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Basics of Surface Reconstructiontaken from [3]

23 Surface Samples

In this chapter we introduce some of the properties of surfaces and their samples in three di-
mensions. The results developed in this chapter are used in later chapters todesign algorithms
for surface reconstruction and prove their guarantees. Before we talk about these results, let us
explain what we mean by smooth surfaces.

Consider a mapπ : U → V whereU andV are the open sets inR2 andR3 respectively. The
mapπ has three components, namelyπ(x) = (π1(x), π2(x), π3(x)) wherex = (x1, x2) is a point in
R

2. The three by two matrix of first order partial derivatives (∂πi (x)
∂x j

)i, j is called theJacobianof π

at x. We sayπ is regular if its Jacobian at each point ofU has rank 2. The mapπ is Ci-continuous
if the ith order (i > 0) partial derivatives ofπ are continuous.

For i > 0, a subsetΣ ⊂ R3 is aCi-smoothsurface if each pointx ∈ Σ satisfies the following
condition. There is a neighborhoodW ⊂ R3 of x and a mapπ : U →W∩Σ of an open setU ⊂ R2

ontoW∩ Σ so that

(i) π is Ci-continuous,

(ii) π is a homeomorphism, and

(iii) π is regular.

The first condition says thatπ is continuously differentiable at least up to ith order. The
second condition imposes one-to-one property which eliminates self intersections ofΣ. The third
condition together with the first actually enforce the smoothness. It makes sure that the tangent
plane at each point inΣ is well defined. All of these three conditions together imply that the
functions likeπ defined in the neighborhood of each point ofΣ overlap smoothly. There are two
extremes of smoothness. If the partial derivatives ofπ of all orders are continuous, we sayΣ is
C∞-smooth. On the other hand ifΣ is not C1-smooth but is at least a 2-manifold, we say it is
C0-smooth ornonsmooth.

In this chapter and the chapters to follow, we assume thatΣ is aC2-smooth surface. Notice
that, by the definition of smoothness (condition (ii))Σ is a 2-manifold without boundary. We
also assume thatΣ is compact since we are interested in approximatingΣ with a finite simplicial
complex. We need one more assumption. Just like the curves, for a finite pointset to be anε-
sample for someε > 0, we need thatf (x) > 0 for any pointx in Σ. It is known thatC2-smooth
surfaces necessarily have positive feature size everywhere. The example in Chapter?? for curves
can be extended to surfaces to claim that aC1-smooth surface may not have positive local feature
sizes everywhere.

As a C2-smooth surfaceΣ has a tangent planeτx and a normalnx defined at each point
x ∈ Σ. We assume that the normals are oriented outward. More precisely,nx points locally to
the unbounded component ofR3 \ Σ. If Σ is not connected,nx points locally to the unbounded
component ofR3 \ Σ′ wherex is in Σ′, a connected component ofΣ.
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An important fact used in surface reconstruction is that, disregarding theorientation, the di-
rection of the surface normals can be approximated from the sample. An illustration inR2 is
helpful here. See Figure 30 in Chapter?? which shows the Voronoi diagram of a dense sample
on a smooth curve. This Voronoi diagram has a specific structure. EachVoronoi cell is elongated
along the normal direction at the sample points. Fortunately, the same holds in three dimensions.
The three dimensional Voronoi cells are long, thin, and the direction of the elongation matches
with the normal direction at the sample points when the sample is dense, see Figure 36.
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Figure 36: (a) Tangent plane and the normal at a point on a smooth surface, (b) a long thin Voronoi
cell elongated along the normal direction.

24 Normals

Let P ⊂ R3 be anε-sample ofΣ. If P is all we know aboutΣ, it is impossible to know the line
of direction ofnp exactly at a pointp ∈ P. However, it is conceivable that asP gets denser, we
should have more accurate idea about the direction ofnp by looking at the adjacent points. This
is what is done using the Voronoi cells in VorP.

For further developments we will often need to talk about how one vector approximates an-
other one in terms of the angles between them. We denote the angle between two vectorsu and
v as∠(u, v). For vector approximations that disregard the orientation, we use a slightlydifferent
notation. This approximation measures the acute angle between the line containing the vectors.
We use∠a(u, v) to denote this acute angle between two vectorsu andv. Since any such angle is
acute, we have the triangular inequality∠a(u, v) ≤ ∠a(u,w) + ∠a(v,w) for any three vectorsu, v
andw.

24.1 Approximation of normals

It turns out that the structure of the Voronoi cells contains information about normals. Indeed,
if the sample is sufficiently dense, the Voronoi cells become long and thin along the direction of
the normals at the sample points. One reason for this structural property is that a Voronoi cellVp
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must contain the medial axis points that are the centers of the medial balls tangent to Σ at p, see
Figure 37.
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Figure 37: Medial axis pointsm1 andm2 are in the Voronoi cellVp.

Lemma 25(Medial.). Let m1 and m2 be the centers of the two medial balls tangent toΣ at p. The
Voronoi cell Vp contains m1 and m2.

P. Denote the medial ball with centerm1 as B. The ballB meets the surfaceΣ only tan-
gentially at points, one of which isp. Thus,B is empty of any point fromΣ andP in particular.
Therefore, the centerm1 hasp as the nearest point inP. By definition of Voronoi cells,m1 is in
Vp. A similar argument applies to the other medial axis pointm2. ¤

¤

We have already mentioned that the Voronoi cells are long and thin and they are elongated
along the direction of the normals. The next lemma formalizes this statement by asserting that as
we go further fromp within Vp, the direction top becomes closer to the normal direction.

Lemma 26 (Normal.). For µ > 0 let v < Σ be a point in Vp with ‖v − p‖ > µ f (p). For ε < 1,
∠a(−→vp,np) ≤ arcsin ε

µ(1−ε) + arcsin ε1−ε .

P. Let m1 andm2 be the two centers of the medial balls tangent toΣ at p wherem1 is on the
same side ofΣ asv is. Bothm1 andm2 are inVp by the Medial Lemma 25. The line joiningm1

andp is normal toΣ at p by the definition of medial balls. Similarly, the line joiningm2 andp is
also normal toΣ at p. Therefore,m1,m2, andp are co-linear. See Figure 38. Consider the triangle
pvm2. We are interested in the angle∠m1pvwhich is equal to∠a(−→pv,np). From the trianglepvm2

we have
∠m1pv= ∠pvm2 + ∠vm2p.

To measure the two angles on the righthand side, drop the perpendicularpx from p onto the
segmentvm2. The line segmentvm2 intersectsΣ, say aty, sincem1 andm2 and hencev andm2 lie
on opposite sides ofΣ. Furthermore,y must lie insideVp since any point on the segment joining



62 Notes by Tamal K. Dey, OSU

pn

Σ

v

p

m

m

v
1

2

y
xΣ

p

Figure 38: Illustration for the Normal Lemma 26.

two pointsv andm2 in a convex setVp must lie within the same convex set. This meansy hasp
as the nearest sample point and thus

‖x− p‖ ≤ ‖y− p‖ ≤ ε f (y) by theε-sampling condition.

Using the Feature Translation Lemma 13 we get

‖x− p‖ ≤ ε

1− ε f (p)

whenε < 1. We have

∠pvm2 = arcsin
‖x− p‖
‖v− p‖ ≤ arcsin

ε

µ(1− ε) as‖v− p‖ ≥ µ f (p).

Similarly,

∠vm2p = arcsin
‖x− p‖
‖m2 − p‖ ≤ arcsin

ε

1− ε as‖m2 − p‖ ≥ f (p).

The assertion of the lemma follows immediately. ¤

¤

24.2 Normal variation

The directions of the normals at nearby points onΣ cannot vary too abruptly. In other words, the
surface looks flat locally. This fact is used later in many proofs.

Lemma 27 (Normal Variation.). If x, y ∈ Σ are any two points with‖x − y‖ ≤ ρ f (x) for ρ < 1
3,

∠(nx,ny) ≤ ρ

1−3ρ .

P. See the book [1] on Delaunay mesh generation for a proof. ¤

¤
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24.3 Edge and triangle normals

In Section 20, we saw that edges joining nearby points on a curve are almost parallel to the
tangents at the endpoints of the edge. Similar results also hold for triangles connecting points on
surfaces. But, the size is measured by circumradius. In fact, a triangle connecting three nearby
points on a surface but with a large circumradius may lie almost perpendicularto the surface.
However, if its circumradius is small compared to the local feature sizes at its vertices, it has to
lie almost parallel to the surface. For an edge, half of its length is the same as itscircumradius.
Therefore, a small edge lies almost parallel to the surface. In essence ifan edge or a triangle
has a small circumradius, it must lie flat to the surface. We quantify these claimsin the next two
lemmas.

