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Homology through Interleaving

32 Concept of interleaving

A discrete setP ⊂ Rk is assumed to be a sample of a setX ⊂ Rk, if it lies near to it which we can
quantify with the Hasudorff distancedH(P,X). Observe that smalldH(P,X) does not imply thatP
necessarily lie inX. It can be aroundX.

Our goal is to examiněCech and Rips complexes built on top ofP for inferring the homology
of X. We achieve this goal by the following steps:

1. Consider the distance function toX, dX : Rk → R, x 7→ d(x,X), and the distance function
to the sampleP, dP : Rk → R, x 7→ d(x,P).

2. Let Xα := d−1
X (−∞, α] and Pα := d−1

P (−∞, α] be theα-offsets ofX and P respectively.
Observe thatPα is the union of a set of balls with centers inP and radiiα.

3. Observe that, for sufficiently smallα < α′, Xα andX′α are homotopy equivalent. In fact,α′

can be 0 whenX is a compact manifold with positive weak feature size.

4. Argue that the sequence ofXα andPα interleave, that is, for appropriateα1 ≤ α2 ≤ . . . ≤ α5

Xα1 ⊆ Pα2 ⊆ Xα3 ⊆ Pα4 ⊆ Xα5. (9)

5. Use Nerve theorem to establish that theČech complexCα(P) which is the nerve ofPα is
homotopy equivalent toPα. There exists an homotopy equivalence that commutes with the
inclusions at the homology level. This will be clear later.

6. Because of 5, we have an interleaving sequence of homomorphisms at the homology level
from the sequence in 9:

H(Xα1)→ H(Cα2)→ H(Xα3)→ H(Cα4)→ H(Xα5).

7. From the sequence in 6, one can derive that the image ofH(Cα2) → H(Cα4) is isomorphic
to H(Xα3).

8. Now use the interleaving betweenČech and Rips filtrations to derive that the persistent
homology between two Rips complexes is isomorphic to the homology of an offset ofX.

33 Data on a compact set

First we consider a point dataP that presumably samples a compact subsetX of Rk. It is known
that an offsetXα for anyα > 0 may not be homotopy equivalent toX whenX is compact. So, in
this case we will consider capturing the homology groups of an offsetXα of X. We will need the
following definitons for stating the precise results.
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Definition 55. Let X ⊂ Rk be a compact set. LetM denote the medial axis ofX andC be the set
of critical points of the distance functiondX : Rk → R, x 7→ d(x,X). The reachρ(X) and the weak
feature size wfs(X) are defined as:

ρ(X) = inf
x∈X

d(x,M)

wfs(X) = inf
x∈X

d(x,C).

The following result says that the offsets ofX remain homotopically equivalent and hence
possess isomorphic homology groups as long as the intervals do not containcrtical points ofdX.

Proposition 50. If 0 < α < α′ are such that there is no critical value of dX in the closed interval
[α, α′], then Xα deformation retracts onto Xα. In particular, H(Xα) ≃ H(Xα′).

We will need the following useful fact.

Fact 11. Given a sequence A→ B → C → D → E → F of homomorphisms between finite-
dimensional vector spaces, ifrank (A → F) = rank (C → D), then this quantity also equals the
rank of B→ E. Similarly, if A→ B→ C → E → F is a sequence of homomorphisms such that
rank (A→ F) = dim C, thenrank (B→ E) = dim C.

Proposition 51. Let P be finite set inRk, such that dH(X,P) < ε for someε < 1
4wfs(X). Then,

for all α, α′ ∈ [ε,wfs(X) − ε] such thatα′ − α ≥ 2ε, and for all ∈ (0,wfs(X)), we haveH(Xλ) ≃
image i∗, where i∗ : H(Pα)→ H(Pα′) is the homomorphism between homology groups induced by
the canonical inclusion i: Pα → Pα′ .

