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Persistent Homology

Suppose we have a noisy point set (data) sampled from a space, say a curve in R2 as in
Figure 12. Can we get the information that the sampled space had two loops, one bigger and
more prominent than the other? LetP denote the data points. Consider the distance function
r : R2→ R defined overR2 wherer(x) equalsd(x,P), that is, the minimum distance to the points
in P. Now let us look at the sublevel sets ofr, that is,r−1[0,a] for somea ∈ R+ ∪ {0}. These
sublevel sets are union of closed balls of radiusa cenetring the points.

(a)
(b)

(c) (d)

Figure 12: Noisy sample of a curve with two loops and the growing sublevel sets of the distance
function to the sample points: The larger loop appearing as the bigger hole in the complement of
the union of balls persists longer than the same for the smaller loop while other spurious holes
persist even shorter.

As one can observe, if we increasea starting from zero, we come across different holes sur-
rounded by the union of these balls which ultimately get filled up at different times. However,
the two holes corresponding to the original two loops persist longer than theothers. So, can we
abstract out this observation where we look at the measure of how long a feature (homologies)
survives when we scan over the increasing sublevel sets? This seems toweed out the ‘false’ fea-
tures (noise) from the true ones. The notion of persistent homology formalizes this idea.It takes
a function defined on a topological space and quantizes the changes in homology as the sublevel
sets develop with increasing value of the function.
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14 Definition

First, we consider a general topological space and later we specialize theconcept to simplicial
complexes.

Consider a real-valued functionf : T → R defined on a topological spaceT. Let Ta =

f −1(−∞,a] denote the sublevel set for the function valuea. Certianly, we have inclusions:

Ta ⊆ Tb for a ≤ b.

This inclusion induces a map in the homology groups. So, ifι : Ta → Tb denotes the inclusion
mapx 7→ x, we have an induced map

f = ι∗ : Hp(Ta)→ Hp(Tb).

Now consider a sequence of distinct valuesa1 < a2 < . . . , < an corresponding to which we have
the sequence of homomorphisms induced by inclusions

0→ Hp(Ta1)→ Hp(Ta2)→ · · · → Hp(Tan)→ Hp(T)

This sequence of maps commutes because inclusion satisfies the transitive relation,Ta1 ⊆ Ta2 ⊆

Ta3 impliesTa1 ⊆ Ta3. So, we have a homomorphism

f i j
p : Hp(Tai )→ Hp(Ta j )

for all p and 1≤ i ≤ j ≤ n. The homomorphismf i j
p takes the homology classes of the sublevel set

Tai to those of the sublevel sets ofTa j . Some of these classes may die or get merged with other

classes while the others survive. The image Imf i j
p contains this information.

Definition 38 (Persistence.). The p-th persistent homology groups are the images of the homo-
morphisms;Hi j

p = im f i j
p , for 1 ≤ i ≤ j ≤ n. The p-th persistent betti numbers are the ranks

β
i j
p = rank Hi j

p .

The p-th persistent homology groups contain an important information, namely whena class
is born and when it dies. The issue of birth and death of a class becomes more subtle because
when a new class is born, many other classes that are sum of this new classand any other existing
class also are born. Similarly, when a class ceases to exist, many other classes also do so along
with it. Therefore, we need a mechanism to pair births and deaths canonically. We will do it
below in the discrete case.

Filtrations. Consider a simplicial complexK and a functionf : K → R on it. We require that
the function f is monotonicwhich means it satisfies the property: for everyσ′ ⊆ σ, we have
f (σ′) ≤ f (σ). This property ensures that the sublevel setsf −1(−∞,a] are subcomplexes ofK for
everya ∈ R. DenotingKi = f −1(−∞,ai ], we get a nested sequence of subcomplexes ofK which
is called afiltration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

Naturally, this filtraton gives rise to a sequence of homomorphisms induced byinclusions

0→ Hp(K1)→ · · · → Hp(Kn) = Hp(K).
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By definition, thep-th persistent homology groups consist of classes that survive fromKi to K j ,
that is, the classes which do not get ‘quotient out’ by the boundaries inK j . We can write this with
notation,Hi j

p = Zp(Ki)/(Bp(K j) ∩ Zp(Ki)). We now formally state when a class is born or dies.

