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Persistent Homology

Suppose we have a noisy point set (data) sampled from a space, sayeartR? as in
Figure 12. Can we get the information that the sampled space had two lowbjgger and

more prominent than the other? LBtdenote the data points. Consider the distance function

r : R? - R defined oveiR? wherer(x) equalsd(x, P), that is, the minimum distance to the points
in P. Now let us look at the sublevel sets mfthat is,r [0, a] for somea € R* U {0}. These
sublevel sets are union of closed balls of radgicgnetring the points.

© (d)

Figure 12: Noisy sample of a curve with two loops and the growing subletgldf the distance
function to the sample points: The larger loop appearing as the bigger hoke dotiplement of
the union of balls persists longer than the same for the smaller loop while otingoisp holes
persist even shorter.

As one can observe, if we increasestarting from zero, we come acrosstdient holes sur-
rounded by the union of these balls which ultimately get filled up fiedint times. However,
the two holes corresponding to the original two loops persist longer thaotliees. So, can we
abstract out this observation where we look at the measure of how losafardé (homologies)
survives when we scan over the increasing sublevel sets? This seamsdmut the ‘false’ fea-
tures (noise) from the true ones. The notion of persistent homology fiaevdhis idealt takes
a function defined on a topological space and quantizes the changes oidgnas the sublevel
sets develop with increasing value of the function.
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14 Definition

First, we consider a general topological space and later we specializerbept to simplicial
complexes.

Consider a real-valued functioh : T — R defined on a topological spade Let T, =
f (-0, a] denote the sublevel set for the function valueCertianly, we have inclusions:

TaC Tpfora<h.

This inclusion induces a map in the homology groups. So; ity — Ty denotes the inclusion
mapXx — X, we have an induced map

f = 1.1 Hp(Ta) — Hp(Tp).

Now consider a sequence of distinct valags< a; < ..., < a, corresponding to which we have
the sequence of homomorphisms induced by inclusions

0 — Hp(Ta,) — Hp(Ta,) — -+ = Hp(Ta,) = Hp(T)

This sequence of maps commutes because inclusion satisfies the trankitioa (€, C Ty, C
Ta, implies Ty, € Ta,. SO, we have a homomorphism

fi : Hp(Ta) = Hp(Ta,)

forallpand 1<i < j<n. The homomorphisrrh:)j takes the homology classes of the sublevel set
Ty to those of the sublevel sets Bf,. Some of these classes may die or get merged with other

classes while the others survive. The imagérijmontains this information.

Definition 38 (Persistence.)The p-th persistent homology groups are the images of the homo-
morphisms;Hy = imfy, for 1 < i < j < n. The p-th persistent betti numbers are the ranks

ij _ ij
Bp =rankHp.

The p-th persistent homology groups contain an important information, namely ehkss

is born and when it dies. The issue of birth and death of a class becomessniiite because
when a new class is born, many other classes that are sum of this newralleassy other existing
class also are born. Similarly, when a class ceases to exist, many othesdéss do so along

with it. Therefore, we need a mechanism to pair births and deaths canonig¢élywill do it
below in the discrete case.

Filtrations. Consider a simplicial compleX and a functionf : K — R on it. We require that
the functionf is monotonicwhich means it satisfies the property: for evety C o, we have
(o) < (o). This property ensures that the sublevel set§—oo, a] are subcomplexes ¢t for
everya € R. DenotingX; = f~1(-, &], we get a nested sequence of subcomplexdé which
is called dfiltration:

D=KoCXKiC---cKn=XK.

Naturally, this filtraton gives rise to a sequence of homomorphisms inducixtliongions

0—- Hp(le) — Hp(fKn) = Hp(:K)-
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By definition, thep-th persistent homology groups consist of classes that surviveXoto X;,
thatis, the classes which do not get ‘quotient out’ by the boundaris.itWe can write this with
notation,H'g = Zp(XKi)/(Bp(Kj) N Zp(Ki)). We now formally state when a class is born or dies.