P. Assume without loss of generality thatε < α < α′−2ε < wfs(X)−3ε, since otherwise we
can replaceε by anyε′ ∈ (dH(X,P), ε). From the hypothesis we deduce the following sequence
of inclusions:

Xα−ε ⊆ Pα ⊆ Xα+ε ⊆ Pα′ ⊆ Xα′+ε (10)

By Proposition 50, for all 0< β < β′ < wfs(X), the canonical inclusionXβ → X′
β

is a homo-
topy equivalence. As a consequence, Eq.(10) induces a sequence of homomorphisms between
homology groups, such that all homomorphisms between homology groups ofXα−ε,Xα+ε,Xα′+ε
are isomorphisms. It follows then from Fact 11 thati∗ : H(Pα) → H(Pα′) has same rank as these
isomorphisms. Now, this rank is equal to the dimension ofH(Xλ), since theXβ are homotopy
equivalent toX for all 0 < β < wfs(X). It follows that image i∗ ≃ H(Xλ), since our ring of coeffi-
cients is a field. ¤

The above proposition relates the homology ofXλ with the persistent homology between two
union of balls. We can go to the nerve of the union of balls, that is, theČech complexes if we know
that the folliowing diagram commutes. The downward vertical arrows are isomorphisms induced
by the homotopy equivalence due to the nerve theorem. The horizontal arrows are induced by
inclusions.

H(Pα)

h∗
²²

i∗ // H(Pα′)

h∗
²²

H(Cα(P))
i∗ // H(Cα

′
(P))
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Chazal and Oudot [1] showed that the above diagram commutes. Then, we have the following
Proposition.

Proposition 52. Let P be finite set inRk, such that dH(X,P) < ε for someε < 1
4wfs(X). Then,

for all α, α′ ∈ [ε,wfs(X) − ε] such thatα′ − α ≥ 2ε, and for all ∈ (0,wfs(X)), we haveH(Xλ) ≃
image i∗, where i∗ : H(Cα(P)) → H(Cα

′
(P)) is the homomorphism between homology groups

induced by the canonical inclusion i: Cα(P)→ Cα
′
(P).

Theorem 53. Let P be a finite point set such that dH(X,P) < ε for someε < 1/9wfs(X). Then,
for all α ∈ [2ε, 1

4(wfs(X) − ε)] and all λ ∈ (0,wfs(X)), we haveH(Xλ) ≃ image j∗, where j∗ is
the homomorphism between homology groups induced by the canonical inclusion j : Rα(P) →
R4α(P).

P. We have already seen the following sequence:

Cα/2(P)→ Rα(P)→ Cα(P)→ C2α(P)→ R4α(P)→ C4α(P). (11)

Since 2ε ≤ α ≤ 1
4(wfs− ε), by Proposition 52 this sequence of inclusions induces a sequence of

homomorphisms between homology groups, such thatH(Cα/2(P))→ H(C4α(P)) andH(Cα(P))→
H(C2α(P)) have ranks equal to dimH(Xλ). Hence, by Proposition 11, rankj∗ is also equal to dim
H(Xλ). It follows that image j∗ ≃ H(Xλ). ¤

34 Data on manifold

WhenX is a smooth manifold, the above results can be slightly improved. The main observation
is that, for manifolds, the homology of union balls indeed become isomorphic to that of the
manifold. Therefore, one does not need to go through the persistent homology between twǒCech
complexes to capture the homology ofX. Instead, one can compute the homology of a single
Čech complex to obtain that ofX. The following result due to Niyogi, Smale, Weinberger [4] is
key for this observation.

Proposition 54. Let P ⊂ X be such that dH(X,P) ≤ ε where X⊂ Rk is a smooth manifold. If

2ε ≤ α ≤
√

3
5ρ(X), there is a deformation retraction from Pα to X which implies that H(Cα(P)) is

isomorphic to H(X).

Now we can state a result similar to Theorem 53 where we use Proposition 54 instead of
Proposition 52.

Theorem 55. Let P be a finite point set such that dH(X,P) < ε for someε < 1/9wfs(X). Then,
for all α ∈ [2ε, 1

2(wfs(X) − ε)] and all λ ∈ (0,wfs(X)), we haveH(Xλ) ≃ image j∗, where j∗ is
the homomorphism between homology groups induced by the canonical inclusion j : Rα(P) →
R2α(P).