Definition 39 (Birth and death.). A p-th homology class [c] is born atKi if [ c] ∈ Hp(Ki), but
[c] < Hp(Ki−1). It dies enteringK j if it merges with a class that is born earlier. Formally stated,
f i, j−1([c]) < Hi−1, j−1

p , but f i, j([c]) ∈ Hi−1, j
p .

Figure 13: Birth and death of classes, taken from [1]: The classγ is born atKi since it is not in
the image ofHp(Ki−1). It dies enteringK j since this is the first time its image merges with the
image ofHp(Ki−1).

The definition of birth is almost straightforward. But, the definition of death is alittle subtle.
When a class is merged with another class, wechooseto kill the class that is born thelatest. If we
made a different choice, the lifetime of a class would be different. But, we make this canonical
choice of killing theyougestclass when merging happens. We define the persistence of a class,
Pers ([c]) = a j − ai where the class [c] is born at the function valueai and dies at the function
valuea j . Sometimes, emphasizing on the index we take itsindex persistenceas j − i.

15 Algorithm

We describe the persistence algorithm originally proposed in [2]. For simplicity we assume that
we add one simplex at a time into a filtartion. This means, given a filtration

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn = K

whereKi+1 \Ki = σ, a single simplex.

Fact 7. When a p-simplexσ = Ki+1 \Ki is added, exactly one of the following two possibilities
occurs:

1. A non-boundary p-cycle c along with its classes[c]+h for any class h∈ Hp(Ki) are created.
In this case we callσ a positivesimplex.

2. An existing(p − 1)-cycle c along with its classes[c] + h for any class h∈ Hp(Ki) are
destroyed (killed). In this case we callσ a negativesimplex.
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Figure 14: Red simplices are positive and blue ones are negative. The simplices are indexed to
coincide with their order in the filtration. (·, ·) in each subcomplex shows the pairing between the
positive and the negative. The second component missing in the parenthesis shows the introducing
of a positive simplex.

We elaborate the above two changes through an example depicted in Figure 14. When one
moves fromK6 to K7, a non-boundary loop which is a 1-cycle (e4 + e5 + e6 + e7) is created after
adding edgee7. Strictly speaking, a positivep-simplex may create more than onep-cycle. Only
one of them is independent and the others are its linear combinations with the existing ones in
Ki−1. FromK7 to K8, the introduction of edgee8 creates two non-boundary loops (e4 + e5 + e8)
and (e6+e7+e8). But any one of them is the linear combination of the other one with the existing
loop (e4 + e5 + e6 + e7). Notice that there is no canonical way to choose an independent one.
However, the creation of a loop is reflected in the increase of the rank ofH1. In other words, in
general, the Betti numberβp increases by 1 for a positive simplex. For a negative simplex, we
get the opposite effect. In this caseβp−1 decreases by 1 signifying a death of a cycle. However,
unlike positive simplices, the killed cycle is determined uniquely up to homology, which is the
equivalent class carried by the boundary ofσi . For example, in Figure 14, the loop (e6 + e7 + e8)
gets killed by trianglet9 when we go fromK8 to K9.

Pairing. We already saw that killing of a class is uniquely paired with a creation of a class
through the ‘youngest first’ rule. This means that each negative simplex ispaired uniquely with a
positive simplex. The goal of the persistence algorithm is to find out these pairs.

Consider the birth and death of the classes by addition of simplices into a filtration. When
a p-simplexσ is added, we explore if it kills the class [c] of its boundaryc = ∂σ. The cyclec
was created when the youngest (p − 1)-simplex in it, sayd, was added. Ifd, a positive (p − 1)-
simplex, has already been paired with ap-simplexσ′, then a class also created byd got merged
whenσ′ appeared. We can get the (p− 1)-cycle representing this merged class and add it to∂σ.
The addition provides a cycle that represents a class which was merged to create∂σ, but existed
beforeσ′. We updatec to be this new cycle and look for the youngest (p − 1)-simplexd in c
and continue the process till we find one that is unpaired, or the cyclec becomes empty. In the
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latter case, we discover thatc = ∂σ was a boundary cycle already and thusσ creates a new class
in Hp(Ki+1). In the other case, we discover thatσ is a negativep-simplex which merges classes
among which the youngest one created byd is chosen to be killed byσ. We pairσ with d.

