conclusions

In this paper we address the problem of reconstructing surfaces possibly with non-empty boundary.
The existing algorithms with theoretical guarantees fail miserably on such data sets since they
assume that the data is derived from a surface without any boundary. As exhibited by our
empirical results, our boundary detection algorithm correctly identifies the vertices that are visibly
lying on the boundary. We provide a partial justification of the algorithm though a complete theory
eludes us at the moment. We believe that such a theory exists to which we owe the empirical
success of our algorithm.

A side effect of the algorithm is that it identifies the regions of undersampling. In practice the
data comes from variety of surfaces including non-smooth ones. The data from such surfaces are
undersampled in the vicinity of the non-smooth regions because non-smoothness requires infinite
sampling to satisfy the e-sampling condition, see [11, 15]. Can we use this aspect of the algorithm
more effectively to identify sharp features such as sharp edges and corners from the samples?
Currently research on these questions is under progress.

References

[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom.,
22, (1999), 481-504.

[2] N. Amenta, M. Bern and D. Eppstein. The crust and the S-skeleton: combinatorial curve
reconstruction. Graphical Models and Image Processing, 60 (1998), 125-135.

[3] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm for homeomorphic surface
reconstruction. To appear in 16th. Sympos. Comput. Geom., 2000.

[4] D. Attali. r-regular shape reconstruction from unorganized points. Proc. 13th ACM Sympos.
Comput. Geom., (1997), 248-253.

[5] C. Bajaj, F. Bernardini and G. Xu. Automatic reconstruction of surfaces and scalar fields
from 3D scans. SIGGRAPH 95, (1995), 109-118.

[6] J. D. Boissonnat. Shape reconstruction from planar cross-sections. Computer Vision, Graph-
ics, and Image Processing 44 (1988), 1-29.

[7] J. D. Boissonnat and F. Cazals. Smooth shape reconstruction. To appear in 16th. Sympos.
Comput. Geom., 2000.

[8] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. SIGGRAPH 96, (1996), 303-312.

[9] T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction. Proc. ACM-
SIAM Sympos. Discr. Algorithms, (1999), 893-894.

13

[10] T. K. Dey, K. Mehlhorn and E. A. Ramos. Curve reconstruction: connecting dots with good
reason. Comput. Geom. Theory Appl., 15, 229-244.

[11] T. K. Dey and R. Wenger. Reconstructing curves with sharp corners. To appear in 16th ACM
Sympos. Comput. Geom., 2000.

[12] H. Edelsbrunner and E. P. Miicke. Three-dimensional alpha shapes. ACM Trans. Graphics,
13, (1994), 43-72.

[13] H. Edelsbrunner and N. Shah. Triangulating topological spaces. Proc. 10th ACM Sympos.
Comput. Geom., (1994), 285-292.

14] http://www.geomview.or,
p g g

[15] J. Giesen. Curve reconstruction, the TSP, and Menger’s theorem on length. Proc. 15th Ann.
Sympos. Comput. Geom., (1999), 207-216.

[16] C. Gold. Crust and anti-crust: a one-step boundary and skeleton extraction algorithm. 15th.
ACM Sympos. Comput. Geom., (1999), 189-196.

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle. Surface reconstruction
from unorganized points. SIGGRAPH 92, (1992), 71-78.

[18] M. Melkemi. .A-shapes and their derivatives. 18th ACM Sympos. Comput. Geom. , (1997),
367-369.

[19] D. Zorin and P. Schréder. Subdivision for modeling and animation. SIGGRAPH 99 Course
Notes..

20] http://www.geom.umn.edu/locate/ghull
P g q:

14

boundary (b) Cactus with boundary de-

(a) Cactus without
tection

detection

(c) Car without boundary detec- (d) Car with boundary detection
tion

(f) MonNkEY with boundary de-
tection

(e) MonkEY without boundary
detection

Figure 7: Some examples of the output of the CO-CONE algorithm with (on the right) and without
boundary detection (on the left).

15

(a) ENGINE without boundary (b) EncINE with boundary detec-
detection tion

(c) MANNEQUIN without bound- (d) MANNEQUIN with boundary
ary detection detection

(e) Sar without boundary detec- (f) Sat with boundary detection
tion

Figure 8: More examples of the output of the CO-CONE algorithm with (on the right) and without
boundary detection (on the left).

16