Definition 39 (Birth and death.) A p-th homology classd] is born atX; if [c] € Hp(Xj), but
[c] ¢ Hp(Xi-1). It dies enterindK; if it merges with a class that is born earlier. Formally stated,
fii=3([c]) ¢ Hp M7, but FHi([c]) € Hp ™.

/’H' /’"“\

H"!IIF‘-I I] "r Hp !'l

Figure 13: Birth and death of classes, taken from [1]: The gla@ssborn atX; since it is not in
the image oH,(Ki_1). It dies enterindK; since this is the first time its image merges with the
image ofHp(Ki_1).

The definition of birth is almost straightforward. But, the definition of deathlile subtle.
When a class is merged with another classch@osedo kill the class that is born tHatest If we
made a dierent choice, the lifetime of a class would bé&elient. But, we make this canonical
choice of killing theyougestclass when merging happens. We define the persistence of a class,
Pers (E]) = aj — & where the clasx] is born at the function value; and dies at the function
valuea;. Sometimes, emphasizing on the index we takedex persistencas j — i.

15 Algorithm

We describe the persistence algorithm originally proposed in [2]. For siityplie assume that
we add one simplex at a time into a filtartion. This means, given a filtration

KoCKiCcKrC---CKp=XK
whereXi,1 \ Xi = o, a single simplex.

Fact 7. When a p-simplex = Xj,1 \ X is added, exactly one of the following two possibilities
OCCUrs:

1. Anon-boundary p-cycle c along with its claspgls-h for any class ke Hp(X) are created.
In this case we call- a positivesimplex.

2. An existing(p — 1)-cycle ¢ along with its classgg] + h for any class he Hp(X;) are
destroyed (killed). In this case we calla negativesimplex.
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Figure 14: Red simplices are positive and blue ones are negative. Thicssmre indexed to
coincide with their order in the filtration:, () in each subcomplex shows the pairing between the
positive and the negative. The second component missing in the paissti@ss the introducing

of a positive simplex.

We elaborate the above two changes through an example depicted in Figuvéhen one
moves fromKg to K7, a non-boundary loop which is a 1-cyck ¢+ es + €5 + €7) is created after
adding edge;. Strictly speaking, a positivp-simplex may create more than opeycle. Only
one of them is independent and the others are its linear combinations withistiagewnes in
Ki_1. FromX7 to Kg, the introduction of edgeg creates two non-boundary loops ¢+ es5 + €g)
and s + €7 + eg). But any one of them is the linear combination of the other one with the existing
loop (4 + €5 + €5 + €7). Notice that there is no canonical way to choose an independent one.
However, the creation of a loop is reflected in the increase of the raHlg.olih other words, in
general, the Betti numbe, increases by 1 for a positive simplex. For a negative simplex, we
get the oppositeféect. In this cas@,_1 decreases by 1 signifying a death of a cycle. However,
unlike positive simplices, the killed cycle is determined uniquely up to homologighnik the
equivalent class carried by the boundaryf For example, in Figure 14, the loogs(+ €7 + €g)
gets killed by triangldég when we go froniKg to Ko.

Pairing. We already saw that killing of a class is uniquely paired with a creation of & clas
through the ‘youngest first’ rule. This means that each negative simppairisd uniquely with a
positive simplex. The goal of the persistence algorithm is to find out these pa

Consider the birth and death of the classes by addition of simplices into a filtraiben
a p-simplexo is added, we explore if it kills the class][of its boundaryc = do. The cyclec
was created when the youngept< 1)-simplex in it, sayd, was added. Ifl, a positive p — 1)-
simplex, has already been paired witlp-gimplexo”’, then a class also created thgot merged
wheng’ appeared. We can get the € 1)-cycle representing this merged class and adddtto
The addition provides a cycle that represents a class which was mergeaétedo-, but existed
befores’. We updatec to be this new cycle and look for the youngept« 1)-simplexd in ¢
and continue the process till we find one that is unpaired, or the cylméEomes empty. In the
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latter case, we discover that do- was a boundary cycle already and thusreates a new class
in Hp(Xis1). In the other case, we discover thats a negativep-simplex which merges classes
among which the youngest one createdlby chosen to be killed by. We pairo- with d.