P. The proof is exactly same as the proof of Theorem 53 except that the sequence in (11) is
shrunk by oněCech complex in the middle:

Cα/2(P)→ Rα(P)→ Cα(P)→→ R2α(P)→ C2α(P).

Now, apply the second part of Proposition 11 to obtain the stated result. ¤
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35 Interleaving of towers and stability

We have considered filtration of simplicial complexes so far for illustrating persistence and sta-
bility of its diagram. In a filtration, the connecting maps between consecutive complexes are
inclusions. Assuming a discrete subset of reals,I : a0 ≤ a1 ≤ · · · ≤ an, as index set, we can write
a filtration as:

{Ka}a∈I : Ka0 ֒→ Ka1 ֒→ · · · ֒→ Kan

A more generalized scenario is when the inclusions are replaced with simplicial maps: fi j : Kai →
Ka j . In that case, we call the sequence atowerof simplicial complexes:

{Ka}a∈I : Ka0

f01−→ Ka1

f12−→ · · ·
f(n−1)n−→ Kan

Considering the homology group of each complex in the sequence, we obtaina sequence of
vector spaces connected with linear maps, which we have seen before. Specifically, we obtain the
following towerof vector spaces:

H({Ka}a∈I ) : Hk(Ka0)
f01∗−→ Hk(Ka1)

f12∗−→ · · ·
f(n−1)n∗−→ Hk(Kan)

In the above sequence each linear mapfi j∗ is the homomorphism induced by the simplicial map
fi j . We have already seen that persistent homology of such a sequence ofvector spaces and linear
maps are well defined. However, since the linear maps here are induced by simplicial maps rather
than inclusions, the original persistence algorithm as described in the previous chapter does not
work. A new algorithm to compute the persistence diagram of towers of simplicial complexes has
been presented in [3]. Here, we generalize the notion of stability for this general case. The result
is due to [2].

36 Stability of towers

In the previous chapter, we described the stability of the persistence diagrams of towers of vector
spaces with respect to the perturbation of the functions whose sublevel sets generate the tower.
Now we will define the stability with respect to the perturbation of the towers themselves for-
getting the functions who generate them. This requires a definition of a distance between towers
both at simplicial and homology levels.

It turns out that it is convenient and sometimes appropriate if the objects (simplicial complexes
or vector spaces) in a tower are indexed over the positive real axis instead of a discrete subset of
it. This, in turn, requires to spell out the connecting map between every pairof objects.

Definition 56 (Tower). A tower is any collectionT =
{

Ta
}

a≥0 of objectsTa together with maps
ta,a′ : Ta → Ta′ so thatta,a = id andta′,a′′ ◦ ta,a′ = ta,a′′ for all 0 ≤ a ≤ a′ ≤ a′′. Sometimes we

write T =
{

Ta
ta,a′−→ Ta′

}

0≤a≤a′ to denote the collection with the maps.
WhenT is a collection ofvector spacesequipped with linear maps between them, we call it

a tower of vector spaces. WhenT is a collection offinite simplicial complexes equipped with
simplicial maps between them, we call ita tower of simplicial complexes. WhenT is a collection
of vector spacesequipped with linear maps between them, we call ita tower of vector spaces.
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Definition 57 (Interleaving of simplicial towers). Let K =
{

Ka
fa,b−→ Kb

}

a≤b andL =
{

La
ga,b−→

Lb
}

a≤b be two towers of simplicial complexes. For any realε ≥ 0, we say that they areε-
interleaved if for eacha ≥ 0 one can find simplicial mapsϕa : Ka → La+ε andψa : La → Ka+ε

so that:

(i) for all a ≥ 0,ψa+ε ◦ ϕa and fa,a+2ε are contiguous,

(ii) for all a ≥ 0,ϕa+ε ◦ ψa andga,a+2ε are contiguous.

(iii) for all b ≥ a ≥ 0,ϕb ◦ fa,b andga+ε,b+ε ◦ ϕa are contiguous,

(iv) for all b ≥ a ≥ 0, fa+ε,b+ε ◦ ψa andψb ◦ ga,b are contiguous.