Lemma 28(Edge Normal.). For an edge pq with‖p−q‖ ≤ 2 f (p), the angle∠a(−→pq,np) is at least
π
2 − arcsin‖p−q‖

2 f (p) .

P. Consider the two medial balls sandwiching the surfaceΣ at p. The pointq cannot lie

m

qΣ

θ

θp

Figure 39: Illustration for the Edge Normal Lemma 28.

inside any of these two balls as they are empty of points fromΣ. So, the smallest anglepqmakes
with np cannot be smaller than the anglepq makes withnp whenq is on the boundary of any of
these two balls. In this case letθ be the angle betweenpqand the tangent plane atp. Clearly, (see
Figure 39)

sinθ =
‖p− q‖

2‖m− p‖

≤ ‖p− q‖
2 f (p)

.

Therefore,

∠a(−→pq,np) =
π

2
− θ

≥ π

2
− arcsin

‖p− q‖
2 f (p)

.
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¤

¤

It follows immediately from the Edge Normal Lemma 28 that small edges make a largeangle
with the surface normals at the vertices. For example, ifpqhas a length less thanρ f (p) for ρ < 2,
the angle∠a(−→pq,np) is more thanπ2 − arcsinρ2.

Next consider a trianglet = pqr wherep is the vertex subtending a maximal angle inpqr.
Let Rpqr denote the circumradius ofpqr.

Lemma 29(Triangle Normal.). If Rpqr ≤ f (p)√
2

,

∠a(npqr,np) ≤ arcsin
Rpqr

f (p)
+ arcsin

(

2
√

3
sin

(

2 arcsin
Rpqr

f (p)

))

wherenpqr is the normal of pqr.

P. Consider the medial ballsB = Bm,ℓ andB′ = Bm′,ℓ′ that are tangent toΣ at p. Let D be
the diametric ball oft (smallest circumscribing ball); refer to Figure 40. The radius ofD is Rpqr.
Let C andC′ be the circles in which the boundary ofD intersects the boundaries ofB and B′

respectively. The line normal toΣ at p passes throughm, the center ofB. Let α be the larger of
the two angles this normal line makes with the normals to the planes containingC andC′. Since
the radii ofC andC′ are at mostRpqr we have

α ≤ arcsin
Rpqr

‖p−m‖ ≤ arcsin
Rpqr

f (p)
.

It follows from the definition ofα that the planes containingC andC′ make a wedge, sayW, with
an acute dihedral angle no more than 2α.
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Figure 40: Illustration for the Triangle Normal Lemma 29. The two great arcson the right picture
are the intersections of the unit sphere with the planes containingC andC′.

The other two verticesq, r of t cannot lie insideB or B′. This implies thatt lies completely in
the wedgeW. Let πt, π, andπ′ denote the planes containingt, C, andC′ respectively. Consider
a unit sphere centered atp. This sphere intersects the lineπ ∩ π′ at two points, sayu andu′.
Within W let the linesπt ∩ π andπt ∩ π′ intersect the unit sphere atv andw respectively. See the
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picture on the right in Figure 40. Without loss of generality, assume that the angle∠uvw≤ ∠uwv.
Consider the spherical triangleuvw. We are interested in the spherical angleθ = ∠uvwwhich is
also the acute dihedral angle between the planes containingt andC. We have the following facts.
The arc length ofwv, denoted|wv|, is at leastπ/3 sincep subtends the largest angle int andt is
in the wedgeW. The spherical angle∠vuw is less than or equal to 2α. By standard sine laws in
spherical geometry, we have

sinθ = sin|uw|sin∠vuw
sin|wv| ≤ sin|uw| sin 2α

sin|wv| .

If π/3 ≤ |wv| ≤ 2π/3, we have
sin|wv| ≥

√
3/2

and hence

θ ≤ arcsin

(

2
√

3
sin 2α

)

.

For the range 2π/3 < |wv| < π, we use the fact that|uw| + |wv| ≤ π. The arc length|wv| cannot be
longer than both|wu′| and|vu′| since∠vu′w ≤ 2α < π/2 for Rpqr ≤ f (p)√

2
. If |wv| ≤ |wu′|, we have

|uw| + |wv| ≤ |uu′| = π.

Otherwise,|wv| ≤ |vu′|. Then, we use the fact that|uw| ≤ |uv| as∠uvw≤ ∠uwv. So, again

|uw| + |wv| ≤ |uu′| = π.

Therefore, when|wv| > 2π
3 , we get

sin|uw|
sin|wv| < 1.

Thus,θ ≤ arcsin
(

2√
3

sin 2α
)

.

The normals tot andΣ at p make an acute angle at mostα + θ proving the lemma. ¤

¤

25 Topology

The sampleP as a set of discrete points does not have the topology ofΣ. A connection between the
topology ofΣ andP can be established through the restricted Voronoi and Delaunay diagrams. In
particular, one can show that the underlying space of the restricted Delaunay triangulation DelP|Σ
is homeomorphic toΣ if the sampleP is sufficiently dense. Although we will not be able to
compute DelP|Σ, the fact that it is homeomorphic toΣ will be useful in the surface reconstruction
later.
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25.1 Topological ball property

The underlying space of DelP|Σ becomes homeomorphic toΣ when the Voronoi diagram VorP
intersectsΣ nicely. This condition is formalized by the topological ball property which says that
the restricted Voronoi cells in each dimension is a ball.

Definition 52. Let F denote any Voronoi face of dimensionk, 0 ≤ k ≤ 3, in VorP which inter-
sectsΣ andF|Σ = F ∩ Σ be the corresponding restricted Voronoi face. The faceF satisfies the
topological ball property ifF|Σ is a (i) (k − 1)-ball and (ii) IntF ∩ Σ = Int F|Σ. The pair (P,Σ)
satisfies the topological ball property if all Voronoi facesF ∈ Vor P satisfy the topological ball
property.

Condition (i) means thatΣ intersects a Voronoi cell in a single topological disk, a Voronoi facet
in a single curve segment, a Voronoi edge in a single point, and does not intersect any Voronoi
vertex; see Figure 41. Condition (ii) avoids any tangential intersection between a Voronoi face
andΣ.

The following theorem is an important result relating the topology of a surface to a point
sample.

Theorem 30. The underlying space ofDelP|Σ is homeomorphic toΣ if the pair (P,Σ) satisfies the
topological ball property.

Σ

����

(a) (b) (c)

Figure 41: (a) A surfaceΣ intersects a Voronoi cell and its faces with the topological ball property,
(b) a surface does not intersect a Voronoi facet in a 1-ball, (c) a surface does not intersect a Voronoi
edge in a 0-ball.

Our aim is to show that, whenP is a dense sample, the topology ofΣ can be captured from
P. Specifically, we prove that the pair (P,Σ) satisfies the topological ball property whenε is
sufficiently small. The proof frequently uses the next two lemmas to reach a contradiction. The
first one says that the points in a restricted Voronoi cell, that is, the points of Σ in a Voronoi
cell, cannot be far apart. The second one says that any line almost normal to the surface cannot
intersect it twice within a small distance.
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Lemma 31(Short Distance.). Let x and y be any two points in a restricted Voronoi cell Vp|Σ. For
ε < 1, we have

(i) ‖x− p‖ ≤ ε
1−ε f (p) and

(ii) ‖x− y‖ ≤ 2ε
1−ε f (x).

P. Sincex hasp as the nearest sample point,‖x− p‖ ≤ ε f (x) for ε < 1. Apply the Feature
Translation Lemma 13 to claim (i). For (ii), observe that

‖x− y‖ ≤ ‖x− p‖ + ‖y− p‖
≤ ε( f (x) + f (y))

By the Lipschitz Continuity Lemma 12

f (y) ≤ f (x) + ‖x− y‖
≤ f (x) + ε( f (x) + f (y)), or

(1− ε) f (y) ≤ (1+ ε) f (x).

Therefore, forε < 1,

‖x− y‖ ≤ ε
(

1+
1+ ε
1− ε

)

f (x) ≤ 2ε
1− ε f (x).

