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Basics of Surface Reconstructi@fion

23 Surface Samples

In this chapter we introduce some of the properties of surfaces and #mples in three di-
mensions. The results developed in this chapter are used in later chapdesgo algorithms
for surface reconstruction and prove their guarantees. Beforelkvaliaut these results, let us
explain what we mean by smooth surfaces.

Consider amap: U — V whereU andV are the open sets ik? andR2 respectively. The
map~ has three components, namefx) = (71(X), 72(x), 73(X)) wherex = (X1, X2) iS a point in
R2. The three by two matrix of first order partial derivativggéé)i,j is called theJacobianof

atx. We sayr is regularif its Jacobian at each point &f has rank 2. The mapis C'-continuous
if the ith order ( > 0) partial derivatives of are continuous.

Fori > 0, a subseE c R is aC'-smoothsurface if each point € ¥ satisfies the following
condition. There is a neighborhodd c R3 of xand a mapr: U — WN X of an open set) c R?
ontoW N X so that

() misC'-continuous,
(ii) mis a homeomorphism, and
(iii) mis regular.

The first condition says that is continuously diterentiable at least up to ith order. The
second condition imposes one-to-one property which eliminates self inierseofX. The third
condition together with the first actually enforce the smoothness. It makedtsat the tangent
plane at each point i& is well defined. All of these three conditions together imply that the
functions liker defined in the neighborhood of each poin&obverlap smoothly. There are two
extremes of smoothness. If the partial derivativeg of all orders are continuous, we sayis
C®-smooth. On the other hand ifis not Cl-smooth but is at least a 2-manifold, we say it is
C%-smooth omonsmooth

In this chapter and the chapters to follow, we assumeXhata C?-smooth surface. Notice
that, by the definition of smoothness (condition (i))s a 2-manifold without boundary. We
also assume thatis compact since we are interested in approximalingth a finite simplicial
complex. We need one more assumption. Just like the curves, for a finitespoittt be arz-
sample for some > 0, we need thaf(x) > 0 for any pointx in . It is known thatC?-smooth
surfaces necessarily have positive feature size everywhere xahegte in Chapte?? for curves
can be extended to surfaces to claim th@smooth surface may not have positive local feature
sizes everywhere.

As a C?-smooth surfac& has a tangent plang, and a normahy defined at each point
x € X. We assume that the normals are oriented outward. More preamgbgints locally to
the unbounded component &f \ . If X is not connectedyy points locally to the unbounded
component oR3 \ ¥’ wherex is in X', a connected component Bf
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An important fact used in surface reconstruction is that, disregardingrititation, the di-
rection of the surface normals can be approximated from the sample. Anatlostin R? is
helpful here. See Figure 30 in Chap®twhich shows the Voronoi diagram of a dense sample
on a smooth curve. This Voronoi diagram has a specific structure. \&aohoi cell is elongated
along the normal direction at the sample points. Fortunately, the same holdserdihrensions.
The three dimensional Voronoi cells are long, thin, and the direction ofltmgation matches
with the normal direction at the sample points when the sample is dense, ses Fagur

@) (b)

Figure 36: (a) Tangent plane and the normal at a point on a smootlesufi a long thin Voronoi
cell elongated along the normal direction.

24 Normals

Let P c R3 be ane-sample ofZ. If P is all we know abouk, it is impossible to know the line
of direction ofn, exactly at a poinp € P. However, it is conceivable that &gets denser, we
should have more accurate idea about the direction,dfy looking at the adjacent points. This
is what is done using the Voronoi cells in \er

For further developments we will often need to talk about how one vecifmoapnates an-
other one in terms of the angles between them. We denote the angle betweesttarswand
v as/(u, V). For vector approximations that disregard the orientation, we use a sldjffdyent
notation. This approximation measures the acute angle between the line cantaaiectors.
We use/4(u, v) to denote this acute angle between two vectoamdv. Since any such angle is
acute, we have the triangular inequality(u, v) < za(u,w) + Z5(v, w) for any three vectors, v
andw.

24.1 Approximation of normals

It turns out that the structure of the Voronoi cells contains informatioruabormals. Indeed,
if the sample is sfliciently dense, the Voronoi cells become long and thin along the direction of
the normals at the sample points. One reason for this structural properéy &\oronoi celV,
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must contain the medial axis points that are the centers of the medial ballsttémeat p, see
Figure 37.

Figure 37: Medial axis pointsy andm, are in the Voronoi celVp,.

Lemma 25(Medial.). Let my and m» be the centers of the two medial balls tangerX &t p. The
Voronoi cell 4, contains m and .

Proor. Denote the medial ball with centem asB. The ballB meets the surfacg only tan-
gentially at points, one of which ig. Thus,B is empty of any point fronX andP in particular.
Therefore, the centem hasp as the nearest point iR. By definition of Voronoi cellsym is in

Vp. A similar argument applies to the other medial axis paoist O
m]

We have already mentioned that the Voronoi cells are long and thin and theyfagated
along the direction of the normals. The next lemma formalizes this statementdsjirmgshat as
we go further fromp within Vy, the direction top becomes closer to the normal direction.

Lemma 26 (Normal.) For u > Oletv ¢ X be a point in \j with [lv — pl| > uf(p). Fore < 1,
Za(VP, np) < arcsin £ + arcsingZ;.

Proor. Letm; andm, be the two centers of the medial balls tangerX &t p whereny is on the
same side ok asvis. Bothm; andmy, are inV, by the Medial Lemma 25. The line joining,
andpis normal toX at p by the definition of medial balls. Similarly, the line joinimg andp is
also normal t& at p. Thereforeym, mp, andp are co-linear. See Figure 38. Consider the triangle
pvmp. We are interested in the angley pvwhich is equal ta/a(pY, Np). From the trianglgovm
we have

/M PV = ZpVp + VM.

To measure the two angles on the righthand side, drop the perpendiciftamm p onto the
segmentm. The line segmentny, intersects, say aty, sincem; andnmp and hence andm, lie
on opposite sides &. Furthermorey must lie insideV,, since any point on the segment joining
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Figure 38: lllustration for the Normal Lemma 26.

two pointsv andmy in a convex seV, must lie within the same convex set. This megtmssp
as the nearest sample point and thus
[IX—pll <y — pll < &f(y) by thee-sampling condition

Using the Feature Translation Lemma 13 we get

E
IIX—pll < Ef(p)

whene < 1. We have

Lpvnp = arcsin”x_ il < arcsin——— as|v - pll = uf(p).
lIv—pll u(l-e)
Similarly,
- Ix—pll L€
/NmMpp = arcsin——— < arcsin—— as|im; — p|| > f(p).
P ime - pi 1-¢ Pll= 1(p)
The assertion of the lemma follows immediately. O

24.2 Normal variation

The directions of the normals at nearby pointsSocannot vary too abruptly. In other words, the
surface looks flat locally. This fact is used later in many proofs.

Lemma 27 (Normal Variation.) If X,y € X are any two points witljx — y|| < pf(x) for p < %
Z(ny, ny) < 1_L3p

Proor. See the book [1] on Delaunay mesh generation for a proof. O
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24.3 Edge and triangle normals

In Section 20, we saw that edges joining nearby points on a curve aretgbamadlel to the

tangents at the endpoints of the edge. Similar results also hold for trianglesatimg points on
surfaces. But, the size is measured by circumradius. In fact, a triangieecting three nearby
points on a surface but with a large circumradius may lie almost perpendtoutbe surface.

However, if its circumradius is small compared to the local feature sizes agriises, it has to
lie almost parallel to the surface. For an edge, half of its length is the samecasutsiradius.