If no such finiteε exists, we say the two towers are∞-interleaved.

These four conditions are summarized by requiring that the four diagrams below commute up
to contiguity:

Ka
ϕa

""DD
DD

DD
DD

fa,a+2ε
// Ka+2ε

La+ε

ψa+ε

;;vvvvvvvvv

Ka+ε
ϕa+ε

##HH
HH

HH
HH

H

La

ψa

<<zzzzzzzz ga,a+2ε
// La+2ε

(12)

Ka
ϕa

""DD
DD

DD
DD

fa,b
// Kb

ϕb

""DD
DD

DD
DD

La+ε ga+ε,b+ε
// Lb+ε

Ka+ε
fa+ε,b+ε

// Kb+ε

La

ψa

<<zzzzzzzz

ga,b
// Lb

ψb

<<zzzzzzzz

Definition 58 (Interleaving distance of towers of simplicial complexes). The interleaving distance
between two towers of simplicial complexesK andL is:

dI (K, L) = inf
ε
{K andL areε−interleaved}.

Similar to the simplicial towers, we can define interleaving of towers of vector spaces. But,
in that case, we replace contiguity with equality in conditions (i) through (iv).

Definition 59 (Interleaving of towers of vector spaces). LetU =
{

Ua
fa,b−→ Ub

}

a≤b andV =
{

Va
ga,b−→

Vb
}

a≤b be two towers of vector spaces. For any realε ≥ 0, we say that they areε-interleaved if
for eacha ≥ 0 one can find linear mapsϕa : Ua→ Va+ε andψa : Va→ Ua+ε so that:

(i) for all a ≥ 0,ψa+ε ◦ ϕa = fa,a+2ε,
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(ii) for all a ≥ 0,ϕa+ε ◦ ψa = ga,a+2ε.

(iii) for all b ≥ a ≥ 0,ϕb ◦ fa,b = ga+ε,b+ε ◦ ϕa,

(iv) for all b ≥ a ≥ 0, fa+ε,b+ε ◦ ψa = ψb ◦ ga,b.

If no such finiteε exists, we say the two towers are∞-interleaved.

Definition 60 (Interleaving distance of towers of vector spaces). The interleaving distance be-
tween two towers of vector spacesU andV is:

dI (U,V) = inf
ε
{U andV areε−interleaved}.

Suppose that we have two simplicial towersK = {Ka
fa,b→ Kb)} andL = {La

ga,b→ Lb)}. Consider
the two towers of vector spaces obtained by taking the homology groups of the complexes, that
is,

U = {Hk(Ka)
f(a,b)∗→ H(Kb)} andV = {Hk(La)

g(a,b)∗→ Hk(Lb)}.

The following should be obvious because simplicial maps become linear maps and contiguous
maps become equal at the homology level.

Proposition 56. dI (K, L) = dI (U,V).

Let DgmU denote the persistence diagram of the towerU of vector spaces. Recall thatdb

denotes the bottleneck distance between persistence diagrams.

Theorem 57. db(Dgm (U),Dgm (V)) ≤ dI (U,V).

Combining Proposition 56 and Theorem 57, we obtain the following result.

Theorem 58. Let K and L be two simplicial towers andU and V be their homology towers
respectively. Then, db(Dgm (U),Dgm (V)) ≤ dI (K, L).

37 Examples

We show two examples where we can use the stability result in Theorem 58. Let P ⊆ M be a
finite subset of a metric space (M,d). Consider the Rips anďCech-filtrations:

R : {Rε(P) ֒→ Rε
′
(P)}0≤ε≤ε′ andC : {Cε(P) ֒→ Cε

′
(P)}0≤ε≤ε′ .

We know that the following inclusions hold.

Cα(P) ⊆ Rα(P) ⊆ C2α(P).

Then, one can verify thaťCech- and Rips-filtrations interleave for anyε ≥ 0, but in the log-
scale. The log-scale enters into the picture to convert a multiplicative interleaving into an additive
interleaving...to be continued.
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