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Homology through Interleaving

32 Concept of interleaving

A discrete seP c R¥ is assumed to be a sample of a Xet R, if it lies near to it which we can
guantify with the Hasuddf distancedy (P, X). Observe that smatly (P, X) does not imply thaP
necessarily lie irX. It can be around.

Our goalisto examin€ech and Rips complexes built on topPfor inferring the homology
of X. We achieve this goal by the following steps:

1. Consider the distance functionXg dx : R — R, x — d(x, X), and the distance function
to the sampld®, dp : RK > R, x — d(x, P).

2. LetX, := dyl(-o0,e] and P, := d;}(-o0,q] be thea-offsets ofX and P respectively.
Observe thaP, is the union of a set of balls with centersPrand radiic.

3. Observe that, for sticiently smalle < o', X, andX/, are homotopy equivalent. In fact;
can be 0 wheiX is a compact manifold with positive weak feature size.

4. Argue that the sequenceXf andP,, interleave, that is, for appropriatg < a» < ... < as
Xay € Pa, € Xoy € Poy © Xos. 9)

5. Use Nerve theorem to establish that @ech complex2®(P) which is the nerve oP, is
homotopy equivalent t@,. There exists an homotopy equivalence that commutes with the
inclusions at the homology level. This will be clear later.

6. Because of 5, we have an interleaving sequence of homomorphisnestairtiology level
from the sequence in 9:

H(Xe,) = H(E™) = H(Xp5) = H(E™) = H(Xos).
7. From the sequence in 6, one can derive that the imag®®) — H(C*) is isomorphic
10 H(Xas).

8. Now use the interleaving betwe€lech and Rips filtrations to derive that the persistent
homology between two Rips complexes is isomorphic to the homology offset @f X.

33 Data on acompact set

First we consider a point dafthat presumably samples a compact subset R¥. It is known
that an dfsetX, for anya > 0 may not be homotopy equivalent XowhenX is compact. So, in
this case we will consider capturing the homology groups offésetX, of X. We will need the
following definitons for stating the precise results.
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Definition 55. Let X c R¥ be a compact set. L&l denote the medial axis &f andC be the set
of critical points of the distance functiaiy : RK — R, x — d(x, X). The reachp(X) and the weak
feature size wfsX) are defined as:

p(X)
wfs(X)

inf d(x, M)
xeX
inf d(x, C).
XeX

The following result says that theffeets ofX remain homotopically equivalent and hence
possess isomorphic homology groups as long as the intervals do not coitzahpoints ofdy.

Proposition 50. If 0 < a < o are such that there is no critical value of dn the closed interval
[a, ], then X, deformation retracts onto X In particular, H(X,) =~ H(X,).

We will need the following useful fact.

Fact 11. Given a sequence A~» B - C - D —» E — F of homomorphisms between finite-
dimensional vector spaces,rink (A — F) = rank C — D), then this quantity also equals the
rank of B— E. Similarly, if A- B— C — E — F is a sequence of homomorphisms such that
rank A —» F) = dimC, therrank 8 - E) = dimC.

Proposition 51. Let P be finite set ilR¥, such that ¢ (X, P) < & for somes < swfs(X). Then,
forall a,a’ € [¢,wfs(X) — &] such thate” — a > 2¢, and for all € (0, wfs(X)), we haveH(X,) ~
image i, where | : H(P,) — H(P,) is the homomorphism between homology groups induced by
the canonical inclusioni P, — P, .

Proor. Assume without loss of generality thak « < o’ —2e < wfs(X) — 3¢, since otherwise we
can replace by anye’ € (dy(X, P), &). From the hypothesis we deduce the following sequence
of inclusions:

Xa—s - Pa < xa+s c Pa/ - X(t'+s (10)

By Proposition 50, for all O< g < g’ < wfs(X), the canonical inclusioiXz — X, is a homo-
topy equivalence. As a consequence, Eq.(10) induces a sequehesmomorphisms between
homology groups, such that all homomorphisms between homology grooas 9%, ., Xo/+e
are isomorphisms. It follows then from Fact 11 that H(P,) —» H(P,/) has same rank as these
isomorphisms. Now, this rank is equal to the dimensiotH(X;), since theXz are homotopy
equivalent taX for all 0 < 8 < wfs(X). It follows that magei ~ H(X,), since our ring of co-
cients is a field. O

The above proposition relates the homologyXgfwith the persistent homology between two
union of balls. We can go to the nerve of the union of balls, that iséttm complexes if we know
that the folliowing diagram commutes. The downward vertical arrows aredgghisms induced
by the homotopy equivalence due to the nerve theorem. The horizontalsaare induced by
inclusions.

