Graph Induced Complex on Point Data

Tamal K. Dey  Fengtao Fah  Yusu Wang

Abstract

The efficiency of extracting topological information fromipt data depends largely on the complex
that is built on top of the data points. From a computatiorialvpoint, the favored complexes for
this purpose have so far been Vietoris-Rips and witness mp. While the Vietoris-Rips complex
is simple to compute and is a good vehicle for extracting lmgpp of sampled spaces, its size becomes
prohibitively large for reasonable computations. The esmcomplex on the other hand enjoys a smaller
size because of a subsampling, but fails to capture thedgpdh high dimensions unless imposed
with extra structure. We investigate a complex calleddgteph induced complethat, to some extent,
enjoys the advantages of both. It works on a subsample Butettins the power of capturing the
topology as the Vietoris-Rips complex. It only needs a gramimecting the original sample points from
which it builds a complex on the subsample thus taming the stnsiderably. We show that, using
the graph induced complex one can (i) infer the one dimeasioomology of a manifold from a lean
subsample, (ii) reconstruct a surface in three dimensiomfa sparse subsample without computing
Delaunay triangulations, (iii) infer the persistent hoowt groups of compact sets from a sufficiently
dense sample. We provide experimental evidences in suppout theory.

*Department of Computer Science and Engineering, The Ohio State rsityyeColumbus, OH 43210, USA. Email:
t anmal dey@se. ohi o-stat e. edu

fDepartment of Computer Science and Engineering, The Ohio State rsinjyeColumbus, OH 43210, USA. Email:
f anf @se. ohi o- st ate. edu

tDepartment of Computer Science and Engineering, The Ohio State rsitjyeColumbus, OH 43210, USA. Email:
yusu@se. ohi o- st ate. edu



1 Introduction

Acquiring knowledge about a sampled space from a set of points hasees key problem in many areas
of science and engineering. The sampled space could be a hidden maitifioitin some high dimensions,
or could be a compact subset of some Euclidean space. Topologicahation such as the rank of the
homology groups, or their persistent behavior can divulge importaturesof the hidden space. Therefore,
a considerable effort has ensued to extract topological informatiom aint data in recent years/[7, 9, 15,
19]. With the advent of advanced technologies, the data is often gethémaabundance. Mixed with the
burden of high dimensionality, large data sets pose a challenge to theaesequired to process them. As
a result, some recent investigations have focused on how to use a ligtaetrdeture or sparsify the input,
which aids a faster computation, but still guarantees that the output ingeignorrect.

Point data by themselves do not have interesting topology. So, a foretapsnsnferring topology
from data is to impose a structure such as a simplicial complex onto it. The DgJ&lezh, Vietoris-Rips,
and witness complexes are some of the most commonly proposed completkes poirpose. Among these,
Vietoris-Rips (Rips in short) and witness complexes [9] have been fd\ymeause they can be constructed
with simple computations. Rips complexes are easy to construct as they caiilttfeoln a graph by
recognizing the cliques in it. However, the presence of simplices comdsppto all cliques makes its
size quite large. Even in three dimensions with a few thousand points, thefdtze Rips complex can
be an obstacle, if not a stopper, for further processing. Witness cresplen the other hand, have too
few simplices to capture the topology of the sampled space in dimensions threwef4]. To tackle this
issue, Boissonnat et al. [4] suggested modifications to the original defitivitness complex [24]. This
enlarges the witness complexes but makes it more complicated and costly toteompu

Figure 1. A graph induced complex shown with bold vertices, edges, ahdded triangle on left. Input
graph within the shaded triangle is shown on right.

We investigate a new complex, a version of which was originally introduceti7ihfpr the application
of sensor network routing. We set up a more general definition and ¢hd graph induced complexX\Ve
provide new theoretical understanding of the graph induced complexrirs tef topology inference. In
particular, we show that, when equipped with an appropriate metric, this corogtehelp deciphering
the topology from data. It retains the simplicity of the Rips complex as well aspiuesisy of the witness
complex. Its construction resembles the sparsified Rips complex propd&&i amd also the combinatorial
Delaunay triangulation proposed in [6], but it does not build a Rips commiethe subsample and thus is
sparser than the Rips complex with the same set of vertices. This fact mega@giference in practice as
our preliminary experiments show. The idea of graph induced complex edgs bimilarity to the geodesic
Delaunay triangulation which was proposed to recover the topology dfiradeal planar region (with holes)
from point samples [18]. Our work investigates its theoretical propemiéganeralizes it to settings beyond



the planar case.
Given a graphG on a set of pointg” equipped with a metric, one can build a graph induced complex
on a subsamplé) C P as follows. A simplex is in the complex if and only if its vertex $étC @ has
the property that a set of points iR, each being closest to exactly one verte¥informs a clique inG.
Figurel 1 shows a graph induced complex for a set of data points in the fhamsampled points are the
darker vertices. Input points are grouped according to the proximity teithsampled vertices (indicated
with a Voronoi partition). The shaded triangle enlarged on the righthaedssid the graph induced complex
since there is 8-clique in the input graph whose 3 vertices have 3 different closest poihe subsample.
Observe that, in this example, the graph induced complex has the same hoamltbgysampled space.
Figure/ 2 shows experimental results on two data sets, 40,000 sample poimta flein bottle inR*
and 15,000 sample points from the primary circle of natural image data coegiaeR?° [1]. The graphs
connecting any two points withia = 0.05 unit distance for Klein bottle and = 0.6 unit distance for the
primary circle were taken as input for the graph induced complexes2-Bleleton of the Rips complexes
for thesea parameters havg08, 200 and 1, 329, 672, 867 simplices respectively. These sizes are too large
to carry out fast computations.
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Figure 2: Comparison results for Klein bottlelt (top row) and primary circle ifR?® (bottom row). The
estimated’; for three complexes are shown on the left, and their sizes are shown sodtegon right.

For comparison, we constructed the graph induced complex, sparsifisc&mplex, and the withess
complex on the same subsample determined by a parameldre parametes is also used in the graph
induced complex (see definitions later) and the witness complex. The edgeRips complex built on the
samesubsamplevere of lengths at most + 24 (justified by Propositioh 2.8). We varigdand observed the



rank of the one dimensional homology grou). The plots show that the graph induced complex captured
(1 correctly for a significantly wider range of (left plots) while its size remained comparable to that of
the witness complex (right plots). In some cases, the graph induced cootuliekcapture the correch

with remarkably small number of simplices. For example, it fad= 2 for Klein bottle when there were
278 simplices ford = 0.7 and154 simplices for§ = 1.0. In both caseg; for Rips and witness complexes
did not match with that of the sampled spaces while the Rips complex had a muehdeng [og, scale
plot) and the witness complex had comparable size. This illustrates why theigthiced complex can be

a better choice than the Rips and witness complexes.