¤

¤

A restricted Delaunay edgepq is dual to a Voronoi facet that intersectsΣ. Any such intersec-
tion point, sayx, is within ε

1−ε f (p) distance fromp by the Short Distance Lemma 31. The length
of pqcannot be more than twice the distance betweenx andp. Hence‖p− q‖ ≤ 2ε

1−ε f (p). We can
extend this argument to the restricted Delaunay triangles too. A restricted Delaunay trianglet is
dual to a Voronoi edgee that intersectsΣ. The intersection point, sayx, belongs to the Voronoi
cells adjacent toe. Let Vp be any such cell. The pointx is the center of a circumscribing ball of
the triangle dual toe. By the Short Distance Lemma 31,x is within ε

1−ε f (p) distance fromp. The
ball Bx,‖x−p‖ circumscribest. The circumradius oft is no more than‖x− p‖ as the circumradius of
a triangle cannot be more than any of its circumscribing ball (see Figure 42). Thus, the following
corollary is immediate from the Short Distance Lemma 31.

Corollary 32. For ε < 1, we have

(i) the length of a restricted Delaunay edge e is at most2ε
1−ε f (p) where p is any vertex of e and

(ii) the circumradius of any restricted Delaunay triangle t is at mostε1−ε f (p) where p is a vertex
of t.

Lemma 33 (Long Distance.). Suppose a line intersectsΣ in two points x and y and makes an
angle no more thanξ with nx. One has‖x− y‖ ≥ 2 f (x) cosξ.

P. Consider the two medial balls atx as in Figure 43. The line meets the boundaries of these
two balls atx and at points that must be at least 2r cosξ distance away fromx wherer is the
radius of the smaller of the two balls. Sincer ≥ f (x), the result follows asy cannot lie inside any
of the two medial balls. ¤

¤
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Figure 42: The circumradius of a triangle which is also the radius of its diamtericball (shown
with solid circle) is no more than the radius of a circumscribing ball (shown with dotted circle).

ξ

y

r

xΣ

Figure 43: Illustration for the Long Distance Lemma 33.

25.2 Voronoi faces

Next we consider in turn the Voronoi edges, Voronoi facets, and Voronoi cells and show that they
indeed satisfy the topological ball property ifε satisfies Condition A as stated below. Forε < 1

3,
let

α(ε) =
ε

1− 3ε

β(ε) = arcsin
ε

1− ε + arcsin

(

2
√

3
sin
(

2 arcsin
ε

1− ε

)

)

.

Condition A. ε <
1
3

and cos(α(ε) + β(ε)) >
ε

1− ε.

Figure 44 shows that, in the range 0< ε ≤ 1
3, Condition A holds forε a little less than 0.2. So,
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Figure 44: The graphs of the two functions on the left and right hand sides of the inequality in
Condition A.

for example,ε ≤ 0.18 is a safe choice. Since Condition A stipulatesε < 1
3 lemmas such as Normal

Variation, Long Distance, Short Distance and Corollary 32 can be appliedunder Condition A.

Lemma 34(Voronoi Edge.). A Voronoi edge intersectsΣ transversally in a single point if Condi-
tion A holds.

P. Suppose for the sake of contradiction there is a Voronoi edgee in a Voronoi cellVp

intersectingΣ at two pointsx andy, or at a single point tangentially, see Figure 45. The dual
Delaunay triangle, saypqr, is a restricted Delaunay triangle. By Corollary 32, its circumradius is
no more than ε1−ε f (p). By the Triangle Normal Lemma 29,∠a(npqr,np) ≤ β(ε) if

1
√

2
>
ε

1− ε
a restriction satisfied by Condition A.

The Normal Variation Lemma 27 puts an upper bound ofα(ε) on the angle between the
normals atp andx as‖x− p‖ ≤ ε f (x). Let ξ denote the angle betweennx and the Voronoi edge
e. We have

ξ = ∠a(nx,npqr) ≤ ∠a(nx,np) + ∠a(np,npqr)

≤ α(ε) + β(ε). (2)

If e intersectsΣ tangentially atx, we haveξ = π2 requiringα(ε) + β(ε) ≥ π2. Condition A requires
ε < 0.2 which givesα(ε) + β(ε) < π2. Therefore, when Condition A is satisfied,ecannot intersect
Σ tangentially. So, assume thate intersectsΣ at two pointsx andy.

By the Short Distance Lemma 31,‖x − y‖ ≤ 2ε
1−ε f (x) and by the Long Distance Lemma 33,

‖x− y‖ ≥ 2 f (x) cosξ. A contradiction is reached when 2 cosξ > 2ε
1−ε , or

cos(α(ε) + β(ε)) >
ε

1− ε . (3)

Condition A satisfies Inequality 3 giving the required contradiction. ¤

¤
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Figure 45: Illustration for the Voronoi Edge Lemma 34. A Voronoi edge intersecting the surface
(a) at two points, (b) tangentially in a single point.

Lemma 35(Voronoi Facet.). A Voronoi facet F intersectsΣ transversally in a1-ball if Condition
A is satisfied.

P. The intersection ofF with Σ may contradict the assertion of the lemma if (i)Σ touchesF
tangentially at a point, (ii)Σ intersectsF in a 1-sphere, that is, a cycle, or (iii)Σ intersectsF in
more than one component.

The dual Delaunay edge, saypq, of F is in the restricted Delaunay triangulation. LetnF

denote the normal toF. Its direction is the same as that ofpqup to orientation. We have‖p−q‖ ≤
2ε

1−ε f (p) by Corollary 32. Therefore, the Edge Normal Lemma 28 gives

∠a(np,nF) ≥ π
2
− arcsin

ε

1− ε
as long asε < 1.

If Σ meetsF tangentially at a pointx, we have∠a(nx,nF) = 0 and by the Normal Variation
Lemma 27∠np,nx ≤ ε

1−3ε whenε < 1
3. This means, forε < 1

3, we have

π

2
− arcsin

ε

1− ε ≤ ∠a(np,nF) ≤ ε

1− 3ε
= α(ε).

The above inequality contradicts the upper bound forε given by Condition A.
If Σ meetsF in a cycle, letx be any point on it andL be the line onF intersecting the cycle

at x orthogonally, see Figure 46(a). This line must meet the cycle in another point, sayy. The
angle betweenL andnx satisfies∠a(L,nx) ≤ ∠a(L′,nx) for any other lineL′ on F passing through
x. ChooseL′ that minimizes the angle withnp. The lineL′ being on the Voronoi facetF makes
exactly π2 angle with the dual restricted Delaunay edge, saypq. We know by the Edge Normal
Lemma 28

∠a(−→pq,np) ≥ π
2
− arcsin

ε

1− ε .

Therefore, forε < 1,
∠a(L′,np) =

π

2
− ∠a(−→pq,np) ≤ arcsin

ε

1− ε.
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Figure 46: A Voronoi facet intersectingΣ (a) in a cycle, (b) in two segments.

These facts with the Normal Variation Lemma 27 give

∠a(L′,nx) ≤ ∠a(L′,np) + ∠(np,nx) ≤ arcsin
ε

1− ε + α(ε) (4)

for ε < 1
3.

The right hand side of Inequality 4 is less than the upper bound forξ in the proof of the
Voronoi Edge Lemma 34. Thus, we reach a contradiction between distances implied by the Short
Distance Lemma 31 and the Long Distance Lemma 33 when Condition A holds.

In the caseΣ meetsF in two or more components as in Figure 46(b), consider any pointx in
one of the components. Lety be the closest point tox on any other component, sayC. If the line
L joining x andy meetsC orthogonally aty we have the situation as in the previous case with only
x andy interchanged. In the other case,y lies on the boundary ofC on a Voronoi edge. The angle
betweenL andny is less than the angle between the Voronoi edge andny which is no more than
α(ε) + β(ε) as proved in the Voronoi Edge Lemma 34 (Inequality 2). We reach a contradiction
again between two distances using the same argument. ¤

¤

Lemma 36(Voronoi Cell.). A Voronoi cell Vp intersectsΣ in a 2-ball if ConditionA holds.

P. We haveW = Vp ∩ Σ contained in a ballB of radius ε
1−ε f (p) by the Short Distance

Lemma 31. IfW is a manifold without boundary,B contains a medial axis pointmby the Feature
Ball Lemma 11. Then the radius ofB is at least

‖m− p‖
2

≥ f (p)
2
.

We reach a contradiction ifε < 1
3 which is satisfied by Condition A. So, assume thatW is a

manifold with boundary. It may not be a 2-ball only if it is non-orientable, has a handle, or has
more than one boundary cycle. IfW were non-orientable, so would beΣ, which is impossible. In
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caseW has a handle,B∩ Σ is not a 2-ball. By the Feature Ball Lemma 11, it contains a medial
axis point reaching a contradiction again forε < 1

3 which is satisfied by Condition A.
The only possibility left is thatW has more than one boundary cycles. LetL be the line of

the normal atp. Consider a plane that containsL and intersects at least two boundary cycles.
Such a plane exists since otherwiseL must intersectW at a point other thanp and we reach a
contradiction between two distance lemmas. The plane intersectsVp in a convex polygon andW
in at least two curves. We can argue as in the proof of the Voronoi Facet Lemma 35 to reach a
contradiction between two distance lemmas. ¤

¤

Condition A holds forε ≤ 0.18. Therefore, the Voronoi Edge Lemma, Facet Lemma, and
Cell Lemma hold forε ≤ 0.18. Then, Theorem 30 leads to the following result.