Therefore, a small edge lies almost parallel to the surface. In esseanecidge or a triangle
has a small circumradius, it must lie flat to the surface. We quantify these dlaitmes next two

lemmas.

Lemma 28(Edge Normal.) For an edge pq withip— | < 2f(p), the angleza(pg, np) is at least
z - arcsin—”z";zg;'.

Proor. Consider the two medial balls sandwiching the surfaad p. The pointqg cannot lie

Figure 39: lllustration for the Edge Normal Lemma 28.

inside any of these two balls as they are empty of points f£o1®0, the smallest angleq makes
with np cannot be smaller than the anglg makes withn, whengq is on the boundary of any of
these two balls. In this case @be the angle betwegug and the tangent plane gt Clearly, (see
Figure 39)

. llp —qll
sing —_—
2|lm— pl|
llp —qll
2f(p)
Therefore,
T
s lp—dll
> 5 arcsin 21(0)
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O
O

It follows immediately from the Edge Normal Lemma 28 that small edges make adagie
with the surface normals at the vertices. For examplpgifas a length less tharf (p) for p < 2,
the angleza(pg np) is more tharg — arcsin.

Next consider a triangle = pgr wherep is the vertex subtending a maximal anglepaor.
Let Rygr denote the circumradius qir.

Lemma 29(Triangle Normal.) If Rpgr < L\/%)
. qur 7‘( 2 . ( . qur))
Za(Npgr, Np) < arcsin——— + arcsin — sin|2 arcsin——
e f(p) NG 0

wherenpg, is the normal of par.

Proor. Consider the medial balB = By,, andB’ = By that are tangent t& at p. Let D be
the diametric ball of (smallest circumscribing ball); refer to Figure 40. The radiu®o$ Ry
Let C andC’ be the circles in which the boundary bfintersects the boundaries Bfand B’
respectively. The line normal f© at p passes througi, the center oB. Let « be the larger of
the two angles this normal line makes with the normals to the planes cont@irdndC’. Since
the radii ofC andC’ are at mosR,q We have

Rogr . Rogr
P"_ < arcsin—2

lp—mi f(p)’

It follows from the definition ofx that the planes containingandC’ make a wedge, sa¥, with
an acute dihedral angle no more than 2

a < arcsin

Figure 40: lllustration for the Triangle Normal Lemma 29. The two great@andke right picture
are the intersections of the unit sphere with the planes contahargdC’.

The other two verticeg, r of t cannot lie insideB or B’. This implies that lies completely in
the wedgeW. Letny, 7, andn’ denote the planes containihgC, andC’ respectively. Consider
a unit sphere centered pt This sphere intersects the linen n’” at two points, say andu’.
Within W let the linest; N 7 andn; N’ intersect the unit sphere aindw respectively. See the
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picture on the right in Figure 40. Without loss of generality, assume thatiie auvw < zuwv.
Consider the spherical triangle’w. We are interested in the spherical angle zuvwwhich is
also the acute dihedral angle between the planes contdiamdC. We have the following facts.
The arc length ofvv, denotedw\, is at leastr/3 sincep subtends the largest angletiandt is
in the wedgel. The spherical anglevuwis less than or equal taa2 By standard sine laws in
spherical geometry, we have

. . sinzvuw . Sin 2
0= - < - .
sin sinjuw SN = sinjuw SN
If 7/3 < |w\ < 27/3, we have
sin\wy > V3/2
and hence )
6 < arcsir(— sin 2(1/) .
V3

For the range 2/3 < |[w\| < &, we use the fact thawwi + WM < 7. The arc lengthw\ cannot be

longer than botlwu| andvu| sincezvu'w < 2a < /2 for Rygr < L\/%) If WV < |wu'|, we have

[uw + WM < |ud| = 7.

Otherwisejw\ < |vu|. Then, we use the fact thaw < |uM as/uvw < zuwv. So, again

[uw + WM < |ud| = 7.
Therefore, wheiwv > Z, we get
sinjuw
" <
sinjwv
Thus,6 < arcsin(i\/_3 sin Za)
The normals td andX at p make an acute angle at mast 6 proving the lemma. m]

25 Topology

The sampld® as a set of discrete points does not have the topology Afconnection between the
topology ofx andP can be established through the restricted Voronoi and Delaunay diagrams
particular, one can show that the underlying space of the restrictedi2gi&niangulation DelP|x

is homeomorphic t& if the sampleP is sufficiently dense. Although we will not be able to
compute DePJs, the fact that it is homeomorphic Bwill be useful in the surface reconstruction
later.
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25.1 Topological ball property

The underlying space of DBy becomes homeomorphic Bwhen the Voronoi diagram Vd?
intersect< nicely. This condition is formalized by the topological ball property whichsdinat
the restricted Voronoi cells in each dimension is a ball.

Definition 52. Let F denote any Voronoi face of dimensi&n0 < k < 3, in VorP which inter-
sects andF|y = F N X be the corresponding restricted Voronoi face. The facatisfies the
topological ball property ifF|s is a (i) k — 1)-ball and (ii) IntF N X = IntF|z. The pair @ X)
satisfies the topological ball property if all Voronoi fades= Vor P satisfy the topological ball
property.

Condition (i) means that intersects a Voronoi cell in a single topological disk, a Voronoi facet
in a single curve segment, a Voronoi edge in a single point, and does nakeicttany Voronoi
vertex; see Figure 41. Condition (ii) avoids any tangential intersectiondeet\a Voronoi face
andX.

The following theorem is an important result relating the topology of a serfaca point
sample.

Theorem 30. The underlying space &fel P|y is homeomorphic t& if the pair (P, X) satisfies the
topological ball property.

@) (b) (©)

Figure 41: (a) A surfacE intersects a Voronoi cell and its faces with the topological ball property,
(b) a surface does not intersect a Voronoi facet in a 1-ball, (cifaceidoes not intersect a Voronoi
edge in a O-ball.

Our aim is to show that, wheR is a dense sample, the topologyXtan be captured from
P. Specifically, we prove that the paiP,) satisfies the topological ball property wheris
sufficiently small. The proof frequently uses the next two lemmas to reach a ciotibad The
first one says that the points in a restricted Voronoi cell, that is, the poinisito a Voronoi
cell, cannot be far apart. The second one says that any line almostiriortha surface cannot
intersect it twice within a small distance.
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Lemma 31(Short Distance.)Let x and y be any two points in a restricted Voronoi cgjkV For
e <1, we have

(i) IIx-pll < = f(p) and
(i) lIx=yll < Z (9.

Proor. Sincex hasp as the nearest sample poijit,— pl| < ef(x) for e < 1. Apply the Feature
Translation Lemma 13 to claim (i). For (ii), observe that

IX=yll < [Ix=pll+lly-pl
< &(f(x) + f(y)
By the Lipschitz Continuity Lemma 12

fly) < f(X)+Ix-Vi
< f(X) +e(f(X) + f(y)), or
Q-9f(y) < @Q+efX).
Therefore, fore < 1,
IX=yll < s(1+ iti) f(x) < %f(x).
O
O

A restricted Delaunay edgeqis dual to a Voronoi facet that interseésAny such intersec-
tion point, sayx, is within ;= f(p) distance fronp by the Short Distance Lemma 31. The length
of pgcannot be more than twice the distance betweandp. Hence|p—q|| < %f(p). We can
extend this argument to the restricted Delaunay triangles too. A restrictedriagl#rianglet is
dual to a Voronoi edge that intersect&. The intersection point, say, belongs to the Voronoi
cells adjacent te. LetV, be any such cell. The pointis the center of a circumscribing ball of
the triangle dual te. By the Short Distance Lemma 34 s within 7= f(p) distance fronp. The
ball By x-pj circumscribes. The circumradius afis no more thafix— p|| as the circumradius of
a triangle cannot be more than any of its circumscribing ball (see Figurd g}, the following
corollary is immediate from the Short Distance Lemma 31.