We establish three different results. First, we show that the one-dimeh$iomology group of sur-
faces in three dimensions can be determined by graph induced complesasthie surface itself can be
reconstructed with some post-processing from a sparse subsampleuwipée ghat could be excessively
dense. Second, we show that, for higher-dimensional manifolds, iomexdional homology can still be
determined from graph induced complexes with a simple modification of the metralyi-we extend our
results to other homology groups where we show that the persistent hongrogps of a pair of graph
induced complexes can determine the homology groups of compact sgagesrimental results support
our theory.

2 Graph induced complex and preliminaries
First we define the graph induced complex in a more abstract setting wheshnadb require a metric.

Definition 2.1 LetG(V') be a graph with the vertex setand letr : V' — V' be a vertex map wherg V') =

V' C V. The graph induced compl€XG(V), V', v) is defined as the simplicial complex wherk-aimplex
o= {v}, vy, ..., v, }isinG(V, V' v) if and only if there exists & + 1)-clique {vy, v, ..., 0411} CV

so thatv(v;) = v} foreachi € {1,2,...,k + 1}. To see that it is indeed a simplicial complex, observe that
a subset of a clique is also a clique.

Now we specialize the graph induced complex to the case where the veftitesioput graph come
from a metric space.

Definition 2.2 A metric spacé X, d) is a pair whereX isasetand! : X x X — R, is a distance function
satisfyingd(z,y) > 0, d(z,y) = 0iff x =y, d(z,y) = d(y, z), andd(z,y) < d(z, z) + d(z,y).

Definition 2.3 Let (P, d) be a metric space whetB is a finite point set and lef) C P be a subset. Let
vq : P — @ denote the nearest point map whetgp) is a point inargmin ., d(p,q). Given a graph
G(P) with vertex se, we define its graph induced complex@&s+(P), Q,d) := G(G(P),Q, va).

Among the many possible choices fér we will focus on two cases whewe = dg, the Euclidean
distance, and = dg, the graph distance induced by the gr&pf’) assuming its edges have non-negative
weights. For any two vertices , p, € P, the distanceé;(p1, p2) is the length of the shortest path between
p1 andpq in G(P). We will describe the choices of the distance functions when necessary.

In our case, the point sét will be a discrete subset of a compact smooth manifald- R™ without
boundary, or of a compact sé&t C R™. The graphG(P) will be the graphG*(P) = (P, E*) where
(p1,p2) € E~ifand only if |p1 — p2|| < a. The graph induced complex induced &% (P) on a subset
@ C P under a distance functioth will be the focus of our study. To emphasize the dependence on the
parametery, we write it asG* (P, Q,d) := G(G*(P),Q,d). Notice thatG*(P) is induced by Euclidean
metric whereagd is used to define the nearest point map in construgiih@?, @, d). As mentioned ealier,
the graph induced complex bears a similarity to the complex considered ingJL7Qhe may also draw a
parallel between the graph induced complexes and the well-known witoegsexes [24] wheré® acts as
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a witness sett and(@ acts as a landmark sét C 1. However, the analogy does not extend any further
since the construction of the witness complex and its variants [4] differs fhat of the graph induced
complex. For example, the original withess complex defined in [24] includesimplex with vertex set

in L only if its vertices belong to thé-nearest neighbors of a point Y. In contrast the graph induced
complex includes &-simplex only if its vertices have nearest neighbordiinthat form ak-clique in a
graph built on the vertices belonging 1. Similar to the withess complex, the graph induced complex
builds upon a subsampling, but, unlike the witness complex, it enjoys some gagadlproperties without
any extra modifications such as weighting [4].

2.1 Sampling, homology, and sandwiching

As indicated before, the input point setis a sample of a smooth manifold or a compact seX embedded
in Euclidean space. We will also subsampteaccording to a distance functiah Therefore, we define
sampling in a more general context.

Definition 2.4 A finite setP C X is ane-sample of a metric spadeX, d), if for each pointr € X there is
a pointp € P so thatd(x,p) < . Additionally, P is calledd-sparse ifd(p;, p2) > o for any pair of points
in P.

The point setP does not have interesting topology by itself. We build simplicial complexes usiag
the vertex set to infer the topology of the sampled sp¥cépecifically, our goal is to infer the homology
groups of a manifold or a compact set from whiehis sampled by computing the homology groups of a
simplicial complex built withP as vertices. LeH,.(-) denote the--dimensional homology group. It refers
to the singular homology when the domain is a manifold or a compact set, and imieisl homology
when it is a simplicial complex. Also, all homology groups are assumed to beedediver the finite field
Zs.

Our main tool for topological inference rests on the relationship betweegréph induced complexes
and the Rips complexes that are known to capture information about the hpymtmups of spaces [2, 21].

Definition 2.5 Given a point se C R" and a parametery, the Rips compleR“(P) = R*(P,dg) is a
simplicial complex where a simplexbelongs toR*(P) if and only if all vertices of, drawn fromP, are
within o Euclidean distance of each other.

Notice that we define Rips complexes with Euclidean distances instead afgematrics which will be
assumed throughout this paper. It is known that such Rips complexeseépe topology of a manifold/

if the parameters are chosen right/[2, 21]. We utilize this fact to iHfgn/) by exploiting a sandwiching
property of graph induced complexes by Rips complexes. To prove ttiisvie recall the concept of
contiguous maps from algebraic topology. Our main interest in this conct fact that two contiguous
maps between two simplicial complexes induce the same homomorphism at the hpleeébg

Definition 2.6 ([22]) Let K; and K2 be two simplicial complexes connected by two simplicial maps
K1 — Ko andb : K1 — Ko. We saye and b are contiguous, if and only if for any simplexc £y, the
simplicesa(o) andb(o) are faces of a common simplex/is.

Fact2.7 ([22)) If a : K1 — Ko andb : K; — K, are contiguous, then the induced homomorphisms
ax : H.(K1) — H,.(K2) andb, : H,.(K1) — H,.(K2) are equal.