Theorem 37(Topological Ball.). Let P be anε-sample of a smooth surfaceΣ. For ε ≤ 0.18, (P,Σ)
satisfies the topological ball property and hence the underlying space ofDelP|Σ is homeomorphic
to Σ.

26 Notes and exercises

The remarkable connection betweenε-samples of a smooth surface and the Voronoi diagram of
the sample points was first discovered by Amenta and Bern [1]. The NormalLemma 26 and the
Normal Variation Lemma 27 are two key observations made in this paper. The topological ball
property that ensures the homeomorphism between the restricted Delaunaytriangulation and the
surface was discovered by Edelsbrunner and Shah [4]. Amenta and Bern showed that the Voronoi
diagram of a sufficiently dense sample satisfies the topological ball property though the proofwas
not as rigorous as presented here. The proof presented here is adapted from Cheng, Dey, Edels-
brunner, and Sullivan [2].

Exercises

1. Let the restricted Voronoi cellVp|Σ be adjacent to the restricted Voronoi cellVq|Σ in the
restricted Voronoi diagram Vor|Σ P. Show that the distance between any two pointsx andy
from the union ofVp|Σ andVq|Σ is Õ(ε) f (x) whenε is sufficiently small.

2. A version of the Edge Normal Lemma 28 can be derived from the TriangleNormal Lemma 29,
albeit with a slightly worse angle bound. Derive this angle bound and carryout the proof of
the topological ball property with this bound. Find out an upper bound onε for the proof.

3. The Topological Ball Property is a sufficient but not a necessary condition for the homeo-
morphism between a sampled surface and a restricted Delaunay triangulationof it. Estab-
lish this fact by an example.

4. Show an example where

(i) all Voronoi edges satisfy the topological ball property, but the Voronoi cell does not,
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(ii) all Voronoi facets satisfy the topological ball property, but the Voronoi cell does not.

5. Show that for anyn > 0, there exists aC2-smooth surface for which a sample withn points
has the Voronoi diagram where no Voronoi edge intersects the surface.

6h. Let F be a Voronoi facet in the Voronoi diagram VorP whereP is anε-sample of aC2-
smooth surfaceΣ. LetΣ intersectF in a single interval and the intersection points with the
Voronoi edges lie withinε f (p) away fromp whereF ⊂ Vp. Show that all points ofF ∩ Σ
lie within ε f (p) distance whenε is sufficiently small.

7. Let F andΣ be as described in exercise 6 butF ∩ Σ contains two or more topological
intervals. Show that there exists a Voronoi edgee ∈ F so thate∩ Σ is at leastλ f (p) away
from p whereλ > 0 is an appropriate constant.

8o. Let the pair (P,Σ) satisfy the topological ball property. We know that the underlying space
of DelP|Σ andΣ are homeomorphic. Prove or disprove that they are isotopic.
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Surface Reconstructiontaken from [3]

27 Surface Reconstruction

In the previous chapter we learned that the restricted Delaunay triangulation is a good approxi-
mation of a densely sampled surfaceΣ from both topological and geometric view point. Unfortu-
nately, we cannot compute this triangulation as the restricted Voronoi diagram VorP|Σ cannot be
computed without knowingΣ. As a remedy we approximate the restricted Voronoi diagram and
compute a set of triangles that is a superset of all restricted Delaunay triangles. This set is pruned
to extract a manifold surface which is output as an approximation to the sampledsurfaceΣ.

28 Algorithm

First we observe that each restricted Voronoi cellVp|Σ is almost flat if the sample is sufficiently
dense. This follows from the Normal Variation Lemma 27 as the points inVp|Σ cannot be far
apart ifε is small. In particular,Vp|Σ lies within a thin neighborhood of the tangent planeτp at
p. So we need two approximations, (i) an approximation toτp or equivalently tonp and (ii) an
approximation toVp|Σ based on the approximation tonp. The following definitions ofpolesand
coconesare used for these two approximations.

28.1 Poles and Cocones

Definition 53 (Poles.). The farthest Voronoi vertex, denotedp+, in Vp is called thepositive pole
of p. Thenegative poleof p is the farthest pointp− ∈ Vp from p so that the two vectors fromp
to p+ and p− make an angle more thanπ2. We callvp = p+ − p, thepole vectorfor p. If Vp is
unbounded,p+ is taken at infinity and the direction ofvp is taken as the average of all directions
given by the unbounded Voronoi edges.

The following lemma is a direct consequence of the Normal Lemma 26. It says that the pole
vectors approximate the true normals at the sample points.

Lemma 38 (Pole.). For ε < 1, the angle between the normalnp at p and the pole vectorvp

satisfies the inequality

∠a(np, vp) ≤ 2 arcsin
ε

1− ε .

P. First, consider the case whereVp is bounded. Since the Voronoi cellVp contains the
centers of the medial balls atp, we have‖p+ − p‖ ≥ f (p). Thus, pluggingµ = 1 in the Normal
Lemma 26 we obtain the result immediately.

Next, consider the case whereVp is unbounded. In this casevp is computed as the average
of the directions of the infinite Voronoi edges. The angle∠a(vp,np) in this case cannot be more
than the worst angle made by an infinite Voronoi edge withnp. An infinite Voronoi edgeemakes
the same angle withnp as the vector−−−→pp∞ does, where the infinite endpoint ofe is taken atp∞.



Notes by Tamal K. Dey, OSU 75

Again we have‖p− p∞‖ ≥ f (p) and the Normal Lemma 26 can be applied withµ = 1 to give the
result. ¤

¤

The Pole Lemma 38 says that the pole vector approximates the normalnp. Thus, the plane
τ̃p passing throughp with the pole vector as normal approximates the tangent planeτp. The
following definition ofcoconeaccommodates a thin neighborhood around ˜τp to account for the
small uncertainty in the estimation ofnp.

Definition 54 (Cocone.). The setCp = {y ∈ Vp : ∠a(−→py, vp) ≥ 3π
8 } is called the cocone ofp. In

words,Cp is the complement of a double cone that is clipped withinVp. This double cone hasp
as the apex, the pole vectorvp as the axis, and an opening angle of3π

8 with the axis. See Figure 47
for an example of a cocone.

Σ

+

p

p
a

b

Figure 47: The positive polep+ helps estimating the normal. The double cone forming the cocone
has the apex atp and axispp+. The Voronoi edgeab intersects the cocone. Its dual Delaunay
triangle is a cocone triangle.

As an approximation toVp|Σ, cocones meet all Voronoi edges that are intersected byΣ. So, if
we compute all triangles dual to the Voronoi edges intersected by cocones, we obtain all restricted
Delaunay triangles and possibly a few others. We call this set of trianglescocone triangles. We
will see later that all cocone triangles lie very close toΣ. A cleaning step is necessary to weed out
some triangles from the set of cocone triangles so that a 2-manifold is computed as output. This
is accomplished by amanifold extractionstep.

C(P)
1 compute VorP;
2 T = ∅;
3 for each Voronoi edgee ∈ Vor P do
4 if CT(e)
5 T := T ∪ duale;
6 endfor
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7 E :=EM(T);
8 output E.

Let us now look into the details of the two steps CT and EM.
In order to check if a Voronoi edgee = (a,b) intersectsCp we consider the three vectorsvp,

a = −→pa, b =
−→
pb, and three conditions I, II, and III:

I .

∣

∣

∣

∣

∣

∣

∣

vT
pa

‖vp‖‖a‖

∣

∣

∣

∣

∣

∣

∣

≤ cos
3π
8

or

∣

∣

∣

∣

∣

∣

∣

vT
pb

‖vp‖‖b‖

∣

∣

∣

∣

∣

∣

∣

≤ cos
3π
8
,

II .
vT

pa

‖vp‖‖a‖
< 0 and

−vT
pb

‖vp‖‖b‖
< 0,

III .
vT

pa

‖vp‖‖a‖
> 0 and

−vT
pb

‖vp‖‖b‖
> 0.

Condition I checks if any of the verticesa andb of the Voronoi edgee lies insideCp. Con-
ditions II and III check if botha andb lie outsideCp, but the edgee crosses it. The triangle
t = duale is marked as a cocone triangle only ife intersects cocones ofall three vertices oft.