Corollary 32. For ¢ < 1, we have
(i) the length of a restricted Delaunay edge e is at r‘rﬁgf(p) where pis any vertex of e and

(i) thfe circumradius of any restricted Delaunay triangle tis at mgstf (p) where p is a vertex
of t.

Lemma 33 (Long Distance.) Suppose a line interseckin two points x and y and makes an
angle no more thag with ny. One hag|x — y|| > 2f(X) cos¢.

Proor. Consider the two medial balls a@s in Figure 43. The line meets the boundaries of these
two balls atx and at points that must be at leastédsé distance away fronx wherer is the
radius of the smaller of the two balls. Since f(x), the result follows ag cannot lie inside any
of the two medial balls. O

m|
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Figure 42: The circumradius of a triangle which is also the radius of its dianttafigshown
with solid circle) is no more than the radius of a circumscribing ball (shown vdgtted circle).

Figure 43: lllustration for the Long Distance Lemma 33.

25.2 Voronoi faces

Next we consider in turn the Voronoi edges, Voronoi facets, andndircells and show that they
indeed satisfy the topological ball propertyitatisfies Condition A as stated below. ot 2,
let

ae) = 7 = 3¢
() = arcsin ® 4 arcsi isin(z arcsini)
ple) = 1-¢ V3 1-¢))
ConditionA &< % and coga(s) + Ae)) > 1%5

Figure 44 shows that, in the range<® < % Condition A holds for a little less than 2. So,
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cos(a(e) + f(e)

Figure 44: The graphs of the two functions on the left and right hand siflehe inequality in
Condition A.

for exampleg < 0.18 is a safe choice. Since Condition A stipulates % lemmas such as Normal
Variation, Long Distance, Short Distance and Corollary 32 can be apptieddr Condition A.

Lemma 34 (Moronoi Edge.) A Voronoi edge intersecistransversally in a single point if Condi-
tion A holds.

Proor. Suppose for the sake of contradiction there is a Voronoi edigea Voronoi cellV
intersectingz at two pointsx andy, or at a single point tangentially, see Figure 45. The dual
Delaunay triangle, sagqr, is a restricted Delaunay triangle. By Corollary 32, its circumradius is
no more thany% f(p). By the Triangle Normal Lemma 295(Npqr, Np) < B(e) if

EIN:
V2 1l-¢
a restriction satisfied by Condition A.
The Normal Variation Lemma 27 puts an upper boundr@f) on the angle between the
normals atp andx as||x — pl| < ef(x). Let¢ denote the angle betweer and the Voronoi edge

e. We have

La(Nx, Np) + Za(Np, Npqr)
a(e) + B(e). 2)

If eintersect tangentially atx, we havet = 7 requiringae(e) + B(e) > 5. Condition A requires
e < 0.2 which givesa(e) + B(¢) < 5. Therefore, when Condition A is satisfiegicannot intersect
¥ tangentially. So, assume thaintersect< at two pointsx andy.

By the Short Distance Lemma 3[Ix — || < %f(x) and by the Long Distance Lemma 33,
lIx—yll > 2f(x) cosé. A contradiction is reached when 2 gps 2, or

cos@(e) + B(e)) > li_g ©)

Condition A satisfies Inequality 3 giving the required contradiction. O
m]

& = Za(Nx, Npqr)

IAN A
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(b)

Figure 45: lllustration for the Voronoi Edge Lemma 34. A Voronoi edgersgeting the surface
(a) at two points, (b) tangentially in a single point.

Lemma 35(Voronoi Facet.) A Voronoi facet F intersects transversally in al-ball if Condition
A is satisfied.

Proor. The intersection oF with ¥ may contradict the assertion of the lemma if{ijouches~
tangentially at a point, (i intersectg- in a 1-sphere, that is, a cycle, or (if)intersectd- in
more than one component.

The dual Delaunay edge, s@g, of F is in the restricted Delaunay triangulation. Lmt
denote the normal tB. Its direction is the same as thatgd up to orientation. We hagp—q|| <
% f(p) by Corollary 32. Therefore, the Edge Normal Lemma 28 gives

Za(Np, N )>7T arcsin—
alllp, 1lF) = 2 1-&
aslongag < 1.

If ¥ meetsF tangentially at a poink, we havezy(ny, ng) = 0 and by the Normal Variation

Lemma 27/np, Ny < 15 whene < % This means, fog < % we have

X _arcsin—2 < Za(np,Ng) < (€)
- — — < R = ale).
2 1-g- 20 PF

&
T 1-3¢
The above inequality contradicts the upper boundfgiven by Condition A.

If ¥ meetsF in a cycle, letx be any point on it and. be the line orF intersecting the cycle
at x orthogonally, see Figure 46(a). This line must meet the cycle in another, gayy. The
angle betweeh andny satisfies/a(L, ny) < za(L’, ny) for any other linel” on F passing through
X. Choosel’ that minimizes the angle with,. The lineL’ being on the Voronoi facet makes
exactly 5 angle with the dual restricted Delaunay edge, pgy We know by the Edge Normal

Lemma 28
E

T .
VA Np) > = —arcsin

Therefore, fore < 1, . .
Za(L',np) = 5" Za(PG Np) < arcsinm.
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Figure 46: A Voronoi facet intersectiri(a) in a cycle, (b) in two segments.

These facts with the Normal Variation Lemma 27 give
La(L’,ny) < Za(L’,np) + 2(Np, Ny) < arcsini + a(e) (4)
fore < 1.

The right hand side of Inequality 4 is less than the upper bound farthe proof of the
Voronoi Edge Lemma 34. Thus, we reach a contradiction between distampked by the Short
Distance Lemma 31 and the Long Distance Lemma 33 when Condition A holds.

In the cas& meetsF in two or more components as in Figure 46(b), consider any paimt
one of the components. Lgte the closest point twon any other component, s@y If the line
L joining x andy meetsC orthogonally ay we have the situation as in the previous case with only
x andy interchanged. In the other cagdies on the boundary d on a Voronoi edge. The angle
betweenL andny is less than the angle between the Voronoi edgergnahich is no more than
a(e) + B(g) as proved in the Voronoi Edge Lemma 34 (Inequality 2). We reach aautiotion
again between two distances using the same argument. O

m]

Lemma 36 (Voronoi Cell.) A Voronoi cell \, intersectst in a 2-ball if Condition A holds.

Proor. We haveW = VN X contained in a balB of radius ;= f(p) by the Short Distance
Lemma 31. If\W is a manifold without boundar contains a medial axis point by the Feature
Ball Lemma 11. Then the radius 8fis at least

Im—pll _ f(p)

> —.
2 2

We reach a contradiction ¥ < % which is satisfied by Condition A. So, assume tiéts a
manifold with boundary. It may not be a 2-ball only if it is non-orientables hehandle, or has
more than one boundary cycle.W were non-orientable, so would Bewhich is impossible. In
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caseW has a handleB N X is not a 2-ball. By the Feature Ball Lemma 11, it contains a medial
axis point reaching a contradiction again fo& % which is satisfied by Condition A.

The only possibility left is that’V has more than one boundary cycles. Ldte the line of
the normal atp. Consider a plane that contaibsand intersects at least two boundary cycles.
Such a plane exists since otherwisenust intersectW at a point other thap and we reach a
contradiction between two distance lemmas. The plane interggatsa convex polygon anwv
in at least two curves. We can argue as in the proof of the Voronoit Ezrema 35 to reach a
contradiction between two distance lemmas. O

m]

Condition A holds fore < 0.18. Therefore, the Voronoi Edge Lemma, Facet Lemma, and
Cell Lemma hold for < 0.18. Then, Theorem 30 leads to the following result.