In our case two simplicial complexes will i&, = R*(P) andKy = RP(P) for somes3 > a. The map
ais aninclusiorR®(P) — RP(P). For the map, we consider a simplicial map: R*(P) — G*(P,Q,d)
which composed with an inclusigif (P, Q, d) — R°(P) providesh. We elaborate on this construction.

The vertex sets oR*(P) andG“(P, @, d) are P and( respectively with a vertex mag; : P — Q
wherep € P maps to one of its closest point(g)(p) € Q. Observe thatz*(P) is thel-skeleton ofR*(P).
Therefore, the edges of(& + 1)-clique in G*(P) constitute thel-skeleton of &-simplex inR“(P) and
vice versa. The vertex map extends to a simplicial map : R*(P) — G*(P,Q, d) where ak-simplex
{p1,p2, - ,pr+1} IN R*(P) is mapped to a simplex (of dimension at mbptvith the vertex sefv,(p;)}.
To see that is well defined, observe that any subset ofthe- 1)-clique{pi,p2, - - , pr+1} is also a clique
in G*(P) and hencgv,(p;)} is a simplex inG*(P, @, d). The following result is used later.

Proposition 2.8 Let (P, d) be a metric space whe® C R" is a finite set and for every pajr, p2 € P,
d(p1,p2) is at least the Euclidean distande; — p2||. Let@ be aj-sample of P, d). We have the sequence

RY(P) - G°(P,Q.d) <> R (P)
wherej is an inclusion angoh is contiguous to the inclusiain: R (P) «— R+29(P). Hencej,oh, = i.

Proof: The map is well-defined as we detailed before. We observe@idP, @, d) C R*2°(P) because,
by triangle inequality, any edg@ , ¢2) of a simplexs € G%(P, Q, d) satisfiesd(q1,q2) < a + 26. Since
d(q1,q2) > ||lq1 — go|| by assumption, the edde , ¢2) and hence the simplexare inR*+2)( P). It follows
that the inclusion map is well-defined.

To prove the contiguity, consider a simplexn R(P). We need to show that the verticesooindh (o)
span a simplex iR *t2°(P). Clearly, all vertices of are withina distance of each other. By definition
of h, all vertices ofh (o) are within distancer + 20. Letwu be a vertex ob andh(v) be a vertex of.(o)
wherev is a vertex olr. Then the Euclidean distange — i (v)|| is at most|u — v|| + [|[v — h(v)|| < a+ 0.
Therefore, all vertices of andh (o) are withina + 26 distance. Hence, the simplexandh (o) are faces
of a common simplex ifrR**+2(Q) proving the claim of contiguity. [

Computing graph induced complexes. One may wonder how to efficiently construct the graph induced
complexes in practice. Our experiments show that the following procedassquite efficiently in practice.

It takes advantage of computing nearest neighbors within a range analjmuortantly, computing cliques
only in a sparsified graph.

Let the ball B(q,d) in metric d be called thej-cover for the pointg. A graph induced complex
GY(P,Q,d) whereQ is ad-sparse-sample can be built easily by identifyingcovers with a rather standard
iterative algorithm similar to the greedy (farthest point) iterative algorithn26f.[LetQ; = {q1,..., ¢}
be the point set sampled so far frafh We maintain the invariants (i); is 6-sparse and (ii) every point
p € P that are in the union of-coversJ .. B(g,d) have their closest point(p) = argmin¢q, d(p, )
in Q; identified. To augmen®); to Q;+1 = Q; U {¢;+1}, we choose a poinj;+; € P that is outside the
5—coverqu€Qi B(q,9). Certainly,g;+; is at least units away from all points iid); thus satisfying the first
invariant. For the second invariant, we check every ppintthe §-cover ofg; ;1 and update/(p) to beg; 1
if its distance tay; 11 is smaller than the distanckp, v(p)). At the end, we obtain a samplg C P whose
d-covers cover the entire point sBtand thus is @&-sample of( P, d) which is alsoj-sparse.

Next, we construct the simplices 6f*(P, @, d). This requires identifying cliques i&¢*(P) that have
vertices with different closest points ). We delete every edgep’ from G*(P) wherev(p) = v(p').
Then, we determine every clique, ... pr} in the remaining sparsified graph and include the simplex
{v(p1),...,v(px)} in G*(P,Q,d). The main saving here is that many cliques of the original graph are
removed before it is processed for clique computation. We use the regeoflgsed simplex tree which
computes cliques efficiently both time and space-wise [5].
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3 Surface point data

In this section, we infer the geometry and topology of a surface througgrdph induced complex. Let
M be a smooth, compact, connected surface embeddgdtimat has no boundary. We assume thahas
positive reactp = p(M) which is the minimum distance a¥/ to its medial axis. Let’ be ans-sample
of the metric spacéM, dg) wheredg is the Euclidean distance. Consider the graph induced complex
GY(P,Q,dg). In this section, the subsét C P is assumed to be@&sparsed-sample of P, dg).

Our result in this section is that under certain conditionsagrz andd, G*(P,Q,dg) captures the
homology of M and contains the restricted Delaunay triangulaiied|,; @ as defined below. The sparsity
of ) turns out to be a crucial condition in the argument.

Definition 3.1 LetDel () denote the Delaunay triangulation of a point §2tC R3. The restricted Delaunay
triangulation ofQ with respect to a manifold/ c R3, denotedDel|y; @, is defined to be the subcomplex
of Del Q formed by all Delaunay simplices whose Voronoi duals interdéct

3.1 Topological inference fromG*(P, Q, dg)

Consider the sequen@@®(P) N GY(P,Q,d) <, RT20(P) in Proposition 2.8. WheiP, ans-sample

of (M, dg), is sufficiently dense, it is known that : H;(R*(P)) — Hy(RF(P)) is an isomorphism for
appropriatex and3. The homomorphism, is injective if i, is an isomorphism sincg = j, o h,. If we
can show thak, is also surjective, theh, is an isomorphism. We now show that is indeed surjective for
H;-homology and hence information abdtit(1/) can be obtained by computihty (G*(P, Q, dg)). First,
we observe the following. LeP, C P be the points who have € @ as the closest point. Notice that by
the definitino ofh, h(F,) = {q}. To prove that, is surjective, it is sufficient to prove that the preimage of
each 1-cycle ig*(P, ), dg) contains a 1-cycle oR“(P). This, in turn, is true if the 1-skeleton &*(F,)

is connected.