Algorithm 1 P(σ)
1: c = ∂pσ

2: d is the youngest positive (p− 1)-simplex inc.
3: while d is paired andc is not emptydo
4: Let c′ be the cycle killed by the simplex paired withd
5: c = c′ + c \∗this addition may cancel simplices∗\
6: Updated to be the youngest positive (p− 1)-simplex inc
7: end while
8: if c is not emptythen
9: σ is a negativep-simplex and paired withd

10: else
11: σ is a positivep-simplex
12: end if

Let us again consider the example in Figure 14 and see how the algorithm P works. From
K6 to K7, e7 is added. Its boundary isc = (v1 + v3). The vertexv3 is the youngest positive vertex
in c but it is paired withe6 in K6. Thus,c is updated to (v2+v3+v3+v1) = (v2+v1). The vertexv2

becomes the youngest positive one but it is paired withe4. So,c is updated to (v0+v1). The vertex
v1 becomes the youngest positive one but it is paired withe5. So,c is updated to empty. Hencee7

is a positive edge. Now we examine the addition of the trianglet10 from K9 to K10. The boundary
of t10 is c = (e4 + e5 + e8). The youngest positive edgee8 is paired witht9. Thus,c is updated by
adding the cycle killed byt9 to (e4 + e5 + e6 + e7). Sincee7 is the youngest positive edge that is
not yet paired,t10 findse7 as its paired positive edge. Observe that, we finally obtain a loop that
is killed by adding the negative triangle. For example, we obtain the loop (e4 + e5 + e6 + e7) by
addingt10.

16 Persistence diagram

A visual representation of the the persistent homology can be created by drawing a collection
of points in the plane. Consider the extended plane (R ∪ {±∞})2 on which we represent a birth
paired with the death as a point with two coordinates. Some of the classes may never die and thus
represented as points at infinity. Some others may have same coordinates because they may be
born and die at the same time. This happens only when we allow mutiple homology classes being
created or destroyed at the same function value or filtration point.

Let µi j
p be the number of independentp-dimensional classes that are born atKi and die enter-

ing K j .

Fact 8. µi j
p = (βi, j−1 − β

i, j
p ) − (βi−1, j−1

p − β
i−1, j
p ) for all i < j and all p.

The first difference on the RHS counts the number of independent classes that are born at or
beforeKi and die enteringK j . The second diffrence counts the number of independent classes
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that are born at or beforeKi−1 and die enteringK j . The difference between the two differences
thus counts the number of independent classes that are born atKi and die enteringK j .

Definition 40 (Persistence diagram.). The persistence diagram Dgmp( f ) of a filtration induced

by a function f is obtained by drawing a point (i, j) with multiplicity µi j
p on the extended plane

where the diagonalD is added with infinite multiplicity.

The addition of the diagonal is a technical necessity for results that we will see afterward.

Fact 9.

1. If a class has persistence s, then the point representing it will be at distance s from the
diagonal D

2. Since all points(i, j) representing a class have i< j, they lie above the diagonal.

3. βk,ℓ
p is the number of points in the upper left quadrant of the corner(k, ℓ). A class that is

born atKi and dies eneteringK j is counted forβk,ℓ
p iff i ≤ k and j > ℓ. The quadrant is

therefore closed on the right and open on the bottom.

Theorem 7. For every pair of indices0 ≤ k ≤ ℓ ≤ n and every p, the p-th persistent Betti number
is βk,ℓ

p =
∑

i≤k
∑

j>ℓ µ
i, j
p .

Stability of persistence diagrams. A persistence diagram Dgmp( f ), as a set of points in the

extended planeR2, summarizes certain topological information of a space in relation to the func-
tion f defined on it. However, this is not useful in practice unless we can be certain that a slight
change inf does not change this diagram dramatically. In practicef is seldom measured accu-
rately, and if its persistence diagram can be approximated from a slightly perturbed version, it
becomes useful. Fortunately, persistence diagrams are stable. To formulate this stability, we need
a notion of distances between persistence diagrams.

Let Dgmp( f ) and Dgmp(g) be two persistence diagrams for two monotonic functionsf and
g defined on a complexK. We want to consider bijections between points from Dgmp( f ) and
Dgmp(g). However, they may have different caridinality of off-diagonal points. Recall that persis-
tence diagrams include the points on the diagonalD each with infnite multiplicity. This addition
allows us to borrow points from the diagonal when necessary to define thebijections.