Theorem 37(Topological Ball.) Let P be are-sample of a smooth surfage For & < 0.18, (P, %)
satisfies the topological ball property and hence the underlying spdoeld|y is homeomorphic
to X.

26 Notes and exercises

The remarkable connection betweesamples of a smooth surface and the Voronoi diagram of
the sample points was first discovered by Amenta and Bern [1]. The Ndmenaina 26 and the
Normal Variation Lemma 27 are two key observations made in this paper. Tokgigal ball
property that ensures the homeomorphism between the restricted Detdangylation and the
surface was discovered by Edelsbrunner and Shah [4]. AmentaeandsBowed that the Voronoi
diagram of a sficiently dense sample satisfies the topological ball property though thewasof
not as rigorous as presented here. The proof presented hergiedéftam Cheng, Dey, Edels-
brunner, and Sullivan [2].

Exercises

1. Let the restricted Voronoi celp|z be adjacent to the restricted Voronoi c@lls in the
restricted Voronoi diagram ViarP. Show that the distance between any two poikdasdy
from the union ofVp|z andVy|z is O(e) f(X) whene is suficiently small.

2. Aversion of the Edge Normal Lemma 28 can be derived from the Tridhgyieal Lemma 29,
albeit with a slightly worse angle bound. Derive this angle bound and oatrhe proof of
the topological ball property with this bound. Find out an upper bounslfon the proof.

3. The Topological Ball Property is afficient but not a necessary condition for the homeo-
morphism between a sampled surface and a restricted Delaunay triangofatioBstab-
lish this fact by an example.

4. Show an example where

(i) all Voronoi edges satisfy the topological ball property, but the Yioiaell does not,
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6".

8°.

(ii) all Voronoi facets satisfy the topological ball property, but the Vwicell does not.

. Show that for any > 0, there exists £2-smooth surface for which a sample witlpoints

has the Voronoi diagram where no Voronoi edge intersects the surfac

Let F be a Voronoi facet in the Voronoi diagram BrwhereP is ans-sample of aC?-
smooth surfac&. LetX intersectF in a single interval and the intersection points with the
Voronoi edges lie withire f(p) away fromp whereF c V. Show that all points oF N X

lie within £ (p) distance whe is suficiently small.

. Let F andX be as described in exercise 6 Butn X contains two or more topological

intervals. Show that there exists a Voronoi edge F so thaten X is at leasti f(p) away
from p whered > 0 is an appropriate constant.

Let the pair P, %) satisfy the topological ball property. We know that the underlying space
of Del P|y andX are homeomorphic. Prove or disprove that they are isotopic.
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Surface Reconstructi@: rom

27 Surface Reconstruction

In the previous chapter we learned that the restricted Delaunay trianguisigogood approxi-
mation of a densely sampled surfa&om both topological and geometric view point. Unfortu-
nately, we cannot compute this triangulation as the restricted Voronoi didgoaP|s cannot be
computed without knowind. As a remedy we approximate the restricted Voronoi diagram and
compute a set of triangles that is a superset of all restricted Delaunagiésar his set is pruned

to extract a manifold surface which is output as an approximation to the sasypfedex.

28 Algorithm

First we observe that each restricted Voronoi &&lk is almost flat if the sample is ficiently

dense. This follows from the Normal Variation Lemma 27 as the poinié,jn cannot be far
apart ife is small. In particularVpls lies within a thin neighborhood of the tangent planeat

p. So we need two approximations, (i) an approximatiomg@r equivalently ton, and (i) an
approximation td/p|s based on the approximationg. The following definitions opolesand

coconesare used for these two approximations.

28.1 Poles and Cocones

Definition 53 (Poles.) The farthest Voronoi vertex, denotgd, in Vp, is called thepositive pole
of p. Thenegative polef p is the farthest poinp~ € V,, from p so that the two vectors from

to p* and p~ make an angle more thaéh We callv, = p* - p, thepole vectorfor p. If V, is
unboundedp® is taken at infinity and the direction f, is taken as the average of all directions
given by the unbounded Voronoi edges.

The following lemma is a direct consequence of the Normal Lemma 26. It saiyththpole
vectors approximate the true normals at the sample points.

Lemma 38 (Pole.) For ¢ < 1, the angle between the norm@a) at p and the pole vectov,
satisfies the inequality

. &
La(Np,Vp) < 2 arcsin;—.

Proor. First, consider the case whevg is bounded. Since the Voronoi call, contains the
centers of the medial balls @t we havel|p* — pll > f(p). Thus, plugging: = 1 in the Normal
Lemma 26 we obtain the result immediately.

Next, consider the case whevg is unbounded. In this casg is computed as the average
of the directions of the infinite Voronoi edges. The anglévp, np) in this case cannot be more
than the worst angle made by an infinite Voronoi edge wihAn infinite Voronoi edgee makes
the same angle with, as the vectopp., does, where the infinite endpoint eis taken atp..
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Again we have|p — p|l > f(p) and the Normal Lemma 26 can be applied witk 1 to give the
result. ]
m]

The Pole Lemma 38 says that the pole vector approximates the nopmdhus, the plane
Tp passing througlp with the pole vector as normal approximates the tangent ptgnerhe
following definition of coconeaccommodates a thin neighborhood arowpdo account for the
small uncertainty in the estimation of.

Definition 54 (Cocone.) The setCy, = {y € V, . 2a(PY, Vp) > %’T} is called the cocone df. In
words,C,, is the complement of a double cone that is clipped within This double cone has
as the apex, the pole vectoy as the axis, and an opening angle?@f/vith the axis. See Figure 47
for an example of a cocone.

Figure 47: The positive polp™ helps estimating the normal. The double cone forming the cocone
has the apex gp and axispp". The Voronoi edgeb intersects the cocone. Its dual Delaunay
triangle is a cocone triangle.

As an approximation &z, cocones meet all Voronoi edges that are intersectex IS0, if
we compute all triangles dual to the Voronoi edges intersected by cqaeaebtain all restricted
Delaunay triangles and possibly a few others. We call this set of triangkEme trianglesWe
will see later that all cocone triangles lie very clos&td cleaning step is necessary to weed out
some triangles from the set of cocone triangles so that a 2-manifold is cargmititput. This
is accomplished by manifold extractiorstep.

Cocong(P)
1 compute VoP;
2 T=0
3 for each Voronoi edge € Vor P do
4 if CocoNE TRIANGLES(€)
5 T :=T Uduale
6 endfor
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7 E :=ExtractMantroLp(T);
8 output E.

Let us now look into the details of the two stepscGNE TRIANGLES and ExTRACTM ANIFOLD.
In order to check if a Voronoi edge= (a, b) intersect<C, we consider the three vectors,

a= Hé, b= p_lS and three conditions I, II, and IlI;

vga < cosSﬂ ng < cossn
livpllllall] — 8 [Ivplllbll | — 8’
vga —vg
. <0and <0,
[Ivpllllall [IVplllbll
1 Vpa 0 and s 0
) > 0an >
[Ivpllliall lIVpllllbll

Condition I checks if any of the verticesandb of the Voronoi edges lies insideC,. Con-
ditions Il and Il check if botha andb lie outsideC,, but the edgee crosses it. The triangle
t = dualeis marked as a cocone triangle onleiintersects cocones afl three vertices of.

CocoNE TRIANGLES(€)
1 t:=duale
2 flag = TruE;
3 for each vertexp of t do
4 if none of Conditions I, I, and Il holds
5 flag:=FALSE;
6 endfor
7 return flag.