Proposition 3.2 If the 1-skeleton ofR“ () is connected for alf € @, thenh, is surjective.

Proof: We show that the chain mép, induced by the simplicial map is surjective. It follows that the
homomorphisnh, induced at the homology level is also surjective. &et qoq1+qg1q2+- - -+qrqo be anyl -
cycle inG*(P,Q, dg). The edgeg;_1¢; andg;q;+1 have edges, say_1p; andp;p;_ , respectively, in their
preimage undek in R*(P). Consider a path; betweerp; andp, in R*(P,,) whereh(p;) = h(p}) = ¢;.
Such a path exists becauRé& (P,) is connected for alj € Q). We have a-cycle

d = popy +v1 + PPy + Y2 + paps + -+ Yk + PrPy + Y0

in R*(P) so thath (¢') = c. This shows that. is surjective in the first homology group. [
The 1-skeleton ofR(F) is connected if the union of balls, = (Jp, B(p, 5) is connected because
an edgep1ps is in RY(F,) if the respective balld3(p1, §) and B(p2, §) intersect. Letl;, be the Voronoi
cell of ¢ in the Voronoi diagranVor Q). Let M, = V, N M be the restricted Voronoi region. It turns out
(we will prove it later in Proposition 3.4) that it/, is contained in3, and )/, is connected, thei, is
connected. It may seem a priori thaf would contain)M, if P is a dense sample. Unfortunately, that is not
true as Figure 3 illustrates. To avoid such a case, we require that thedi@ells do not subtend very small
angles between their facets which is ensured byjthparsity ofQ). Proposition 3.3 below usessparsity
in a subtle way to prepare for the proof tif&t contains),,. This result will also be used later to show that
the graph induced complex* (P, Q, dg) in fact contains the restricted Delaunay triangulafin|,; Q.
For a simplexo € Del|ys Q, we call a ballB(c,r) a surface Delaunay balbf o if ¢ € M and its
boundary contains the vertices of



Figure 3: In a long thin Voronoi cell3, may be disconnected and may not contafp

Proposition 3.3 Let P be ans-sample of M, dg), and@ a j-sparsed-sample of P, dg). Leto € Del|y Q

be a restricted Delaunay triangle or edge with a vertex Q. Letc be the center of a surface Delaunay
ball of . If 82 < § < 2 p(M), then there is a point € P so thatp € B(c, 4¢) andg is the closest point to
p among all points irQ).

Proof: See Appendix A for the proof. |
Now, we are ready to prove thaf, is contained in the union of bally, B(p, 3 ).

Proposition 3.4 If a > 12c and8s < § < Zp(M), thenM, C Ugper,; B(p, §) which implies that
R*(P,) is path connected i#/, is path connected.

Proof: Since P is ane-sample ofM, Yz € M, there exists a point € B(z,e) wherep € P. Let
P,=Pn (Usenr, B(x,€)). Then, we havell, C U, pr B(p,e) for if = € M,, there existp € P with

p € B(z,¢) requiringz € B(p,e). On the other hand, recall th&y, = M, N P. Hence ifp € P; \ Py,
thenB(p, €) contains some boundary pointc 9M,. The pointz belongs to a Voronoi facet in the Voronoi
diagram of@ and henceB(z, ||¢ — z||) is a surface Delaunay ball. By Proposition 3.3, we can find a
pointu € P, such that|u — x| < 4e. Thus,B(p,e) C B(u, (4 + 2)¢). Takinga > 12¢, we get that
Mq C Upep(; B(p7 6) C Upqu B(pa %)

Since every ball i B(p,¢)|p € Iy} intersectsM,, we have thas; = (J,cp,y B(p, §) is path con-
nected ifM, is path connected. On the other haRel( P,) is path connected i, is path connected proving
the claim. |

We can now present the main result of this subsection.

Theorem 3.5 Let P be ans-sample of a smooth compact surfake embedded ifR?, and@Q C P a
s-sparses-sample of(P,dg). For 12 < a < Zpand8 < § < Zp, the maph. : Hi(R*(P)) —
Hi(G*(P,Q,dp)) is an isomorphism where : R*(P) — G*(P,Q, dg) is the simplicial map induced by
the nearest point mag,,, : P — Q.

Proof: Sinced < 0.18p, we can assume each restricted Voronoi aé}l to be path connected [12]. This
together with the lower bound animply thatR*(F,) is connected for eache @ thanks to Proposition 3.4.
Consequently, Proposition 3.2 establishes thas surjective.

From Proposition 4.1 of [15] and its proof, we obtain the following: for day< r < 2r < ¢/ < \/gp,

Hi(R"(P)) = Hi(R" (P)) 2 Hy (M) (1)



where the first isomorphism is induced by the canonical inclusio®’” (P) — R’ (P). Our assumption
on the ranges aof andd implies the required conditions thét < o < %\/ép and4e < § < %\/gp We
claim thati, : Hi(R*(P)) — Hi(R®T2°(P)) induced by the inclusion : R*(P) — R*t2(P) is an
isomorphism.

First, note that this claim follows easily from (1)df < § by settingr = « andr’ = « + 26. Now
assume thai < «. Consider the following sequence:

RI(P) &4 RY(P) & RO (P) &2 R34 (P),

By Eqn (1), we have that the composition of inclusiéns : R (P) — R*+2%(P) induces an isomorphism
at the homology level. Hendg is necessarily surjective. On the other hand, the composition of inclusions
iy 0i : R¥(P) — R3¥(P) induces an isomorphism at the homology level. Heijds necessarily injec-
tive. Putting these two together, we have thats indeed an isomorphism. Therefalg is injective by
Proposition 2.8. It then follows that, is an isomorphism as claimed. [ ]
Notice that the lower bound ahin Theorem 3.5 is not restricted hy This means that one can have a
dense input graph for a largewhose connectivity does not restrict the size of the subsample.
In the next subsection, we show two examples of surface data whereaghteigduced complex has the
correctH;-homology with a considerably fewer simplices than theitness complex, a modified witness
complex suggested in [4] for capturing the topology correctly.