Definition 41 (Bottleneck distance.). Let B = {b} denote the set of all bijectionsb : Dgmp( f )→
Dgmp(g). Consider the distance between two pointsx = (x1, x2) andy = (y1, y2) in L∞-norm
‖x− y‖∞ = max{|x1 − y1|, |x2 − y2|}. The bottleneck distance between the two diagrams is:

W∞(Dgmp( f ),Dgmp(g)) = inf
b∈B

sup
x∈Dgmp( f )

‖x− b(x)‖∞.

Fact 10. W∞ is a metric on the space of persistence diagrams. Clearly, W∞(X,Y) = 0 iff X = Y.
Moreover, W∞(X,Y) =W∞(Y,X) and W∞(X,Y) ≤W∞(X,Z) +W∞(Z,Y).

The following theorem originally proved in [4] quantifies the notion of the stabilty of the
persistence diagram.
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Figure 15: Two persistence diagrams and their bottleneck distance which is half of the side lengths
of the squares representing bijections. Figure taken from [1].

Theorem 8 (Stability theorem.). Let f,g : K → R be two monotonic functions defined on a
simplicial complexK. Then, for every p≥ 0,

W∞(Dgmp( f ),Dgmp(g)) ≤ ‖ f − g‖∞.

17 Matrix reduction algorithm

There is an algorithm for computing persistent homology that uses only matrix operations. First
notice the following:

• The boundary operator∂p : Cp → Cp−1 can be represented by a matrixD where the
columns correspond to thep-simplices and rows correspond to (p− 1)-simplices.

• It represents the transformation of a basis ofCp given by the set ofp-simplices to a basis
of Cp−1 given by the set of (p− 1)-simplices.

•

D[i, j] =

{

1 if σi ∈ ∂σ j

0 otherwise.

Consider a simplicial complexK and a filtrationK0 = ∅ ⊂ K1 ⊂ . . . ⊂ Km = K induced by
an ordering of simplices (σ1, σ2, . . . , σm) in K. Let D denote the boundary matrix for simplices
in K.

Given any matrixM, let rowM[i] and colM[ j] denote theith row andjth column ofM, respec-
tively. We abuse the notation slightly to let colM[ j] denote also the chain{σi | M[i, j] = 1}, which
is the collection of simplices corresponding to 1’s in the column colM[ j].

Definition 42 (Reduced matrix.). Let lowM[ j] denote the row index of the last 1 in thejth column
of M, which we call thelow-row indexof the columnj. It is undefined for empty columns. The



Notes by Tamal K. Dey, OSU 31

matrix M is reduced(or is in reduced form) if low M[ j] , lowM[ j′] for any j , j′; that is, no two
columns share the same low-row indices.

We define a matrixM to beupper-triangularif all of its diagonal elements are 1, and there is
no entryM[i, j] = 1 with i > j.

Proposition 9 ([3]). Let R= DV, where R is in reduced form and V is upper triangular. Then,
the simplicesσi andσ j form a persistent pair if and only iflowR[ j] = i.

Notice that there are possibly manyR andV for a fixedD forming thereduced-form decom-
positionas described in the above proposition. The above result implies that the persistent pairing
is independent of the particular contents ofR andV. Furthermore, consider a column colV[ j] of
V. Let c j be thep-chain corresponding to this column, that is,c j = colV[ j]. It follows from the
relationR= DV that thejth column ofR, colR[ j], corresponds to the (p− 1)-chain∂c j .

Proposition 10. Let cj and c′j be the p- and(p− 1)-chains corresponding to the columnscolV[ j]
andcolR[ j] respectively where R= DV. Then, c′j = ∂p(c j).

In light of Proposition 9, we have the following algorithm to compute the persistent pairs of
simplices. We process the columns ofD from left to right which correspond to the order in which
they appear in the filtration. Notice that row indices also follow the same order.Suppose we have
processed all columns up toj −1 and now are going to process the columnj. We check if the row
lowD[ j] contains any other lowest 1 for any columnj′ to the left of j, that is j′ < j. If so, we add
colD[ j′] to colD[ j]. This moves lowD[ j] upward. We continue this process until either we turn all
entries in colD[ j] 0, or settle on lowD[ j] that does not conflict with any other lowD[ j′] to its left.
In the former case, we declareσ j a positive simplex. In the latter case,σ j is a negativep-simplex
that pairs with the positive (p− 1)-simplexσlowD[ j] .
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