The sefl of cocone triangles enjoys some interesting geometric properties whichphatex
in the manifold extraction step as well as in the proofs of geometric and topalagiarantees of
Cocone. Of course, the sample has to bdimiently dense for these properties to hold. In the rest
of the chapter we assume tlat 0.05 which satisfies Condition A stated in Chapter 23, enabling
us to apply the results therein.

28.2 Cocone triangles

First we show that each triangle ihhas a small empty ball circumscribing it, i.e., the radius of
this ball is small compared to the local feature sizes at their vertices. Noticehthdiametric
ball of a triangle may not be empty. Hence, the smakesptyball circumscribing a triangle
may not be its diametric ball. Nevertheless, a small empty circumscribing ball azosntieat
the circumradius of the triangle is small. This fact together with the Triangle Ndremama 29
implies that all cocone triangles lie almost flat to the surface.

Lemma 39(Small Triangle.) Lett be any cocone triangle and r denote the radius of the smallest
empty ball circumscribing t. For each vertex p of t ang 0.05, one has
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(i) r < L& f(p) and

(i) circumradius of t is at most& f(p).

Proor. Letzbe any pointirvp so that
3r . £
La(Np, P2 > 5 -~ 2arcsin—. (5)

First we claim that for any such poiatwe haveg|z— p|| < 1188 f(p) if £ < 0.05.
If Za(np, P2 > 0 = arcsin—<— (1 5+ arcsingZ, then||z - p|| < uf(p) according to the Normal
Lemma 26. Withu = 118 ande < 0.05 we have

1 . & 3n . &
0 = arcsmr18 + arcsln1 — < 3 2 arcsmrg. (6)

Thus, from Inequalities 5 and 6 we have

la(Np, P2 > 3—; - 2arcsinﬁ > 6. (7)

Therefore, any poir € V, satisfying Inequality 5 also satisfies

1188

lz=pll < 7—1(P).

Now lett be any cocone triangle with being any of its vertices anel= dualt being its dual
Voronoi edge. Fot to be a cocone triangle, it is necessary that there is a gointe so that
Za(Vp, B %”. Taking into account the anglg(vp, np), this necessary condition implies

3 . €
> o
Za(Np, PY) > g —2arcsin—

which satisfies Inequality 5. Hence, we have

ly - plil < 228 ¢(p) for & < 0.05.
l1-¢
The ballBy,y-p is empty and circumscribasproving (i). The claim in (i) follows immedi-
ately from (i) as the circumradius btannot be larger than the radius of any ball circumscribing
it. O
m]

The next lemma proves that all cocone triangles lie almost parallel to thesuifae angle
bounds are expressed in termswdf) andpB(e) that are defined in Chapter 23.

Lemma 40 (Cocone Triangle Normal.)Let t be any cocone triangle and be its normal. For
any vertex p of t one hag(np, ny) < (33%) + 8(1.18¢) whene < 0.05.
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Proor. Letqbe a vertex of with a maximal angle of. The circumradius dfis at most% f(q)
by the Small Triangle Lemma 39. Then, by the Triangle Normal Lemma 29,

IA

arcsm

1.18¢
La(Ng, Ny) + arcsinl — sm 2arcsin——

1-¢

IA

arcsin———— 118 + arcsi sin|2 arcsmﬁ
1-118¢ \/_ 1-118¢
£(1.18¢) for £ < 0.05.

The distance betweep andq is no more than the diameter of the circle circumscrikinge.,
Ip—dll < 23%f(p) (Small Triangle Lemma 39). By the Normal Variation Lemma 2Ry, ng) <
(%), The desired bound fafs(np, ny) follows since it is no more than the suninp, ng) +
La(Ng, Ny). O
O

28.3 Pruning

Prior to the extraction of a 2-manifold from the set of cocone triangles, sétfiem are pruned.

An edgee is sharpif any two consecutive cocone triangles around it form an angle more than
37”; see Figure 48. Edges with a single triangle incident to them are also shalgfdult. We

will show later that the cocone triangles include all restricted Delaunay taanghen a sample

is suficiently dense. The set of restricted Delaunay triangles cannot be ih¢aeharp edges.
This implies that we can prune triangles incident to sharp edges and still tie¢aget of restricted
Delaunay triangles. In fact, we can carry out this pruning in a cascadeder. By deleting one
triangle incident to a sharp edge, we may create other sharp edgesn8iresricted Delaunay
triangle is pruned, none of their edges become sharp. Thereforeafeisosdelete the new sharp
edges with all of their incident triangles.

A A

Figure 48: The edgeis not sharp in the left picture; it is sharp in the right picture.

This pruning step weeds out all triangles incident to sharp edges, brértaning triangles
still may not form a surface. They may form layers of thin pockets creatingn-manifold. A
manifold surface is extracted from this possibly layered setalking outside the space covered
by them, see Figure 49. The manifold extraction step depends on the facoduae triangles
contain all restricted Delaunay triangles none of whose edges is sharptdde this fact below.

Theorem 41(Restricted Delaunay.)or ¢ < 0.05, the following conditions hold:
(i) cocone triangles contain all restricted Delaunay triangles and

(ii) no restricted Delaunay triangle has a sharp edge.
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Figure 49: Thin pockets left after pruning, a manifold is obtained by walkinghe outside
indicated by the dotted curve.

Proor. Consider (i). Lety be any point in any restricted Voronoi célls. We claim that
La(Np, py) is larger tharf, - arcsin@. We havelly — pll < £f(y) sincey € Vp|z andP is an
g-sample o. By the Feature Translation Lemma 18- p|| < 1= f(p). We can therefore apply

the proof of the Edge Normal Lemma 28 to establish that

T . &
Za(Np, PY) = 5 arcsmz(l_ >
Lett be any restricted Delaunay triangle ame: dualt be the dual Voronoi edge. Consider
the pointy = en X. We havey € Vs for each of the three points € P determininge. For each
suchp, the angleza(ny, pY) is larger thanr/2 — arcsinﬁ. Therefore,

a(PY, Vp) 2 Za(PY. Np) — Za(Np, Vp)
> g - arcsinﬁ — Za(Np, Vp). (8)

By the Pole Lemma 38 we have

£ < 2arcsinL+arcsin £
2(1-¢) ~ l-¢ 2(1-¢)

< g for £ < 0.05.

Za(np, Vp) + arcsin

So, by Inequality 8/a(p%, Vvp) > 3—g Therefore, the poiny is in the coconeC, by definition.
Hencet is a cocone triangle.

Consider (ii). Lett; andt, be adjacent triangles in the restricted Delaunay triangulation with
e as their shared edge and g€ e be any of their shared vertices. Sirtgeandt, belong to the
restricted Delaunay triangulation, they have circumscribing empty Baléand By, respectively,
centered at points, say andv, of X.

The boundaries oB; and B, intersect in a circleC contained in a plan&l, with e c H.
The planeH separate$; andty, since the third vertex of each triangle lies on the boundary of its
circumscribing ball, and@; < B, on one side oH, while B, € B; on the other. See Figure 50.
The line throughvy, vz is perpendicular té1. Bothv; andv, belong to the Voronoi facet dual &
This means; andv, belong to a restricted Voronoi cell and the distajive- vo|| < %f(vl) by
the Short Distance Lemma 31. So the segmewntforms an angle of at leasy2—-arcsing% with
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ny, (Edge Normal Lemma 28). This normalfdirs, in turn, frorm, by an angle of at most=;
(Normal Variation Lemma 27). So, the angle betwéeandny is at most;%; + arcsing=.. For
smalle, they are nearly parallel. In particulargf< 0.05,H makes at most“with np. Similarly,
plugginge < 0.05 in the angle upper bound of the Cocone Triangle Normal Lemma 40, ése ge
that the normals of bothy andt, differ from the surface normal @tby at most 24.