3.2 Reconstruction of M usingG*(P, @, dg)

In this subsection, we observe that the graph induced complexes cdrealsed for surface reconstruction.
It is known that if P is dense and’ is a simplicial complex with vertex sét which satisfies the following
conditions, a simplicial manifold can be extracted frérthat is homeomorphic td/ [3, 12]. The conditions
are: ()T is embedded iR?, (ii) all triangles inT" have small circumradii compared to reach and (i)
contains the restricted Delaunay triangulation. We showdRar, 9, dr) contains the restricted Delaunay
triangulation. We then prung®(P, @, dg) so that conditions (i) and (ii) are satisfied, but none of the
restricted Delaunay triangles are deleted in the process which then £osuartion (iii).

Theorem 3.6 For 8¢ < § < Q%p anda > 8, we have thaDel|;; Q@ C GY(P,Q,dg) whereP is an
e-sample of M, dg) and@ C P is ad-sparses-sample of P, dg).

Proof: We will show that ifS8e < § < %p anda > 8e, then any triangler € Del|y; Q isin G¥(P,Q, dg).
The theorem follows from this.

Leto = {q1, ¢2, g3}, andc the center of a surface Delaunay ballbofBy Proposition 3.3, there exists a
pointp; € P in B(c,4¢) so thaty; is the closest point id) to p; for i = 1,2, 3. It turns out that the interior
of bounded cones used in the proof of Proposition 3.3foks andgs are disjoint. Hence each poipt
found in B(c, 4¢) corresponding tg; is distinct from the other two. Thereforedf> 8¢, the vertice®, p2
andps form a clique inG“(P) and hence the triangteis in G*(P, Q, dg). |

The complexG®(P, Q,dgr) may have intersecting triangles. We prui®&(P, @, dg) to eliminate all
such pairwise intersections while leaving the restricted Delaunay triangles @othplex. This ensures that
the resulting complex embeds R? and still contains the restricted Delaunay triangulation. Our simple
observation is that if two intersecting triangligsandt, do not intersect in a common face, one can decide
locally which of the two can possibly be in a Delaunay triangulation.

Observation 3.7 If V' is the vertex set of two intersecting triangkgsand t, whose intersection is not a
common face of both, then at least onetpofind ¢, is not in Del V. The triangle which is not iel V'
cannot be inDel P whereV C P,



One can check locally the Delaunay condition forandt, and decide to throw away at least one triangle
which is not inDel V. This takes only constant time sin&&contains at mosé vertices. Notice that no
restricted Delaunay triangle can be thrown away by this process. Afpeatedly pruning away one of
the pairwise intersecting triangles, we arrive at a complex that embeR3 and contains the restricted
Delaunay triangulatioiel|,; Q. Next, we prune all triangles that have circumradius more fda\gain,
since the surface Delaunay ball of each restricted Delaunay triangld@rbamradius at most + ¢ < 26,

one is ensured that no restricted Delaunay triangle is eliminated. Assumge sufficiently small, a
sharp edge pruning and a walk on the outside of the resulting complex @#beésin [3, 12] provides the
reconstructed surface. The output surface has one nice propartiightriangles have bounded aspect ratios
since their circumradii are at moad and their edge lengths are at leagt) is o-sparse).

Theorem 3.8 Let M C R? be a smooth, compact, and connected surfack H § < %p, «a > 8¢, Pisan
e-sample of M, dg), and@ C P is ad-sparsej-sample of P, dg), then a triangulatiorl” C G*(P, Q, dg)
of M can be computed where each triangl€lirhas a bounded aspect ratio.

We observe in experiments that surfaces can be reconstructed freny aparse subsample with this
strategy. Figure 4 presents two examples for surface reconstructienoriginal sample® has1, 575, 055
points for the Fertility model antl, 049, 892 points for Botijo model. The input graphs for the graph induced
complex are constructed by connecting two points within distanee-ef0.45 for FERTILITY anda = 1.0
for BoTigo. The 2-skeleton of the Rips complex built on the input graph4ia§88, 607 simplices for
FERTILITY and91, 264, 091 simplices for BoT1J0. The subsampl€ consists oB007 points for FERTILITY
with § = 3.68, and4659 points for BoT1Jo with § = 4.0. The graph induced complex® (P, Q, dg)
built on the subsample has3007 vertices,9178 edges£304 triangles,139 tetrahedra and no other higher
dimensional simplices for ERTILITY; 4659 vertices,14709 edges,10755 triangles,718 tetrahedrajb 4-
dimensional simplices, and no other higher dimensional simplicesdan®. The reconstructed surfaces
from G*(P,Q,dg) are shown in Figure 4. ForeRTILITY, it has3007 vertices,9039 edges and026
triangles; for BOTIJO, it has4659 vertices, 14001 edges an®334 triangles. Evidently, the graph induced
complex has only a few more simplices compared to the reconstructed surface

For a comparison, we also constructed theitness complex suggested in [4] which also contains the
restricted Delaunay triangulatidpel|y; Q with v = (1,6, 6,4). Thev-witness complex for ERTILITY has
3007 vertices, 35687 edges, 119237 triangles and 9874 tetrahedra; the-witness complex for BT1J0 has
4659 vertices,54648 edges,180936 triangles an@?9654 tetrahedra. The graph induced complex has much
smaller size, but still captures (51 = 8 for the FERTILITY, and3; = 10 for the BoT1J0).

4 Point data for more general domains

In this section, we consider domains beyond surfacé&s’in

4.1 Manifolds

Let M be ak-manifold embedded ilR™ and letP be a discrete sample ¢/, dr). We observe that the
overall setup in Sectian 3.1 for inferrindy -homology from the graph induced complex generalizes easily to
higher dimensions. The inclusion m&g*(P) — R*+2(P) still induces an isomorphism at the homology
level if « ando are chosen appropriately. In that case, the thap H;(R*(P)) — Hi(GY(P,Q,d))
remains injective by the same argument as before. The main trouble arisasngliry to prove that it is
also surjective. Observe that, to prove the surjectivity.gfwe used the fact that the restricted Voronoi cell
M, =V, N M in Vor @ is connected (Proposition 3.4). Unfortunately, this is not necessarilyirtriigh
dimensions given the counterexamples in [4, 10]. To overcome this impedimgenhange the distance



() FERTILITY model (b) BoTiagomodel

Figure 4: Reconstructed surfaces f@RFILITY and BoTIJ0 models.

function replacing the Euclidean distance with the graph distance while buiiditg, @, d). Specifically,
we still considerG*(P) to be the graph connecting pointsihwith Euclidean distance or less, but take
Q to be aj-sparsei-sample of( P, d) where the graph distande; = dg«(p) is defined with the Euclidean
lengths as the edge weights. Then, we congid€IP, Q, d¢).