H(Py) — = H(P.)

In In

H(C(P) ——> H(E” (P))
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Chazal and Oudot [1] showed that the above diagram commutes. Thadraws the following
Proposition.

Proposition 52. Let P be finite set ifR¥, such that ¢ (X, P) < & for somes < %Wfs(X). Then,

for all ,a’ € [e,wfs(X) — &] such thate’ — a > 2¢, and for all € (0, wfs(X)), we haveH(X,) ~
imagei, where | : H(C*(P)) — H(C¥(P)) is the homomorphism between homology groups
induced by the canonical inclusion 2*(P) — €% (P).

Theorem 53. Let P be a finite point set such that (X, P) < ¢ for somes < 1/9wfs(X). Then,
for all a € [2¢, %(Wfs(X) —¢)] and all 2 € (0, wfs(X)), we haveH(X,) ~ image |, where j is
the homomorphism between homology groups induced by the canorkaiam j: R*(P) —
R¥(P).
Proor. We have already seen the following sequence:

CY2(P) — R*(P) — C*(P) — C*'(P) - R*(P) — C*(P). (11)

Sincez<a< %(wfs — &), by Proposition 52 this sequence of inclusions induces a sequence of
homomorphisms between homology groups, suchHi@t/2(P)) — H(C**(P)) andH(C*(P)) —
H(C2*(P)) have ranks equal to ditd(X;). Hence, by Proposition 11, rarkis also equal to dim
H(Xy). It follows that mage | ~ H(Xy). O

34 Data on manifold

WhenX is a smooth manifold, the above results can be slightly improved. The main atisarv

is that, for manifolds, the homology of union balls indeed become isomorphic tothhe
manifold. Therefore, one does not need to go through the persisteibgy between tw&ech
complexes to capture the homology Xf Instead, one can compute the homology of a single
Cech complex to obtain that &f. The following result due to Niyogi, Smale, Weinberger [4] is
key for this observation.

Proposition 54. Let P ¢ X be such that (X, P) < £ where Xc RX is a smooth manifold. If
2e<a< \/ép()(), there is a deformation retraction from,Ro X which implies that K2%(P)) is
isomorphic to HX).

Now we can state a result similar to Theorem 53 where we use Propositiorsteddnof
Proposition 52.
Theorem 55. Let P be a finite point set such that @, P) < & for somees < 1/9wfs(X). Then,
for all @ € [2e, 3(Wfs(X) - £)] and all 2 € (0,wfs(X)), we haveH(X,) =~ image j, where | is
the homomorphism between homology groups induced by the canordteiam j: R¥(P) —
R2(P).
Proor. The proof is exactly same as the proof of Theorem 53 except thatdjersee in (11) is
shrunk by oneCech complex in the middle:

C72(P) - RY(P) — C*(P) »— R?'(P) — C**(P).

Now, apply the second part of Proposition 11 to obtain the stated result. O
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35 Interleaving of towers and stability

We have considered filtration of simplicial complexes so far for illustratingipnce and sta-
bility of its diagram. In a filtration, the connecting maps between consecutivglexes are
inclusions. Assuming a discrete subset of relalsgg < a; < - -+ < ay, as index set, we can write
a filtration as:

{Katael : Kgy = Kgy = -+ = Kjy,

A more generalized scenario is when the inclusions are replaced with simpligal fja X5 —
Ka;- Inthat case, we call the sequenc@waerof simplicial complexes:

fo1 f12 fa-1n
{(Katael 1 Kagy — Kgy — -+ — Ky,

Considering the homology group of each complex in the sequence, we @btdguence of
vector spaces connected with linear maps, which we have seen bgfergficlly, we obtain the
following towerof vector spaces:

fo. f1. fn-1)n

H({Xa}ael) : H(Ka) — H(Ka) — -+ — Hk(Ka,)

In the above sequence each linear nfigpis the homomorphism induced by the simplicial map
fij. We have already seen that persistent homology of such a sequersafspaces and linear
maps are well defined. However, since the linear maps here are indysedglicial maps rather
than inclusions, the original persistence algorithm as described in thepseshapter does not
work. A new algorithm to compute the persistence diagram of towers of simganaplexes has
been presented in [3]. Here, we generalize the notion of stability for tinergecase. The result
is due to [2].

36 Stability of towers

In the previous chapter, we described the stability of the persistenceiagrf towers of vector
spaces with respect to the perturbation of the functions whose subttgajenerate the tower.
Now we will define the stability with respect to the perturbation of the towers thkms for-
getting the functions who generate them. This requires a definition of a disetween towers
both at simplicial and homology levels.