B,

Figure 50: Illustration for the Restricted Delaunay Theorem 41.

Thus we havey on one side of, t; on the other and the smaller angle betwetand either
triangle is at least 59 Hence the smaller angle betwegrandt, is at least 118ande is not
sharp. O

m]

28.4 Manifold extraction

A simplicial complex with an underlying space of a 2-manifold is extracted othiepruned set
of cocone triangles. L&’ C X be any connected component of the sampled surface. Since cocone
triangles are small (Small Triangle Lemma 39), they cannot join points fréierdint components
of X. Let T’ be the pruned set of cocone triangles with vertices' irConsider the medial axis of
Y. The triangles off’ lie much closer t&’ than to its medial axis. Furthermof¥, includes the
restricted Delaunay triangulation DRk (Restricted Delaunay Theorem 41). ThereforgTIf
denotes the underlying spaceTf the spac&3\ [T’| has precisely two disjoint open s&s, and
Oout containing the inner and outer medial axisXfrespectively. The manifold extraction step
computes the boundary of the closure®f;;, which we simply refer to as the boundary@f:.

Let E’ be the boundary db,,¢. We claim thate” is a 2-manifold. Letp be any vertex oE’.
Orient the normah, so that it points towar@o:. Consider a sfliciently small ballB centering
p. Call the point where the ray of, intersects the boundary &the north pole Obviously the
north pole is inOgyt. Let Ty, denote the set of triangles i which are visible from the north pole
within B. The triangles ofl;, are in the boundary dD;. Since there is no sharp edgeTif the
set of trianglesT, makes a topological disk. We argue tfgtis the only set of triangles in the
boundary ofOg; which are incident tq.

Letq # p be a vertex of a trianglee Tp. The trianglet is also inTq. If not, the line of the
normaln,, when moved parallelly through the edpg towardg, must hit an edge i’ that is
sharp. The assumption to this claim is that the normglandng are almost parallel and hence
the visibility directions afp andq are almost parallel. SincE’ does not have any sharp edge,
is in Tq. This means that all topological disks at the verticeEohre compatible and they form
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a 2-manifold. This 2-manifold separat€s,; from T’ implying thatE’ cannot have any other
triangles fromT’ other than the ones in the topological disks described above.

We computeE’ from T’ as a collection of triangles by a depth first walk in the Delaunay tri-
angulation DeP. Recall thafl” is disjoint from any other triangles on a componentdfifferent
from ¥’. The walk starts with a seed triangleh. The routine 8ep computes this seed triangle
for each componerit’ of the pruned set by another depth first walk in the Delaunay triangulation.
At any generic step, 8p comes to a trianglé via a tetrahedrow- and performs the following
steps. First, it checks tfis a cocone triangle. If so, it checks if it belongs to a compofiérior
which a seed has not yet been picked. If so, the pait)(also called thseed pairis put into the
seed set. Then, it marks all trianglesTdfso that any subsequent check can identify that a seed
for T’ has been picked. The walk continues through the triangles and their aidiatahedra
in a depth first manner till a seed pair for each component sudh a§ T is found. In a seed
pair (o, t) for a component’, the tetrahedron and the trianglé should be IOy and on its
boundaryE’ respectively. To ensure i starts the walk from any convex hull triangle in DRl
and continue till it hits a cocone triangle. The initiation of the walk from a corugktriangle
ensures that the first triangle encountered in a component is on the caftdidd component or
equivalently on the boundary @, defined for that component. Assuming the functiearSa
high level description of ErractM aniFoLD iS given below.

ExtrACTM ANIFOLD(T)
1 T :=prunedT;
2 SD:= Seen(T);
3 for eachtupled,t) € SDdo
4 E’ := SURFTRIANGLES(0,);
5 E:=EUFE;
6 endfor
7 return the simplicial complex oE.

The main task in krractManiroLp is done by SrrTriancLEs Which takes a seed paier(t)
as input. First, we initialize the surfa& with the seed trianglewhich is definitely inE’ (line
1). Next, we initialize a stacRendingwith the triple ¢, t, €) whereeis an edge of (lines 3 and
4). As long as the stadRendingis not empty, we pop its top element, ¢, €). If the edgeeis not
already processed we call the functioor&ceNEiGHBOR t0 cCOmpute a tetrahedron-triangle pair
(o7,t) (line 9). The tetrahedron’ is adjacent td’ and intersect®q, wheret’ is in E” and is
adjacent td viae. The triangld’ is inserted irE’. Then two new triplesd’, t’, ) are pushed on
the stackpendingfor each edge’ # eoft’ (lines 11 to 13). Finally we returg’ (line 16).

SURFTRIANGLES(0,1)
1 E ={t};
2 Pending:= 0;
3 pick any edge of t;
4 push (o,t,€) onPending
5 while Pending# 0 do
6 pop (o, t, €) from Pending
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7 if eis not marked processed
8 marke processed,;
9 (0’,t") := SURFACENEIGHBOR (0, 1, €);
10 E' :=F U{t'};
11 for each edge # eoft’ do
12 push (o”, ', €) on Pending
13 endfor
14 endif

15 endwhile
16 returnFE’.

The question is how to implement the functionr&ceNEeiGaBor. It has to output a tuple
(o’,t") wheret’ is the neighbor of on the surface given b’ ando”’ is an adjacent tetrahedron
intersectingOgyt. One can compute the surface neightiaf t using some numerical computa-
tions involving some dot product computations of vectors. However, tb@sgputations often
run into trouble due to numerical errors with finite precision arithmetics. Itiquéar, triangles
of certain types of flat tetrahedra callsliverstend to contribute to these numerical errors and
slivers are not uncommon in the Delaunay triangulation of a sample fronfacsur

A robust and faster implementation of the functiamr&ceNEeiGasor avoids numerical com-
putations by exploiting the combinatorial structure of the Delaunay trianguldfeery triangle
in the Delaunay triangulation has two incident tetrahedra if we account éoinfimite ones in-
cident to the convex hull triangles. uaceNEiGaBoR is called with a triple &,t,€). It circles
over the tetrahedra and triangles incident to the exigarting fromt and going towards the other
triangle of o incident toe. This circular walk stops when another cocone triarigjie reached.
If t” is reached via the tetrahedroti, we output the pair«’,t’). Assuming inductively that-
intersectgy, the tetrahedron”’ also intersect®q. For example, in Figure 51 ,u8racENEIGH-
BOR iS passed on the triplerg, t, €) and then it circles through the tetrahedra o>, o3 and their
triangles till it reache¢’. At this point it returns ¢3,t’) where botho; ando lie outside, i.e.,
in Ogut. SURFTRIANGLES With this implementation of &raceNEIGHBOR iS robust since no numeri-
cal decisions are involved, see Figure 51. Combinatorial computationadnsteumerical ones
make SrrTrRIANGLES fast provided the Delaunay triangulation is given in a form which allows to
answer queries for neighboring tetrahedra quickly.
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Figure 51. A stable computation ofusaceNEeiGusor (left), a zoom on a reconstruction after
an unstable computation with numerical errors (middle) and a stable computatimutvany
numerical error (right).
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29 Geometric guarantees

In this section we establish more properties of the cocone triangles whiavemeually used to
prove the geometric and topological guarantees of the outpub@iNg. We introduce a map
that takes each pointe R to its closest point itt. Notice thatv is well defined everywhere in
R2 except at the medial axi¥l of =. Mathematicallyy : R3\ M — X wherey(x) € X is closest
to x. Observe that the line containingandv(x) is normal toX at x. The mapy will be used at
many places in this chapter and the chapters to follow. Let

v(x) for any pointx € R\ M and

%
U {X: xeU}foranysety c R3\ M.