As before, letP, C P be the set of points nearest to a pointe @ with respect tadg. Observe
that any point inP that is on the shortest path betwegmand a pointp € P, also belongs ta?,. This
immediately allows us to claim that tHeskeleton ofR*(F,) is connected, which was needed to claim that
h. is surjective.

Proposition 4.1 R%(P,) is connected, and thus. is surjective.

Theorem 4.2 Let P be ans-sample of an embedded smooth and compact maniibldith reachp, and
Q ad-sample of P,d¢). Forde < a,6 < %\/gp the maph.. : Hi(R*(P)) — H1(G*(P,Q,d¢g)) is an

isomorphism wheré : R*(P) — G*(P,Q,d¢) is the simplicial map induced by the nearest point map
Vi, : P — Q.

4.2 Aleaner subsampling forH,

In this subsection we show that the subsamplean be made leaner. The main insight is that we can
define a feature size larger than the reach which permits us to subsamplespacsely with respect to
this larger feature size. Gao et al. [18] considered a similar feature @izbeéf same reason of requiring
sparser sampling for a two dimensional shape. Here we show that spalsaissample is also adequate for
determiningH; of manifolds in high dimensions. Our experimental results in Figure 2 sutfigsine can
obtain information aboutl, from a very sparse sample in practice.

Let K be a simplicial complex with non-negative weights on its edges. We dkeéinelogical loop
feature sizeas
2inf{|c| : cis non null-homologous 1-cycle i}
oo if no suche exists.

hlfs(KC) = {

This feature size is very similar to tlsgstolic feature sizefs(X, d) of a compact metric spadeX, d) [18]
which is the length of the shortest non-contractible loopXin Our definition ofhlfs when applied to a
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metric spac€ X, d) becomes larger than or equalste( X, d) . Notice that every loop of with length less
than2hlfs(K) is null-homologous iriC.

Let @ C P be aj-sample of(P, d;) as before but witld < Ihlfs(R*(P)) — ja. Leth : R%(P) —
GY(P,Q,dq) be the simplicial map as defined earlier. We aim to show that the induced hontdemrp.
on the first homology is injective. Since we use graph distances, Propo$ificemains valid and henég
remains to be surjective. However, we cannot claimH; (R(P)) — H;(R*T2°(P)) is an isomorphism
because) could be larger than required. Thus, we cannot is infer thath, is injective as before.
Nevertheless, we can prove the following result using a differentoaabr.

Theorem 4.3 If Q is a 6-sample of(P,d¢) for § < $hlfs(R%(P)) — o, thenh, : H{(RY(P)) —
H1(G*(P,Q,d¢)) is an isomorphism.

Figure 5: (a)y,, makes a cycle withr(u, a), 7(v,b) andab, (b) v., as a sum of unicolored chains and
bicolored edges, (c) converting,, (shown dotted) t@y,., (d) a diamond ofy,,,.

Proof: We only need to show thdt, is injective, as its surjectivity follows from Proposition 4.1. To show
the injectivity, it suffices to show that, has a trivial kernel. Let be any triangle iG* (P, Q, d¢). If under
the chain maph4, every cycle in the preimage of the boundary cy@teis null homologous, then every
null homologous cycle iG“(P, @, dg) has only null homologous cycles in its preimage. This is true due
to the fact that a bounded cycle is a sum of boundaries of triangles actidiremaph.. is surjective (see
the proof of Proposition 3.2). Below, we show that under the chainmapevery cycle in the preimage of
the boundary cycle of any triangle indeed is null homologous. It would thiéow that the kernel ot is
trivial.

Let v be any cycle in the preimage 6. We havey € ., h, “ !(uv) whereuv be any edge of
of o. Let~,, be any maximal subpath of so thath.x(v..,) = uv (Figure[5(a)). For each sueh,,, we
construct a cyclé,, so that/,, is null homologous ang is homologous td  ¢,,,. Therefore, showing
is null homologous reduces to showing that ev&pyis null-homologous.

We construct,,,, as follows. By the construction @*(P, Q, dg), there is a trianglebc € R(P)
such thati(abc) = o with h(a) = u, h(b) = v. Consider the shortest pathéu, a) andr(v,b) in G*(P)
from u to a and fromv to b respectively. Observe that all verticesriu, a) and (v, b) are mapped to
u andv respectively byh since we are using the graph-induced distatigeto constructG® (P, Q, dg).
Take?,, to be the chainr(u,a) + ab + 7(v,b) + Yuv; refer to Figure 5(a). With this choice, we have
v = >_ tuw + 9(abc) and hencey is homologous tQ _ £,, as promised. To prov&,, null-homologous, we
construct a homologous path,, to 7., which gives a homologous cycig, to ¢,,. We then prove that,,
is null-homologous.

Call an edge: = (z,y) in R%(P) bicoloredif its two end-points are mapped to two distinct vertices
by h; otherwise e is unicolored A 1-chain fromR“(P) is unicoloredif it has only unicolored edges. For
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simplicity, we assume that vertices from, are all contained ih ' (u) U h~!(v) becausey,, is always
homologous to a path containing vertices mapped ontydowv. In this cases,, can be decomposed into
a set of bicolored edg€soz1, y122, - - ., yx—121 } together with a set of unicolored chaifrg, 1, - - ., V& }
such thabvy; = x; + y;. In particular,y,, can be written as

Yuv = Y0 + Yox1 + 71+ Y1x2 + 0+ Yp1Tk + Vi (2
See Figure 5(b) for an illustration.

Claim 4.4 Let~; be a unicolored chain with two boundary pointg 1; so that for any simplex € ~;,
h(7) = u. Then,y, is homologous to the chaii} = 7(x;, u) + 7(u, y;).