CT(e)
1 t := duale;
2 flag := ;
3 for each vertexp of t do
4 if none of Conditions I, II, and III holds
5 flag:=;
6 endfor

7 return flag.

The setT of cocone triangles enjoys some interesting geometric properties which we exploit
in the manifold extraction step as well as in the proofs of geometric and topological guarantees of
C. Of course, the sample has to be sufficiently dense for these properties to hold. In the rest
of the chapter we assume thatε ≤ 0.05 which satisfies Condition A stated in Chapter 23, enabling
us to apply the results therein.

28.2 Cocone triangles

First we show that each triangle inT has a small empty ball circumscribing it, i.e., the radius of
this ball is small compared to the local feature sizes at their vertices. Notice that the diametric
ball of a triangle may not be empty. Hence, the smallestemptyball circumscribing a triangle
may not be its diametric ball. Nevertheless, a small empty circumscribing ball also means that
the circumradius of the triangle is small. This fact together with the Triangle Normal Lemma 29
implies that all cocone triangles lie almost flat to the surface.

Lemma 39(Small Triangle.). Let t be any cocone triangle and r denote the radius of the smallest
empty ball circumscribing t. For each vertex p of t andε ≤ 0.05, one has



Notes by Tamal K. Dey, OSU 77

(i) r ≤ 1.18ε
1−ε f (p) and

(ii) circumradius of t is at most1.18ε
1−ε f (p).

P. Let zbe any point inVp so that

∠a(np,
−→pz) ≥ 3π

8
− 2 arcsin

ε

1− ε . (5)

First we claim that for any such pointz, we have‖z− p‖ ≤ 1.18 ε
1−ε f (p) if ε ≤ 0.05.

If ∠a(np,
−→pz) > θ = arcsin ε

µ(1−ε) + arcsin ε1−ε , then‖z− p‖ ≤ µ f (p) according to the Normal

Lemma 26. Withµ = 1.18ε
1−ε andε ≤ 0.05 we have

θ = arcsin
1

1.18
+ arcsin

ε

1− ε <
3π
8
− 2 arcsin

ε

1− ε . (6)

Thus, from Inequalities 5 and 6 we have

∠a(np,
−→pz) ≥ 3π

8
− 2 arcsin

ε

1− ε > θ. (7)

Therefore, any pointz ∈ Vp satisfying Inequality 5 also satisfies

‖z− p‖ ≤ 1.18ε
1− ε f (p).

Now let t be any cocone triangle withp being any of its vertices ande= dualt being its dual
Voronoi edge. Fort to be a cocone triangle, it is necessary that there is a pointy ∈ e so that
∠a(vp,

−→py) ≥ 3π
8 . Taking into account the angle∠a(vp,np), this necessary condition implies

∠a(np,
−→py) ≥ 3π

8
− 2 arcsin

ε

1− ε

which satisfies Inequality 5. Hence, we have

‖y− p‖ ≤ 1.18 ε
1− ε f (p) for ε ≤ 0.05.

The ballBy,‖y−p‖ is empty and circumscribest proving (i). The claim in (ii) follows immedi-
ately from (i) as the circumradius oft cannot be larger than the radius of any ball circumscribing
it. ¤

¤

The next lemma proves that all cocone triangles lie almost parallel to the surface. The angle
bounds are expressed in terms ofα(ε) andβ(ε) that are defined in Chapter 23.

Lemma 40 (Cocone Triangle Normal.). Let t be any cocone triangle andnt be its normal. For
any vertex p of t one has∠a(np,nt) ≤ α(2.36ε

1−ε ) + β (1.18ε) whenε ≤ 0.05.
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P. Let q be a vertex oft with a maximal angle oft. The circumradius oft is at most1.18ε
1−ε f (q)

by the Small Triangle Lemma 39. Then, by the Triangle Normal Lemma 29,

∠a(nq,nt) ≤ arcsin
1.18ε
1− ε + arcsin

(

2
√

3
sin

(

2 arcsin
1.18ε
1− ε

))

≤ arcsin
1.18ε

1− 1.18ε
+ arcsin

(

2
√

3
sin

(

2 arcsin
1.18ε

1− 1.18ε

))

= β (1.18ε) for ε ≤ 0.05.

The distance betweenp andq is no more than the diameter of the circle circumscribingt, i.e.,
‖p−q‖ ≤ 2.36ε

1−ε f (p) (Small Triangle Lemma 39). By the Normal Variation Lemma 27,∠(np,nq) ≤
α(2.36ε

1−ε ). The desired bound for∠a(np,nt) follows since it is no more than the sum∠(np,nq) +
∠a(nq,nt). ¤

¤

28.3 Pruning

Prior to the extraction of a 2-manifold from the set of cocone triangles, someof them are pruned.
An edgee is sharp if any two consecutive cocone triangles around it form an angle more than
3π
2 ; see Figure 48. Edges with a single triangle incident to them are also sharp by default. We

will show later that the cocone triangles include all restricted Delaunay triangles when a sample
is sufficiently dense. The set of restricted Delaunay triangles cannot be incident to sharp edges.
This implies that we can prune triangles incident to sharp edges and still retainthe set of restricted
Delaunay triangles. In fact, we can carry out this pruning in a cascadedmanner. By deleting one
triangle incident to a sharp edge, we may create other sharp edges. Sinceno restricted Delaunay
triangle is pruned, none of their edges become sharp. Therefore, it is safe to delete the new sharp
edges with all of their incident triangles.

e e

Figure 48: The edgee is not sharp in the left picture; it is sharp in the right picture.

This pruning step weeds out all triangles incident to sharp edges, but theremaining triangles
still may not form a surface. They may form layers of thin pockets creatinga non-manifold. A
manifold surface is extracted from this possibly layered set bywalkingoutside the space covered
by them, see Figure 49. The manifold extraction step depends on the fact that cocone triangles
contain all restricted Delaunay triangles none of whose edges is sharp. We prove this fact below.

Theorem 41(Restricted Delaunay.). For ε ≤ 0.05, the following conditions hold:

(i) cocone triangles contain all restricted Delaunay triangles and

(ii) no restricted Delaunay triangle has a sharp edge.
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Figure 49: Thin pockets left after pruning, a manifold is obtained by walkingon the outside
indicated by the dotted curve.

P. Consider (i). Lety be any point in any restricted Voronoi cellVp|Σ. We claim that
∠a(np,

−→py) is larger thanπ2 − arcsin ε
2(1−ε) . We have‖y − p‖ ≤ ε f (y) sincey ∈ Vp|Σ andP is an

ε-sample ofΣ. By the Feature Translation Lemma 13,‖y− p‖ ≤ ε
1−ε f (p). We can therefore apply

the proof of the Edge Normal Lemma 28 to establish that

∠a(np,
−→py) ≥ π

2
− arcsin

ε

2(1− ε) .

Let t be any restricted Delaunay triangle ande = dualt be the dual Voronoi edge. Consider
the pointy = e∩ Σ. We havey ∈ Vp|Σ for each of the three pointsp ∈ P determininge. For each
suchp, the angle∠a(np,

−→py) is larger thanπ/2− arcsin ε
2(1−ε) . Therefore,

∠a(−→py, vp) ≥ ∠a(−→py,np) − ∠a(np, vp)

≥ π

2
− arcsin

ε

2(1− ε) − ∠a(np, vp). (8)

By the Pole Lemma 38 we have

∠a(np, vp) + arcsin
ε

2(1− ε) ≤ 2 arcsin
ε

1− ε + arcsin
ε

2(1− ε)
<
π

8
for ε ≤ 0.05.

So, by Inequality 8,∠a(−→py, vp) > 3π
8 . Therefore, the pointy is in the coconeCp by definition.

Hencet is a cocone triangle.
Consider (ii). Lett1 andt2 be adjacent triangles in the restricted Delaunay triangulation with

e as their shared edge and letp ∈ e be any of their shared vertices. Sincet1 andt2 belong to the
restricted Delaunay triangulation, they have circumscribing empty ballsB1 andB2, respectively,
centered at points, sayv1 andv2 of Σ.