See Figure 52 for an illustration.

N~
X

(=

>
Figure 52: lllustration for the map

First, we show that all points of the cocone triangles lie close to the surfdus, in turn,
allows us to extend the Cocone Triangle Normal Lemma 40 to the interior pointg abtone
triangles. The restriction of to the underlying spadé | of the set of cocone triangl&sis a well
defined function; refer to Figure 53. For if some paxtiad more than one closest point on the
surface whem < 0.05, x would be a point of the medial axis givifigp— X|| > f(p) for any vertex
p of a triangle inT; but by the Small Triangle Lemma 39 every point [T| is within 182 f(p)
distance of a triangle vertgxe X for £ < 0.05.

Figure 53: The map restricted tdT|.
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In the next two lemmas and also later we use the notad@) defined in Section 18.3.

Lemma 42. Letq be any point in a cocone triangletT. The distance between g and the point
g isO(e) f(g) and is at mos0.08f (§) for £ < 0.05.

Proor. By the Small Triangle Lemma 39 the circumradius isfat mosj f (p) whereu = 11%8; <
.07 andp is any of its vertices. Lep be a vertex of subtending a maximal angle bfSince there
is a sample point, namely a vertextofwithin u f(p) distance fronqg, we havelq — §l| < uf(p).
We are interested in expressing this bound in termi @Y, so we need an upper bound |gm- §||.
The triangle verte)p has to lie outside the medial balls@tvwhile, sinceq’is the nearest sur-
face point tog, g must lie on the segment betwegmnd the center of one of these medial balls.
For any fixed|p — q|, these facts imply thdfp — §|| is maximized when the anglepqf is a right
angle. Thus|/p - 6|l < V5uf(p) < 0.14f(p) for & < 0.05. This implies thaf (p) = O(¢) f (§) and
in particular f(p) < 1.17f() by Lipschitz property off. We have|q - || < uf(p) = O(e) f (&)
and||q — §l| < 0.08f(§) in particular. O
m]

With a little more work, we can also show that the triangle normal agrees with tfecsu
normal atqg:

Lemma 43. Let g be a point on triangle € T. The angl&(~nq, Np) is at mostl4® where p is a
vertex of t with a maximal angle. Also, the anglgng, n) is O(¢) and is at mos88° for & < 0.05.

Proor. We have already seen in the proof of Lemma 42 fipat G| = O(e) f(p). In particu-
lar, ||p — G|l < 0.14f(p) whene < 0.05. Applying the Normal Variation Lemma 27, and taking
p = O(e) (p = 0.14 in particular), shows that the angle betwegrandny is O(¢) and is less than
14°. The angle betweem andn, is O(e) and is less than 24or ¢ < 0.05 by the Cocone Triangle
Normal Lemma 40. Thus, the triangle normal empknakeé(s) angle which is at most 3&or
£ <0.05. |

m|

Lemma 39, Lemma 42, and Lemma 43 imply that the output sutEad Cocone is close to
¥ both point-wise and normal-wise. The following theorem states this precisely.

Theorem 44. The surfaceE| output byCocone satisfies the following geometric properties for
e <0.05.

(i) Each point pe |E| is within O(e) f () distance of a point »x £. Conversely, each point
x € X is within O(g) f () distance of a point ifE|.

(i) Each point p in a triangle & E satisfiesza(np, nt) = O(e).

29.1 Additional properties

We argued in Section 28.4 that the underlying space of the simplicial compiiputday Cocone
is a 2-manifold. Le€ be this simplicial complex output bydCone. A pair of triangledy, t; € E
areadjacentif they share at least one common verg@xSince the normals to all triangles shar-
ing p differ from the surface normal at by at most 24 (apply the Cocone Triangle Normal
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Lemma 40), and that normal in turnfidirs from the pole vector gi by less than 7 (apply the
Pole Lemma 38), we can orient the triangles shapngrbitrarily but consistently. We call the
normal facing the positive pole thesidenormal and the normal facing away from it thatside
normal. Letd be the angle between the two inside normal db. We define the angle at which
the two triangles meet gtto bexr — 6.

Prorerty | Every two adjacent triangles iB meet at their common vertex at an angle greater
thann/2.

Requiring this property excludes manifolds which contain sharp foldsfan@hstance, flat tun-
nels. Since the cocone triangles are all nearly perpendicular to thesudamnals at their vertices
(Cocone Triangle Normal Lemma 40) and the manifold extraction step eliminateglé&ssadja-
cent to sharp edgek, has this property.

ProperTy II: EVery point inP is a vertex ofE.

The Restricted Delaunay Theorem 41 ensures that th€ eétocone triangles contains all re-
stricted Delaunay triangles even after the pruning. Therefore at thi$ Painontains a triangle
adjacent to every sample pointih Lemma 45 below says that each sample point is exposed to
the outside for the component dfto which it belongs. This ensures that at least one triangle is
selected for each sample point by the manifold extraction step. This implieis trest the second
property as well.

Lemma 45(Exposed.) Let p be a sample point and let m be the center of a medial ball B tangent
to X at p. No cocone triangle intersects the interior of the segment pm £00.05.

Proor. In order to intersect the segmeamt, a cocone trianglewould have to intersed and so
would the smallest empty ball circumscribihgCall it D. LetH be the plane of the circle where
the boundaries 0B andD intersect. See Figure 54. We argue tHageparates the interior gim
andt.

Figure 54: lllustration for the Exposed Lemma.

On one side oH, Bis contained irD and on the otheD) is contained irB. Since the vertices
of t lie on X and hence not in the interior &, t has to lie in the open halfspace, calHt", in
which D is outsideB. SinceD is empty,p cannot lie in the interior oD; but sincep lies on the
boundary ofB, it therefore cannot lie itd*. We claim thaim ¢ H™ either.

Sincem € B, if it lay in H*, mwould be contained iD. Sincem s a point of the medial
axis, the radius ob would be at Ieasf% for any vertexp’ of t. Fore < 0.05, this contradicts
the Small Triangle Lemma 39. Therefgpem, and hence the segmemin cannot lie inH* and
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H separatesand pm O

30 Topological guarantee

Recall that a functiom : X — Y defines a homeomorphism between two compact Euclidean
subspaceX andY if his continuous, one-to-one, and onto. In this section, we will show a
homeomorphism between and any piecewise-linear 2-manifold made up of cocone triangles
from T. The piecewise-linear manifol selected by the manifold extraction step is such a space
thus completing the proof of homeomorphism.

30.1 The mapv

We define the homeomorphism explicitly, using the functiariR® \ M — X, as defined earlier.
We will consider the restriction’ of v to the underlying spaci&| of E, i.e.,v" : |E| —» X. Our
approach will be first to show that is well-behaved on the sample points themselves and then
show that this property extends in the interior of each triangke.in

Lemma 46. For £ < 0.05, v : |E| — X is a well defined continuous function.

Proor. By the Small Triangle Lemma 39, every poipte |E| is within %f(p) of a triangle
vertex p € = whene < 0.05. Therefore|E| ¢ R3\ M for & < 0.05. It follows thaty’ is well
defined. It is continuous since it is a restriction of a continuous function. |

O

Let g be any point such that i$ a sample poinp. By the Exposed Lemma 48§,lies on the
segmenpmwherem s the center of a medial ball touchigat p. We have the following.

Corollary 47. For ¢ < 0.05, the function is one-to-one fronfE| to every sample point p.

In what follows, we will show that’ is indeed one-to-one on all {&|. The proof proceeds in
three short steps. We show thainduces a homeomorphism on each triangle, then on each pair
of adjacent triangles and finally ¢B| as a whole.