Given the chainy,,, with subchainsgy; as in equation 2, we convert it to a homologous chain

Yuv = Yo +Yor1 + V1 + -+ Y—1Tk + Vi

Replacey,, with 4., in £,, to obtain a homologous cyc&w; refer to Figure 5. Observe théag, is the
sum of cycles (diamonds) that have two unicolored chains and two bidodalges as shown in Figure 5(d).
Such a cycle: has length at mostd + 2«. This is because each unicolored chaincihas at most two
shortest paths of the form(u, z;) and~(u, y;) (or (v, z;) and~ (v, y;)) that have length8s or less () is
ad-sample of( P, d)), and the two bicolored edges have lengths at ash G“(P). The cyclec is null
homologous because its length is

lc| <46 + 2a < 2hlfs(R*(P)), giventhatd < %hlfs(Ra(P)) - %Oc-

It follows that/,, is null homologous.

We only need to show Claim 4.4 to finish the proof. ket= pg,p1,---,pm = y; be the sequence
of vertices on the unicolored chain (path) Consider the shortest pathép;, v) for eachp; on this path.
The length of the cycle; = w(u, p;) + pipi+1 + 7(u, piy1) IS at most2d + « for eachi € [0,m — 1].
Therefore, it is null homologous by our assumption. We hgve~; = Zﬁ’ol z; = 0. Therefore;y; and+;
are homologous. [ ]

Notice that, we can use Theorem 4.3 to compdité)/) for a manifold M from a much leaner sub-
sample than predicted by Theorem 3.5. It is known that, for-aampleP of M, the shortest non-trivial
1-cycle inR*(P) has a length which is at least a constant times the length of the shortesivianttcycle
of Hy(M); see Theorem 3.11 in [14] for details. This means thasample ofP whered is at most some
constant fraction of the shortest non-triviatycle of M is sufficient to build the graph induced complex
from R(P) to inferH; (M).

4.3 Point data for compact sets

So far we have focused dih-homology. In this section we extend the domain to compact subspaces of
Euclidean spaces and consider homology groups of all dimensions. @iriésality comes at the expense of
additional computations. Unlike previous approaches that allow us to irgéf tfhomology of the sampled
manifold by computing directly the same for the graph induced complexes, moneed to compute the
persistent homology [16] induced by simplicial maps. The well-known algustfor computing persistent
homology [16] work for maps induced by inclusions. In a contemporapgpgL. 3], we present an algorithm
that can compute the persistent homology induced by simplicial maps.

Let X c R™ be a compact set anii* be its offset with\ > 0. Since it is difficult to computéd, (X)
from a sample [9], we aim for computing the homology grotigX*) for the offsetX*. Let wfs(X)
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denote the theveak feature sizevhich is defined as the smallest positive critical value of the distance
function to X [8]. We prove that the persistent homology of the graph induced complixed with either
Euclidean or graph distaneeprovides the correct homology 6f* where0 < \ < wfs(X). Specifically,

the image ofh, : H,(G*(P,Q,d)) — H,(G¥ (P,Q’,d)) induced by a simplicial map : G*(P,Q,d) —
G*(P,Q',d) becomes isomorphic tH;(X*) for appropriatex andc’. It is worth noting that the lower
bound ona for which we prove this result depends only on the densitf the input P and not on the
density of the subsampled @t This is in contrast with a similar result for withess complexes presented
in [9]. We recall the following result from [9].

Proposition 4.5 If the sequence of homomorphiss— B — C — D — E — F between finite
dimensional vector spaces satisfies thatk(A — F') = rank(C — D), thenrank(B — E) = rank(C —
D).

Let Q andQ’ be subsamples d® whereQ is ad-sparsej-sample andy’ is ad’-sparse’ -sample for
& > 6. Consider the interleaving sequence between the graph induced antbRipkexes,

Ra(p)cL) Ro+25( ) S RA40+20)(p) B R4(°‘+25)+25,(P) 3)

] R

G(P,Qd) "> gt (P () d)

whereiq, io, i3, j1 andj, are inclusions and = hs o i o j;. By Proposition 2.8h; andhs are simplicial
maps . Thereforel is also a simplicial map as composition of simplicial maps. In particilas the
simplicial map induced by the vertex map that maps each gaing to its closest poing’ € Q' in Q’. We
prove thatim h, = Hy(X*) whereh, : Hi(G*(P, Q, d)) — Hp(G**+29)(P,Q’,d)) ande , a ands fall in
appropriate ranges.

Theorem 4.6 Let X C R" be a compact space. Let< ¢ < $wfs(X) and P be ane-sample of X, dg).
LetQ be ad-sparses-sample of P, d) andQ’ be ad’-sparsey -sample of P, d), whered is either Euclidean
or graph distance and’ > é.

If2e < a < i(wfs(X) —¢)and(a + 20) +
wis(X)) whereh, : Hi(G*(P, Q,d)) — Hy (G4

+ 16" < L(wis(X) — ¢), thenim h, 2 Hy(XA) (0 < A <
at+20) (P, @', d)) is induced by in diagram (3).

Proof: The diagram(3) is not commutative in general. However, it is commutativeedtdmology level.
Proposition 2.8 makes the two triangles at the left and right commutative. Théensigidare commutes by
definition of . Now consider the sequence,

Jix

He(R(P)) —2 = Hu(GY(P, Q. d))

Hk(Ra+26(P)) (4)

Hk(R4(a+25)(P)) &) Hk(g4(a+25>(P, Q' d)) L> Hk(R4(a+26)+25 (P))

i2*

Consider the sequence of inclusions at the upper level of the diagja®iiitea > 2¢ and(a+25)+ %5/ <
1(wfs(X) — €), we have that

m (i3 0 i 041)y = Hy(X?) andim (ig), = Hy(XH)
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by Theorens.6 of [9]. Considering the diagram in (1) and the sequencelin (4) we have
Hi(X?) & im (i3, 0 iz, 0i1,) = im((fo, © hax) 0 2, © (j1, © h1,)) = im g, (5)

Letting h = hs o is o j1, the rightmost isomorphism in|(5) allows us to claim thath, = Hy(X*) by
applying Proposition 4.5 to the sequence (4). |

5 Conclusions

In this work, we investigated the graph induced complex that can be built apgven point cloud data
and a suitable graph connecting them. This complex, to some extent, has #mtag@s of both Rips and
witness complexes. We have identified several of its topological prop#maesan evidently be useful in
extracting information from point data even in high dimensions.