The boundaries ofB1 and B2 intersect in a circleC contained in a planeH, with e ⊂ H.
The planeH separatest1 andt2, since the third vertex of each triangle lies on the boundary of its
circumscribing ball, andB1 ⊆ B2 on one side ofH, while B2 ⊆ B1 on the other. See Figure 50.
The line throughv1, v2 is perpendicular toH. Bothv1 andv2 belong to the Voronoi facet dual toe.
This meansv1 andv2 belong to a restricted Voronoi cell and the distance‖v1−v2‖ ≤ 2ε

(1−ε) f (v1) by
the Short Distance Lemma 31. So the segmentv1v2 forms an angle of at leastπ/2−arcsin ε1−ε with
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nv1 (Edge Normal Lemma 28). This normal differs, in turn, fromnp by an angle of at most ε1−3ε
(Normal Variation Lemma 27). So, the angle betweenH andnp is at most ε1−3ε + arcsin ε1−ε . For
smallε, they are nearly parallel. In particular, ifε ≤ 0.05,H makes at most 7◦ with np. Similarly,
pluggingε ≤ 0.05 in the angle upper bound of the Cocone Triangle Normal Lemma 40, one gets
that the normals of botht1 andt2 differ from the surface normal atp by at most 24◦.

1

t
1

2
e

1
B

H

e
2

2

2
vv

1

B

tt

t

Figure 50: Illustration for the Restricted Delaunay Theorem 41.

Thus we havet1 on one side ofH, t2 on the other and the smaller angle betweenH and either
triangle is at least 59◦. Hence the smaller angle betweent1 and t2 is at least 118◦ ande is not
sharp. ¤

¤

28.4 Manifold extraction

A simplicial complex with an underlying space of a 2-manifold is extracted out ofthe pruned set
of cocone triangles. LetΣ′ ⊆ Σ be any connected component of the sampled surface. Since cocone
triangles are small (Small Triangle Lemma 39), they cannot join points from different components
of Σ. Let T′ be the pruned set of cocone triangles with vertices inΣ′. Consider the medial axis of
Σ′. The triangles ofT′ lie much closer toΣ′ than to its medial axis. Furthermore,T′ includes the
restricted Delaunay triangulation DelP|Σ′ (Restricted Delaunay Theorem 41). Therefore, if|T′|
denotes the underlying space ofT′, the spaceR3\ |T′| has precisely two disjoint open setsOin and
Oout containing the inner and outer medial axis ofΣ′ respectively. The manifold extraction step
computes the boundary of the closure ofOout, which we simply refer to as the boundary ofOout.

Let E′ be the boundary ofOout. We claim thatE′ is a 2-manifold. Letp be any vertex ofE′.
Orient the normalnp so that it points towardOout. Consider a sufficiently small ballB centering
p. Call the point where the ray ofnp intersects the boundary ofB thenorth pole. Obviously the
north pole is inOout. Let Tp denote the set of triangles inT′ which are visible from the north pole
within B. The triangles ofTp are in the boundary ofOout. Since there is no sharp edge inT′, the
set of trianglesTp makes a topological disk. We argue thatTp is the only set of triangles in the
boundary ofOout which are incident top.

Let q , p be a vertex of a trianglet ∈ Tp. The trianglet is also inTq. If not, the line of the
normalnp, when moved parallelly through the edgepq towardq, must hit an edge inT′ that is
sharp. The assumption to this claim is that the normalsnp andnq are almost parallel and hence
the visibility directions atp andq are almost parallel. SinceT′ does not have any sharp edge,t
is in Tq. This means that all topological disks at the vertices ofE′ are compatible and they form
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a 2-manifold. This 2-manifold separatesOout from T′ implying that E′ cannot have any other
triangles fromT′ other than the ones in the topological disks described above.

We computeE′ from T′ as a collection of triangles by a depth first walk in the Delaunay tri-
angulation DelP. Recall thatT′ is disjoint from any other triangles on a component ofΣ different
from Σ′. The walk starts with a seed triangle inT′. The routine S computes this seed triangle
for each componentT′ of the pruned set by another depth first walk in the Delaunay triangulation.
At any generic step, S comes to a trianglet via a tetrahedronσ and performs the following
steps. First, it checks ift is a cocone triangle. If so, it checks if it belongs to a componentT′ for
which a seed has not yet been picked. If so, the pair (σ, t), also called theseed pair, is put into the
seed set. Then, it marks all triangles ofT′ so that any subsequent check can identify that a seed
for T′ has been picked. The walk continues through the triangles and their adjacent tetrahedra
in a depth first manner till a seed pair for each component such asT′ of T is found. In a seed
pair (σ, t) for a componentT′, the tetrahedronσ and the trianglet should be inOout and on its
boundaryE′ respectively. To ensure it S starts the walk from any convex hull triangle in DelP
and continue till it hits a cocone triangle. The initiation of the walk from a convexhull triangle
ensures that the first triangle encountered in a component is on the outsideof that component or
equivalently on the boundary ofOout defined for that component. Assuming the function S, a
high level description of EM is given below.

EM(T)
1 T := prunedT;
2 S D:= S(T);
3 for each tuple (σ, t) ∈ S Ddo
4 E′ := ST(σ,t);
5 E := E ∪ E′;
6 endfor

7 return the simplicial complex ofE.

The main task in EM is done by ST which takes a seed pair (σ, t)
as input. First, we initialize the surfaceE′ with the seed trianglet which is definitely inE′ (line
1). Next, we initialize a stackPendingwith the triple (σ, t,e) wheree is an edge oft (lines 3 and
4). As long as the stackPendingis not empty, we pop its top element (σ, t,e). If the edgee is not
already processed we call the function SN to compute a tetrahedron-triangle pair
(σ′, t′) (line 9). The tetrahedronσ′ is adjacent tot′ and intersectsOout wheret′ is in E′ and is
adjacent tot via e. The trianglet′ is inserted inE′. Then two new triples (σ′, t′,e′) are pushed on
the stackpendingfor each edgee′ , eof t′ (lines 11 to 13). Finally we returnE′ (line 16).

ST(σ,t)
1 E′ := {t};
2 Pending:= ∅;
3 pick any edgeeof t;
4 push (σ, t,e) on Pending;
5 while Pending, ∅ do
6 pop (σ, t,e) from Pending;
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7 if e is not marked processed
8 markeprocessed;
9 (σ′, t′) := SN (σ, t,e);

10 E′ := E′ ∪ {t′};
11 for each edgee′ , eof t′ do
12 push (σ′, t′,e) on Pending;
13 endfor

14 endif

15 endwhile

16 return E′.

The question is how to implement the function SN. It has to output a tuple
(σ′, t′) wheret′ is the neighbor oft on the surface given byE′ andσ′ is an adjacent tetrahedron
intersectingOout. One can compute the surface neighbort′ of t using some numerical computa-
tions involving some dot product computations of vectors. However, thesecomputations often
run into trouble due to numerical errors with finite precision arithmetics. In particular, triangles
of certain types of flat tetrahedra calledslivers tend to contribute to these numerical errors and
slivers are not uncommon in the Delaunay triangulation of a sample from a surface.

A robust and faster implementation of the function SN avoids numerical com-
putations by exploiting the combinatorial structure of the Delaunay triangulation. Every triangle
in the Delaunay triangulation has two incident tetrahedra if we account for the infinite ones in-
cident to the convex hull triangles. SN is called with a triple (σ, t,e). It circles
over the tetrahedra and triangles incident to the edgeestarting fromt and going towards the other
triangle ofσ incident toe. This circular walk stops when another cocone trianglet′ is reached.
If t′ is reached via the tetrahedronσ′, we output the pair (σ′, t′). Assuming inductively thatσ
intersectsOout, the tetrahedronσ′ also intersectsOout. For example, in Figure 51, SN-
 is passed on the triple (σ1, t,e) and then it circles through the tetrahedraσ1, σ2, σ3 and their
triangles till it reachest′. At this point it returns (σ3, t′) where bothσ1 andσ3 lie outside, i.e.,
in Oout. ST with this implementation of SN is robust since no numeri-
cal decisions are involved, see Figure 51. Combinatorial computations instead of numerical ones
make ST fast provided the Delaunay triangulation is given in a form which allows to
answer queries for neighboring tetrahedra quickly.

Figure 51: A stable computation of SN (left), a zoom on a reconstruction after
an unstable computation with numerical errors (middle) and a stable computation without any
numerical error (right).
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29 Geometric guarantees

In this section we establish more properties of the cocone triangles which areeventually used to
prove the geometric and topological guarantees of the output of C. We introduce a mapν
that takes each pointx ∈ R3 to its closest point inΣ. Notice thatν is well defined everywhere in
R

3 except at the medial axisM of Σ. Mathematically,ν : R3 \ M → Σ whereν(x) ∈ Σ is closest
to x. Observe that the line containingx andν(x) is normal toΣ at x. The mapν will be used at
many places in this chapter and the chapters to follow. Let

x̃ = ν(x) for any pointx ∈ R3 \ M and

Ũ = {x̃ : x ∈ U} for any setU ⊂ R3 \ M.