Lemma 48. Let U be a region contained within one triangle t£ or in adjacent triangles of E.
For ¢ < 0.05, the function” defines a homeomorphism between U &ind .

Proor. We know that’ is well defined and continuous d, so it only remains to show that it
is one-to-one. First, we prove thatUf is in one triangle, v’ is one-to-one. For a poirg € t,
the vectomq from g to g is perpendicular to the surfacegtsinceX is smooth, the direction of
Nq is unique and well defined. If there were sogne t with §¥ = §, thengq, §, andy would all
be collinear and itself would have to contain the line segment betwgemdy, see Figure 55.
This implies that the normail, is parallel to the plane df In other wordsng is orthogonal to the
normal oft, contradicting the Cocone Triangle Normal Lemma 40 which says that the hofma
tis nearly parallel tong.

Now, we consider the case in whithis contained in more than one triangle. logindy be
two points inU such thaf= § = x and letv be a common vertex of the triangles that contdin
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Figure 55:v" mapsy andq to the same point which is impossible.

Sincey’ is one-to-one in one trianglg,andy must lie in the two distinct triangletg andty. The
line | throughx with directionny pierces the patchl at least twice; ify andqg are not adjacent
intersections alonf redefineg so that this is trueq = x for any intersectiom of | with U). Now
consider the orientation of the patthaccording to the direction to the positive polevakEitherl
passes from inside to outside and back to inside when crogsindq, or from outside to inside
and back to outside.

The acute angles between the triangle normatg,of andny are less than 3§Lemma 43),
that is, the triangles are stabbed nearly perpendicularly,byBut since the orientation df is
opposite at the two intersections, the angle between thetigatedtriangle normals is greater
than 104, meaning thaty andt, must meet at at an acute angle. This would contradiebPrry
I, which is thatty andty, meet atv at an obtuse angle. Hence there are no two pgif$n U with
a=y. o

m]

30.2 Homeomorphism proof

We finish the proof for homeomorphism guarantee using a theorem frastotpp

Theorem 49 (Homeomorphism.) The mapy’ defines a homeomorphism from the surfé€le
computed bYCocone to the surface for & < 0.05.

Proor. LetXY’ c X bev'(|E[). We first show that|E|,»’) is acovering spacef ¥’. Informally,
(IEl,v") is a covering space fax’ if v maps|E| smoothly ontoX’, with no folds or other sin-
gularities. Showing that|E|,»") is a covering space is weaker than showing tHadefines a
homeomorphism, since, for instance, it does not preclude severatc®ancomponents ¢E|
mapping onto the same componen&df or more interesting behavior, such as a torus wrapping
twice around another torus to forndauble covering

For a seiX C ¥, let 7(X) denote the set ifE| so thatv’(r(X)) = X. Formally, the {E|,»’) is a
covering space of’ if, for every x € ¥/, there is a path-connectetementary neighborhoodyV
aroundx such that each path-connected componenidf) is mapped homeomorphically onto
Vyx by v'.

To construct such an elementary neighborhood, note that the set ¢ pincorresponding
to a pointx € ¥’ is non-zero and finite, sincé is one-to-one on each triangle Bfand there are
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Figure 56: Proof of the Homeomorphism Theorem#AS) = {1, g2, ds}-

only a finite number of triangles. For each pair¢ 7(x), we choose an open neighborhddglof
g, homeomorphic to a disk and small enough so thgis contained only in triangles that contain
g. See Figure 56.

We claim that’ maps eactq homeomorphically onttJ,. This is because it is continuous,
it is onto Uq by definition, and, since any two pointsandy in Ugq are in adjacent triangles, it is
one-to-one by Lemma 48.

Let U'(X) = Ngern V' (Ug), the intersection of the maps of each of tdg. U’(X) is the
intersection of a finite number of open neighborhoods, each containsmwe can find an open
disk Vy aroundx. Vy is path connected and each component(¥%) is a subset of someq and
hence is mapped homeomorphically omtoby v'. Thus (E|, V') is a covering space f&’.

We now show that’ defines a homeomorphism betwg&hand’. Sincev’: |E| — Y’ is
onto by definition, we need only that is one-to-one. Consider one connected compoGeoit
3. Atheorem of algebraic topology says that whig, ¢’) is a covering space af , the setg(x)
for all x € G have the same cardinality. We now use Corollary 47, th& one-to-one at every
sample point. Since each connected componehtaaintains some sample points, it must be the
case that’ is everywhere one-to-one attel andX’ are homeomorphic.

Finally, we show that’ = X. Since|E| is a 2-manifold without boundary and is compaxt,
must be as well. S& cannot include part of a connected component,odnd henc&’ must
consist of a subset of the connected componenis dfince every connected componentof
contains a samplp (actually many sample points) amt{p) = p, all components o belong to
Y. ThereforeX’ = X and|E| andX are homeomorphic. O

m]

It can also be shown th#E| andX are isotopic (Exercise 7). We will show a technique to
prove isotopy in Sectiof2?.

31 Notes and exercises

The first algorithm for surface reconstruction with proved guaramesslevised by Amenta and
Bern [1]. They generalized therGst algorithm for curve reconstruction to the surface recon-
struction problem. The idea of poles and approximating the normals with the gcierwas a
significant breakthrough. The crust triangles (Exercise 2) enjoy suoeeproperties that help
the reconstruction. Thedcone algorithm as described here is a successorrak€ Devised by
Amenta, Choi, Dey, and Leekha [2], this algorithm simplified tke< algorithm and its proof of
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correctness. &one eliminated one of the two Voronoi diagram computations ef$z and also
a normal filtering step. The homeomorphism between the reconstructedearid the original
sampled surface was first established in [2].

Exercises

1. We know that Voronoi vertices for a dense sample from a curve inldrepie near the
medial axis. The same is not true for surfaces in three dimensions. Srexaaple where
a Voronoi vertex for an arbitrarily dense sample lies arbitrarily close toutace.

2", Let P be a sample from &2-smooth surfac& andV be the set of poles in Vd®. Consider
the following generalization of thedtst. A triangle in the DelP U V) is a crust triangle
if all of its vertices are inP. Show the following wherP is ane-sample for a sfliciently
smalle.

() Allrestricted Delaunay triangles in Del(P U V) are crust triangles.
(i) All crust triangles have circumradiud(e) f (p) wherep is a vertex of the triangle.

3. Lett be a triangle in DeP whereB = B, andB’ = B;, , are two Delaunay balls circum-
scribingt. Let x be any point on the circle where the boundarieB ahdB’ intersect. Show
that, if zvxv > 7, the triangle normal of makes an angle @(s) with the normals t& at

its vertices wherP is ane-sample ot for a suficiently smalle.

4. Recall thatP is a locally g, 6)-uniform sample of a smooth surfa&ef P is ane-sample
of X and each sample poipte P is at least; f(p) distance away from all other points in
P whered > 1 is a constant. Show that each triangle in the surface outpubby~g for
such a sample has a bounded aspect ratio (circumradius to edge lengthAstioprove
that each vertex has no more than a constant number (determiredrial6) of triangles
on the surface.

5", Lett be a cocone triangle. We showed that any pgiatt is O(s) f (X) away from its closest
pointXin X. Prove that the bound can be improved@?) f (%).

6. We defined a Delaunay trianglas a cocone triangle if duintersects cocones afl of its
three vertices. Relax the condition by definirgs a cocone triangle if duintersects the
cocone ofanyof its vertices. Carry out the proofs offtBrent properties of cocone triangles
with this modified definition.

7. We showed that the surfa¢le] computed by Gcone is homeomorphic t& whene is
suficiently small. Prove thdE| is indeed isotopic t&.
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