In Section 4.3, we showed how to infer the homology groups of a comptasisg the persistent ho-
mology of a pair of graph induced complexes constructed with two valugs@iie can consider a filtration
of G*(P, @, d) with @ sparsified for increasing values @fando. Then, one can obtain a persistence dia-
gram [11] out of this “full filtration” using our recently proposed algonitfior computing the topological
persistence for filtrations connected with simplicial maps [13]. The algoritlibrcellapse vertices pro-
gressing through the filtration and hence will keep the size of the complexeistign contained. Relating
this persistence diagram to that of a filtration obtained by a Rips filtration is arestitey question. We
have addressed this question in a subsequent work [13].

Finding other applications where the graph induced complex becomed at&fuemains open for
further investigations.
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A Proof of Proposition (3.3

First, we present an elementary geometric result that we need to use indhelm@tC(o, v, ) € R? denote
the cone with apex, axis in the direction off and apertur@c.

Claim A.1 Given a ball B with radiusr and centere, let ¢ be an arbitrary point on the boundary .
Consider the two nested con€s = C(c, ¢¢, ) andCy = C(c, ¢g, 2c) with the same axis. Letbe any
point from the intersection of the ball and the inner cone; thatpiss B N C;. Letx be an arbitrary
point from the boundary oB outside the outer cone; that is, ¢ C,, andz € 9B. Then we have that

Ip—qll < llp— =l

Proof: Denotea,, := Zpcq anda, := Zpcx. Becauser is outside of the outer-cone with apertuie, and
p is inside of the inner cone of apertua, we have that we hawe, < o < «,. Now consider the triangle
Apcq. By the Cosine Law, we have that

lp = qlI” = llp = ¢ll” + lle = all* = 2[lp — || - e = gl cos(q) = [Ip — ¢l|* + 77 = 2r[p — ]| cos(ay).
Similarly, consider the\pox, and we have
lp —|* = llp — cl® + lle = z|* = 2llp — ] - lle = @[| cos(ap) = |lp — l* + 1% — 2r[p — ¢]| cos(az).

Since0 < o, < o, < 7, we have|p — q|| < |lp — z||. o

Now consider the surface Delaunay bBll = B(c, r) that passing through the vertices of the simplex
o and containing no other points fro@. Recall thaty is an arbitrary vertex of. Since all other vertices
of o are at least-Euclidean distance away from we then have that the intersection®f with the cone
C(c, ¢q,2 arcsin %) contains no point frond) other thany. By applying Claim A.1 withn, = arcsin % we
then obtain that

Corollary A.2 If there exists a poing € P such thatp € B. N C(c, ¢q, arcsin %) N M, theng must be the

closest point tgy among all points inQ.

In what follows, we will show that a poini € P satisfying the conditions in Corollary A.2 as well as
thatp € B(c,4¢) indeed exists whegs < 6 < %p(M). This will then prove the proposition. Specifically,
we will first identify a sample poinp € P, and then we will show thai satisfies the requirements of the
proposition.

Identifying a point p € P. Let B, = B(m,p) and By, = B(m/,p) be two
balls tangent tQ\/ at ¢; assume without loss of generality th&t, is inside of
M and B, is outside. Locally around, the surfaceV/ is sandwiched between
B, and B,,. Now consider the plan® = span{o, ', ¢}; note thatc also lies
in P. Denotqup = B.NP, BO,P = B,NP andBo/p = By NP. Letzx
be the intersection point aB.» and B, » that is on the same side of the line
passing througho’ as the poing. Similarly, lety be the intersection point of
B.p with B, p» on the same side of the lin®’ asq. Obviously,q lines on the
arczy that avoidsB, p and B, p. See the right figure for an illustration where
the shaded region iB.p. Setf := Zxcy; easy to see that = Zzoc = Zyo'c. Hence we have that

0 _ lle=zll _ r

sin

27 2 T 2p°
Now consider the segmen§ and the pointv € cq such that the length afw is a value/ which we
will set later. Asw is contained in the cone with apexand aperturd in the planeP, the ball B(w, ¢ sin 6)
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will intersect both segment: andcy, thus intersecting bot#, and B,,. SinceB, is inside the surfacé/

and B, outside, it follows thatB(w, £sinf) N M # (. Pick any pointy’ € B(w,{sinf) N M. By the
e-sampling condition of?, there must exist a sample pojnt P such that|p — p’|| < . In other words,
there is a sample poipte P such thap € B(w, {sinf + ¢).

The requirements onp. We now need to show that the parametean be chosen such that the pagint
satisfies all the requirements from the proposition. In particular, we neddltbwing:

C-1 p € B(c,4¢); and
C-2 ¢ is the closest point tp among all points irQ.

Now setr = arcsin ©2f+=. Obviously, the ballB(w, £sin6 + ) (and thus the poinp) is con-
tained inside the con€(c,cq, 7). Observe that by Corollarfy A.2, condition (C-2) is satisfied if (C-2.a)
B(w,lsinf +¢€) € B(c,r) (implying thatp € M), and (C-2.b)r < arcsin % (implying thatp is contained
in the inner cone(c, cg, arcsin 3-)).

The existence of a validd. What remains is to find a value fdrso that (C-1), (C-2.a), and (C-2.b) are
all satisfied simultaneously. Note that sirjpe — ¢|| = ¢, we have thaflp — c|| < ¢ + ¢sinf + . Hence
condition (C-1) is satisfied if + /sinf + ¢ < 4e. Sincesinf < 2sin§ = %, (C-1) holds as long as the
following inequality holds.

3e

! < ) 6
1+2 (6)
Sinces > 8e, if (C-1) holds, then we have thdp — c|| < 4e < § < r, which implies (C-2.a). Now
consider condition (C-2.b), which holds4f2f+= < 2 Sinces/2 < r < § + ¢ and8e < § < 2p/27, we
have that
r_bte 408 _1_45 _ 5
P P P 4 7 40 T 2r

That is,% —sinf > % — % > 0 (recall thatsin 6 < 2sin = r/p). Hence condition (C-2.b) holds if

e I3
[P ™)
277‘_5 5—81119

Putting (6) and (7) together, we have that as long as the vadagésfying the following inequality.

€ 3e
i_zéggl_f_f‘ (8)
2rp p

then conditions (C-1) and (C-2) will be satisfied, and there exists a panP as stated in the proposition.

Given that8s < 0 < 2p/27, we can show that valid exists. For example, fof = % inequality in Eqgn

holds as

56r§ 5 : die = 625< 692p:@:€
¥"p W s w-u g-xz 13
and
3e 3e 3e - 3e —@—g
L4757 1408 1+% 1+§:—¢ 12
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