See Figure 52 for an illustration.

Σ

~
U

U

x
x~

n~x

M

Figure 52: Illustration for the mapν.

First, we show that all points of the cocone triangles lie close to the surface.This, in turn,
allows us to extend the Cocone Triangle Normal Lemma 40 to the interior points of the cocone
triangles. The restriction ofν to the underlying space|T | of the set of cocone trianglesT is a well
defined function; refer to Figure 53. For if some pointx had more than one closest point on the
surface whenε ≤ 0.05, x would be a point of the medial axis giving‖p− x‖ ≥ f (p) for any vertex
p of a triangle inT; but by the Small Triangle Lemma 39 every pointq ∈ |T | is within 1.18 ε

1−ε f (p)
distance of a triangle vertexp ∈ Σ for ε ≤ 0.05.

~
Σ

|T|

U

ν

U

Figure 53: The mapν restricted to|T |.
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In the next two lemmas and also later we use the notationÕ(ε) defined in Section 18.3.

Lemma 42. Let q be any point in a cocone triangle t∈ T. The distance between q and the point
q̃ is Õ(ε) f (q̃) and is at most0.08f (q̃) for ε ≤ 0.05.

P. By the Small Triangle Lemma 39 the circumradius oft is at mostµ f (p) whereµ = 1.18 ε
1−ε ≤

.07 andp is any of its vertices. Letp be a vertex oft subtending a maximal angle oft. Since there
is a sample point, namely a vertex oft, within µ f (p) distance fromq, we have‖q− q̃‖ ≤ µ f (p).
We are interested in expressing this bound in terms off (q̃), so we need an upper bound on‖p− q̃‖.

The triangle vertexp has to lie outside the medial balls at ˜q, while, since ˜q is the nearest sur-
face point toq, q must lie on the segment between ˜q and the center of one of these medial balls.
For any fixed‖p− q‖, these facts imply that‖p− q̃‖ is maximized when the angle∠pqq̃ is a right
angle. Thus,‖p− q̃‖ ≤

√
5µ f (p) ≤ 0.14f (p) for ε ≤ 0.05. This implies thatf (p) = Õ(ε) f (q̃) and

in particular f (p) ≤ 1.17f (q̃) by Lipschitz property off . We have‖q − q̃‖ ≤ µ f (p) = Õ(ε) f (q̃)
and‖q− q̃‖ ≤ 0.08f (q̃) in particular. ¤

¤

With a little more work, we can also show that the triangle normal agrees with the surface
normal atq̃.

Lemma 43. Let q be a point on triangle t∈ T. The angle∠(nq̃,np) is at most14◦ where p is a
vertex of t with a maximal angle. Also, the angle∠a(nq̃,nt) is Õ(ε) and is at most38◦ for ε ≤ 0.05.

P. We have already seen in the proof of Lemma 42 that‖p − q̃‖ = Õ(ε) f (p). In particu-
lar, ‖p − q̃‖ ≤ 0.14f (p) whenε ≤ 0.05. Applying the Normal Variation Lemma 27, and taking
ρ = Õ(ε) (ρ = 0.14 in particular), shows that the angle betweennq̃ andnp is Õ(ε) and is less than
14◦. The angle betweennt andnp is Õ(ε) and is less than 24◦ for ε ≤ 0.05 by the Cocone Triangle
Normal Lemma 40. Thus, the triangle normal andnq̃ makeÕ(ε) angle which is at most 38◦ for
ε ≤ 0.05. ¤

¤

Lemma 39, Lemma 42, and Lemma 43 imply that the output surface|E| of C is close to
Σ both point-wise and normal-wise. The following theorem states this precisely.

Theorem 44. The surface|E| output byC satisfies the following geometric properties for
ε ≤ 0.05.

(i) Each point p∈ |E| is within Õ(ε) f (x) distance of a point x∈ Σ. Conversely, each point
x ∈ Σ is within Õ(ε) f (x) distance of a point in|E|.

(ii) Each point p in a triangle t∈ E satisfies∠a(np̃,nt) = Õ(ε).

29.1 Additional properties

We argued in Section 28.4 that the underlying space of the simplicial complex output by C
is a 2-manifold. LetE be this simplicial complex output by C. A pair of trianglest1, t2 ∈ E
areadjacentif they share at least one common vertexp. Since the normals to all triangles shar-
ing p differ from the surface normal atp by at most 24◦ (apply the Cocone Triangle Normal
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Lemma 40), and that normal in turn differs from the pole vector atp by less than 7◦ (apply the
Pole Lemma 38), we can orient the triangles sharingp, arbitrarily but consistently. We call the
normal facing the positive pole theinsidenormal and the normal facing away from it theoutside
normal. Letθ be the angle between the two inside normals oft1, t2. We define the angle at which
the two triangles meet atp to beπ − θ.
P I: Every two adjacent triangles inE meet at their common vertex at an angle greater
thanπ/2.

Requiring this property excludes manifolds which contain sharp folds and,for instance, flat tun-
nels. Since the cocone triangles are all nearly perpendicular to the surface normals at their vertices
(Cocone Triangle Normal Lemma 40) and the manifold extraction step eliminates triangles adja-
cent to sharp edges,E has this property.

P II: Every point inP is a vertex ofE.

The Restricted Delaunay Theorem 41 ensures that the setT of cocone triangles contains all re-
stricted Delaunay triangles even after the pruning. Therefore at this point T contains a triangle
adjacent to every sample point inP. Lemma 45 below says that each sample point is exposed to
the outside for the component ofT to which it belongs. This ensures that at least one triangle is
selected for each sample point by the manifold extraction step. This implies thatE has the second
property as well.

Lemma 45(Exposed.). Let p be a sample point and let m be the center of a medial ball B tangent
to Σ at p. No cocone triangle intersects the interior of the segment pm forε ≤ 0.05.

P. In order to intersect the segmentpm, a cocone trianglet would have to intersectB and so
would the smallest empty ball circumscribingt. Call it D. Let H be the plane of the circle where
the boundaries ofB andD intersect. See Figure 54. We argue thatH separates the interior ofpm
andt.

m

Σ
p

D

B

H

Figure 54: Illustration for the Exposed Lemma.

On one side ofH, B is contained inD and on the other,D is contained inB. Since the vertices
of t lie on Σ and hence not in the interior ofB, t has to lie in the open halfspace, call itH+, in
which D is outsideB. SinceD is empty,p cannot lie in the interior ofD; but sincep lies on the
boundary ofB, it therefore cannot lie inH+. We claim thatm < H+ either.

Sincem ∈ B, if it lay in H+, m would be contained inD. Sincem is a point of the medial
axis, the radius ofD would be at leastf (p′)

2 for any vertexp′ of t. Forε ≤ 0.05, this contradicts
the Small Triangle Lemma 39. Thereforep,m, and hence the segmentpmcannot lie inH+ and
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H separatest andpm. ¤

30 Topological guarantee

Recall that a functionh : X → Y defines a homeomorphism between two compact Euclidean
subspacesX andY if h is continuous, one-to-one, and onto. In this section, we will show a
homeomorphism betweenΣ and any piecewise-linear 2-manifold made up of cocone triangles
from T. The piecewise-linear manifoldE selected by the manifold extraction step is such a space
thus completing the proof of homeomorphism.

30.1 The mapν

We define the homeomorphism explicitly, using the functionν : R3 \ M → Σ, as defined earlier.
We will consider the restrictionν′ of ν to the underlying space|E| of E, i.e., ν′ : |E| → Σ. Our
approach will be first to show thatν′ is well-behaved on the sample points themselves and then
show that this property extends in the interior of each triangle inE.

Lemma 46. For ε ≤ 0.05, ν′ : |E| → Σ is a well defined continuous function.

P. By the Small Triangle Lemma 39, every pointq ∈ |E| is within 1.18ε
1−ε f (p) of a triangle

vertex p ∈ Σ whenε ≤ 0.05. Therefore,|E| ⊂ R3 \ M for ε ≤ 0.05. It follows thatν′ is well
defined. It is continuous since it is a restriction of a continuous function. ¤

¤

Let q be any point such that ˜q is a sample pointp. By the Exposed Lemma 45,q lies on the
segmentpmwherem is the center of a medial ball touchingΣ at p. We have the following.

Corollary 47. For ε ≤ 0.05, the functionν′ is one-to-one from|E| to every sample point p.