Algorithm 1 Par(o)

1: C=0p0

2: dis the youngest positivep(— 1)-simplex inc.

3: while dis paired and is not emptydo
4:  Letc’ be the cycle killed by the simplex paired with
5. c¢=C +c \«this addition may cancel simplices
6
7
8

Updated to be the youngest positive ¢ 1)-simplex inc
: end while
. if cis not emptythen
o is a negativep-simplex and paired witd
10: else
11: o is a positivep-simplex
12: end if

©

Let us again consider the example in Figure 14 and see how the algorithkwdtks. From
K to K7, €7 is added. Its boundary = (v1 + v3). The vertexvs is the youngest positive vertex
in cbut it is paired witheg in Kg. Thus,cis updated tovb +V3+V3+V1) = (V2 +V1). The vertexv,
becomes the youngest positive one but it is paired @jtfso,c is updated to\p + v1). The vertex
v, becomes the youngest positive one but it is paired @gtt50,c is updated to empty. Henee
is a positive edge. Now we examine the addition of the triahglEom Xg to K10. The boundary
of typis ¢ = (es4 + &5 + €g). The youngest positive edgg is paired withtg. Thus,c is updated by
adding the cycle killed byg to (e4 + €5 + €5 + €7). Sinceey is the youngest positive edge that is
not yet pairedt;o findse; as its paired positive edge. Observe that, we finally obtain a loop that
is killed by adding the negative triangle. For example, we obtain the lepp € + e + €7) by
addingt.

16 Persistence diagram

A visual representation of the the persistent homology can be createthiwjnd a collection
of points in the plane. Consider the extended plahel (+0})? on which we represent a birth
paired with the death as a point with two coordinates. Some of the classes veayligeand thus
represented as points at infinity. Some others may have same coordinzdeaséhey may be
born and die at the same time. This happens only when we allow mutiple homolsgg<laeing
created or destroyed at the same function value or filtration point.

Let,u'F’, be the number of independepdimensional classes that are boridkatand die enter-
ing X;j.

Fact 8. u) = (B2 = gy — (B, ™17t = gy M) for all i < jand all p.

The first diterence on the RHS counts the number of independent classes thatraed bo
beforeX; and die entering<j. The second diirence counts the number of independent classes
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that are born at or befor®;_, and die entering(;. The diference between the twoftlirences
thus counts the number of independent classes that are bifiraat die entering;.

Definition 40 (Persistence diagram.Jhe persistence diagram Dgjff) of a filtration induced

by a functionf is obtained by drawing a point, () with multiplicity yg on the extended plane
where the diagondD is added with infinite multiplicity.

The addition of the diagonal is a technical necessity for results that weegilh&erward.

Fact 9.

1. If a class has persistence s, then the point representing it will be &tndis s from the
diagonal D

2. Since all pointgi, j) representing a class havei j, they lie above the diagonal.

3. B'E;" is the number of points in the upper left quadrant of the colfkef). A class that is

born atX; and dies eneterin(; is counted fo;B‘E;" iffi < kand j> ¢. The quadrant is
therefore closed on the right and open on the bottom.

Theorem 7. For every pair of indice® < k < £ < n and every p, the p-th persistent Betti number
IS = Sick Sisc .

Stability of persistence diagrams. A persistence diagram Dgptf), as a set of points in the

extended plan&2, summarizes certain topological information of a space in relation to the func-
tion f defined on it. However, this is not useful in practice unless we can b&ircéinat a slight
change inf does not change this diagram dramatically. In practiée seldom measured accu-
rately, and if its persistence diagram can be approximated from a slightlyipedtwersion, it
becomes useful. Fortunately, persistence diagrams are stable. To fierthigastability, we need
a notion of distances between persistence diagrams.

Let Dgm,(f) and Dgm,(g) be two persistence diagrams for two monotonic functibresd
g defined on a compleX’. We want to consider bijections between points from Ogf) and
Dgm (). However, they may haveftierent caridinality of @-diagonal points. Recall that persis-
tence diagrams include the points on the diag@dhahch with infnite multiplicity. This addition
allows us to borrow points from the diagonal when necessary to defirmjéaotions.