Itturns out that it is convenient and sometimes appropriate if the objectsli@a@hpomplexes
or vector spaces) in a tower are indexed over the positive real axiaiheta discrete subset of
it. This, in turn, requires to spell out the connecting map between everpipalijects.

Definition 56 (Tower). A toweris any collectionT = {T,},., of objectsT, together with maps
tag @ TJa = Ta SO thattya = id andty a7 o tag = taar forall0 < a < & < a’. Sometimes we

write T = {Ty B, Ta Jo<aca 0 denote the collection with the maps.

WhenT is a collection ofvector spacegquipped with linear maps between them, we call it
a tower of vector spacesWhenT is a collection offinite simplicial complexes equipped with
simplicial maps between them, we calaitower of simplicial complexedVhenT is a collection
of vector spaceequipped with linear maps between them, we calltbwer of vector spaces
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f
Definition 57 (Interleaving of simplicial towers)Let K = {Xj = Kblacp @ndL = {Lq i

Lp}acp be two towers of simplicial complexes. For any reab 0, we say that they are-
interleaved if for eacka > 0 one can find simplicial maps, : Ka — Lawe andyg @ Lo — Kare
so that:

(i) forall a> 0, Ya.s © pa and faas2. are contiguous,

(i) forall a> 0, pase © Wa andgaar2- are contiguous.
(iii) forall b>a> 0, ¢po fap aNdQa+cp+e © pa are contiguous,
(iv) forall b>a> 0, farcpre © Wa @andyy o gap are contiguous.
If no such finites exists, we say the two towers arginterleaved.

These four conditions are summarized by requiring that the four diagrelms bommute up
to contiguity:

fa,a+25

j{a+2£ ﬂ<a+g (12)

Ka
N
La

Oa,a+2¢
La+s La+25

f
Xa 2o
& &

Kb
L ate Jatebte L b+e

fa+s,b+£

:Ka+s :Kb+£

v )
La Oab Lb

Definition 58 (Interleaving distance of towers of simplicial complexeEhe interleaving distance
between two towers of simplicial complex€sandL is:

di(K,L) = inf{K andL aree—interleaved.
&

Similar to the simplicial towers, we can define interleaving of towers of vectacesp But,
in that case, we replace contiguity with equality in conditions (i) through (iv).
f
Definition 59 (Interleaving of towers of vector spacetetU = {U, = Up}acp @ndV = {V4 ety
Vp}aep D€ two towers of vector spaces. For any rea 0, we say that they areinterleaved if
for eacha > 0 one can find linear maps, : Ug = Vaie andyy 0 V4 — Uaye SO that:

(i) forall a> 0, Yars © pa = faar2e,
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(i) forall a> 0, pars © Ya = Gaar2e-
(iii) forall b>a>0,¢po fap = Garebse © Pa,
(iv) forallb>a> 0, farepie © Wa = ¥p © Gap-
If no such finites exists, we say the two towers axeinterleaved.

Definition 60 (Interleaving distance of towers of vector spaceR)e interleaving distance be-
tween two towers of vector spacdsandV is:

di (U, V) = inf{U andV arees—interleaved.

f
Suppose that we have two simplicial towérs: {K, = Kp)} andL = {L4 % Lp)}. Consider

the two towers of vector spaces obtained by taking the homology groups cbthplexes, that

is,
(ab)+ Y(ab)+

f
U = {H(Xa) — HXp)} andV = {Hx(La) — Hk(Lp)}.

The following should be obvious because simplicial maps become linear mdp=oatiguous
maps become equal at the homology level.

Proposition 56. d; (K, L) = d,(U, V).

Let DgmU denote the persistence diagram of the toWenf vector spaces. Recall theg
denotes the bottleneck distance between persistence diagrams.

Theorem 57. dp(Dgm (U), Dgm (V)) < d; (U, V).
Combining Proposition 56 and Theorem 57, we obtain the following result.

Theorem 58. Let K and L be two simplicial towers an@ and V be their homology towers
respectively. Theny@gm (U), Dgm (V)) < d; (K, L).
37 Examples

We show two examples where we can use the stability result in Theorem 38 €eM be a
finite subset of a metric spackl(d). Consider the Rips andech-filtrations:

R {R*(P) = R (P)loe<e andC : {€°(P) > €' (Ploce<e-
We know that the following inclusions hold.
C¥(P) C RY(P) C C%(P).

Then, one can verify thafech- and Rips-filtrations interleave for any> 0, but in the log-
scale. The log-scale enters into the picture to convert a multiplicative intertegno an additive
interleaving...to be continued.
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