In what follows, we will show thatν′ is indeed one-to-one on all of|E|. The proof proceeds in
three short steps. We show thatν′ induces a homeomorphism on each triangle, then on each pair
of adjacent triangles and finally on|E| as a whole.

Lemma 48. Let U be a region contained within one triangle t∈ E or in adjacent triangles of E.
For ε ≤ 0.05, the functionν′ defines a homeomorphism between U andŨ ⊂ Σ.

P. We know thatν′ is well defined and continuous onU, so it only remains to show that it
is one-to-one. First, we prove that ifU is in one trianglet, ν′ is one-to-one. For a pointq ∈ t,
the vectornq from q̃ to q is perpendicular to the surface at ˜q; sinceΣ is smooth, the direction of
nq is unique and well defined. If there were somey ∈ t with ỹ = q̃, thenq, q̃, andy would all
be collinear andt itself would have to contain the line segment betweenq andy, see Figure 55.
This implies that the normalnq is parallel to the plane oft. In other words,nq is orthogonal to the
normal oft, contradicting the Cocone Triangle Normal Lemma 40 which says that the normal of
t is nearly parallel tonq.

Now, we consider the case in whichU is contained in more than one triangle. Letq andy be
two points inU such that ˜q = ỹ = x and letv be a common vertex of the triangles that containU.
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~q=~y

|E|

y

Σ

q

Figure 55:ν′ mapsy andq to the same point which is impossible.

Sinceν′ is one-to-one in one triangle,q andy must lie in the two distinct trianglestq andty. The
line l throughx with directionnx pierces the patchU at least twice; ify andq are not adjacent
intersections alongl, redefineq so that this is true (˜q = x for any intersectionq of l with U). Now
consider the orientation of the patchU according to the direction to the positive pole atv. Eitherl
passes from inside to outside and back to inside when crossingy andq, or from outside to inside
and back to outside.

The acute angles between the triangle normals oftq, ty andnx are less than 38◦ (Lemma 43),
that is, the triangles are stabbed nearly perpendicularly bynx. But since the orientation ofU is
opposite at the two intersections, the angle between the twoorientedtriangle normals is greater
than 104◦, meaning thattq andty must meet atv at an acute angle. This would contradict P
I, which is thattq andty meet atv at an obtuse angle. Hence there are no two pointsy,q in U with
q̃ = ỹ. ¤

¤

30.2 Homeomorphism proof

We finish the proof for homeomorphism guarantee using a theorem from topology.

Theorem 49 (Homeomorphism.). The mapν′ defines a homeomorphism from the surface|E|
computed byC to the surfaceΣ for ε ≤ 0.05.

P. Let Σ′ ⊂ Σ beν′(|E|). We first show that (|E|, ν′) is acovering spaceof Σ′. Informally,
(|E|, ν′) is a covering space forΣ′ if ν′ maps|E| smoothly ontoΣ′, with no folds or other sin-
gularities. Showing that (|E|, ν′) is a covering space is weaker than showing thatν′ defines a
homeomorphism, since, for instance, it does not preclude several connected components of|E|
mapping onto the same component ofΣ′, or more interesting behavior, such as a torus wrapping
twice around another torus to form adouble covering.

For a setX ⊆ Σ′, let τ(X) denote the set in|E| so thatν′(τ(X)) = X. Formally, the (|E|, ν′) is a
covering space ofΣ′ if, for every x ∈ Σ′, there is a path-connectedelementary neighborhood Vx

aroundx such that each path-connected component ofτ(Vx) is mapped homeomorphically onto
Vx by ν′.

To construct such an elementary neighborhood, note that the set of pointsτ(x) corresponding
to a pointx ∈ Σ′ is non-zero and finite, sinceν′ is one-to-one on each triangle ofE and there are
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Figure 56: Proof of the Homeomorphism Theorem 49;τ(x) = {q1,q2,q3}.

only a finite number of triangles. For each pointq ∈ τ(x), we choose an open neighborhoodUq of
q, homeomorphic to a disk and small enough so thatUq is contained only in triangles that contain
q. See Figure 56.

We claim thatν′ maps eachUq homeomorphically ontoŨq. This is because it is continuous,
it is ontoŨq by definition, and, since any two pointsx andy in Uq are in adjacent triangles, it is
one-to-one by Lemma 48.

Let U′(x) =
⋂

q∈τ(x) ν
′(Uq), the intersection of the maps of each of theUq. U′(x) is the

intersection of a finite number of open neighborhoods, each containingx, so we can find an open
disk Vx aroundx. Vx is path connected and each component ofτ(Vx) is a subset of someUq and
hence is mapped homeomorphically ontoVx by ν′. Thus (|E|, ν′) is a covering space forΣ′.

We now show thatν′ defines a homeomorphism between|E| andΣ′. Sinceν′ : |E| → Σ′ is
onto by definition, we need only thatν′ is one-to-one. Consider one connected componentG of
Σ′. A theorem of algebraic topology says that when (|E|, ν′) is a covering space ofΣ′, the setsτ(x)
for all x ∈ G have the same cardinality. We now use Corollary 47, thatν′ is one-to-one at every
sample point. Since each connected component ofΣ contains some sample points, it must be the
case thatν′ is everywhere one-to-one and|E| andΣ′ are homeomorphic.

Finally, we show thatΣ′ = Σ. Since|E| is a 2-manifold without boundary and is compact,Σ′

must be as well. SoΣ′ cannot include part of a connected component ofΣ, and henceΣ′ must
consist of a subset of the connected components ofΣ. Since every connected component ofΣ
contains a samplep (actually many sample points) andν′(p) = p, all components ofΣ belong to
Σ′. Therefore,Σ′ = Σ and|E| andΣ are homeomorphic. ¤

¤

It can also be shown that|E| andΣ are isotopic (Exercise 7). We will show a technique to
prove isotopy in Section??.

31 Notes and exercises

The first algorithm for surface reconstruction with proved guaranteeswas devised by Amenta and
Bern [1]. They generalized the C algorithm for curve reconstruction to the surface recon-
struction problem. The idea of poles and approximating the normals with the pole vector was a
significant breakthrough. The crust triangles (Exercise 2) enjoy somenice properties that help
the reconstruction. The C algorithm as described here is a successor of C. Devised by
Amenta, Choi, Dey, and Leekha [2], this algorithm simplified the C algorithm and its proof of
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correctness. C eliminated one of the two Voronoi diagram computations of C and also
a normal filtering step. The homeomorphism between the reconstructed surface and the original
sampled surface was first established in [2].

Exercises

1. We know that Voronoi vertices for a dense sample from a curve in the plane lie near the
medial axis. The same is not true for surfaces in three dimensions. Show anexample where
a Voronoi vertex for an arbitrarily dense sample lies arbitrarily close to the surface.

2h. Let P be a sample from aC2-smooth surfaceΣ andV be the set of poles in VorP. Consider
the following generalization of the C. A triangle in the Del (P∪ V) is a crust triangle
if all of its vertices are inP. Show the following whenP is anε-sample for a sufficiently
smallε.

(i) All restricted Delaunay triangles in Del|Σ (P∪ V) are crust triangles.

(ii) All crust triangles have circumradius̃O(ε) f (p) wherep is a vertex of the triangle.

3. Let t be a triangle in DelP whereB = Bv,r andB′ = B′v′,r′ are two Delaunay balls circum-
scribingt. Let x be any point on the circle where the boundaries ofB andB′ intersect. Show
that, if ∠vxv′ > π2, the triangle normal oft makes an angle of̃O(ε) with the normals toΣ at
its vertices whenP is anε-sample ofΣ for a sufficiently smallε.

4. Recall thatP is a locally (ε, δ)-uniform sample of a smooth surfaceΣ if P is anε-sample
of Σ and each sample pointp ∈ P is at leastε

δ
f (p) distance away from all other points in

P whereδ > 1 is a constant. Show that each triangle in the surface output by C for
such a sample has a bounded aspect ratio (circumradius to edge length ratio). Also prove
that each vertex has no more than a constant number (determined byε andδ) of triangles
on the surface.

5h. Let t be a cocone triangle. We showed that any pointx ∈ t is Õ(ε) f (x̃) away from its closest
point x̃ in Σ. Prove that the bound can be improved toÕ(ε2) f (x̃).

6. We defined a Delaunay trianglet as a cocone triangle if dualt intersects cocones ofall of its
three vertices. Relax the condition by definingt as a cocone triangle if dualt intersects the
cocone ofanyof its vertices. Carry out the proofs of different properties of cocone triangles
with this modified definition.

7. We showed that the surface|E| computed by C is homeomorphic toΣ when ε is
sufficiently small. Prove that|E| is indeed isotopic toΣ.
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