Definition 41 (Bottleneck distance.)Let B = {b} denote the set of all bijectiors: Dgm (f) —
Dgm(g). Consider the distance between two poirts (X1, X2) andy = (y1,Y2) in Le-norm
IIX = Vllo = Max{|x1 — y1l, [X2 — Y2|}. The bottleneck distance between the two diagrams is:

Weo(Dgm (f), Dgm ,(g)) = inf DSUp(f) [1X = B(X)llo-
xeDgm,,

Fact 10. W,, is a metric on the space of persistence diagrams. Clearl(X\W) = 0iff X =Y.
Moreover, W, (X, Y) = W (Y, X) and W (X, Y) < W (X, Z) + W (Z,Y).

The following theorem originally proved in [4] quantifies the notion of the i#falof the
persistence diagram.
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Figure 15: Two persistence diagrams and their bottleneck distance whalhad the side lengths
of the squares representing bijections. Figure taken from [1].

Theorem 8 (Stability theorem.) Let f,g : X — R be two monotonic functions defined on a
simplicial complexK. Then, for every O,

Weo (Dgm (), Dgm,(9)) < [If — glleo-

17 Matrix reduction algorithm

There is an algorithm for computing persistent homology that uses only maegbations. First
notice the following:

e The boundary operata?, : C, — Cp_1 can be represented by a matiixwhere the
columns correspond to thesimplices and rows correspond fo{ 1)-simplices.

e It represents the transformation of a basi€gfgiven by the set op-simplices to a basis
of Cp_1 given by the set ofi§ — 1)-simplices.

.o [ 1 ifojedo;
DLi. 1] _{ 0 otherwise.

Consider a simplicial compleX and a filtrationkKg = 0 c X1 c ... ¢ Xy, = K induced by
an ordering of simplices{y, o2, ..., om) in K. Let D denote the boundary matrix for simplices
in X.

Given any matrixM, let rowy[i] and coly[ j] denote theth row andjth column ofM, respec-
tively. We abuse the notation slightly to let gglj] denote also the chaifar; | M[i, j] = 1}, which
is the collection of simplices corresponding to 1's in the colummEgl

Definition 42 (Reduced matrix.)Let lowy[ j] denote the row index of the last 1 in tljh column
of M, which we call thdow-row indexof the columnj. It is undefined for empty columns. The
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matrix M is reduced(or is inreduced formif low y[j] # lowym[j’] for any j # j’; that is, no two
columns share the same low-row indices.

We define a matriM to beupper-triangularif all of its diagonal elements are 1, and there is
no entryM[i, j] = 1 withi > j.

Proposition 9 ([3]). Let R= DV, where R is in reduced form and V is upper triangular. Then,
the simplicesr; andoj form a persistent pair if and only [bwg[ j] = i.

Notice that there are possibly maRyandV for a fixedD forming thereduced-form decom-
positionas described in the above proposition. The above resultimplies that gisteet pairing
is independent of the particular contentsRodndV. Furthermore, consider a column ¢pj] of
V. Letc; be thep-chain corresponding to this column, thatdg,= coly[j]. It follows from the
relationR = DV that thejth column ofR, colg[ j], corresponds to they(- 1)-chaindc;.

Proposition 10. Let ¢; and q be the p- andp — 1)-chains corresponding to the columealy| j]
andcolg] j] respectively where R DV. Then, ?: dp(Cj).

In light of Proposition 9, we have the following algorithm to compute the pergigi@ns of
simplices. We process the columndgdfrom left to right which correspond to the order in which
they appear in the filtration. Notice that row indices also follow the same dBd@pose we have
processed all columns up fe- 1 and now are going to process the columhVe check if the row
lowp| j] contains any other lowest 1 for any coluninto the left of j, thatisj’ < j. If so, we add
colp[j’] to colp[j]. This moves low[ j] upward. We continue this process until either we turn all
entries in cop[j] O, or settle on low[ j] that does not conflict with any other Igyj’] to its left.

In the former case, we declarg a positive simplex. In the latter case; is a negativep-simplex
that pairs with the positivep(— 1)-simplexciowp -
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