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Curve Reconstructiofn som

The simplest class of manifolds that pose nontrivial reconstruction prsdee curves in the
plane. We will describe two algorithms for curve reconstructiorys€ and NN-Gwsr in this
chapter. First, we will develop some general results that will be appliedoieephe correctness
of the both algorithms.

A single curve in the plane is defined by a mgp[0,1] — R? where [Q1] is the closed
interval between 0 and 1 on the real line. The functfois one-to-one everywhere except at
the endpoints wherg(0) = £(1). The curve isCt-smoothif ¢ has a continuous non-zero first
derivative in the interior of [01] and the right derivative at O is same as the left derivative at 1
both being non-zero. i has continuough derivatives at each point as well, the curve is called
C'-smooth. When we refer to a curlidn the plane, we actually mean the image of one or more
such maps. By definitioR does not self-intersect though it can have multiple components each
of which is a closed curve, i.e., without any end point.

For a finite sample to be aftsample for some > 0, it is essential that the local feature size
f is positive everywhere. While this is true for @f-smooth curves, there a@*-smooth curves
with zero local feature size at some point. For example, consider the curve

4
y=[x3for-1<x<1

and join the endpoints—(L, 1) and (11) with a smooth curve. This curve @&-smooth at (00)
and its medial axis passes through the poinD)0 Therefore, the local feature size is zero at
(0,0).

We learnt thatC!-smooth curves do not necessarily have positive minimum local feature
size whileC2-smooth curves do. Are there curves in betw&n and C?>-smooth classes with
positive local feature size everywhere? Indeed, there is a class @lfedmooth curves with
this property. These curves a@-smooth and have normals satisfying a Lipschitz continuity
property. To avoid confusions about narrowing down the class, \phcéky assume thak has
strictly positive local feature size everywhere.

For any two points, y in X define two curve segmentg(x, y) andy’(x,y) betweenx andy,
e, X =y(X,Y)Uy'(xy) andy(x,y) Ny (X,y) = {X,y}. LetP be a set of sample points fran We
say a curve segmenteésnptyif its interior does not contain any point frofr An edge connecting
two sample points, sag andq, is calledcorrectif either y(p,q) or y’'(p, q) is empty. In other
words, p andq are two consecutive sample points Bn Any edge that is not correct is called
incorrect The goal ofcurve reconstructions to compute a piecewise linear curve consisting
of all and only correct edges. In Figure 27(b) all solid edges areecband dotted edges are
incorrect.

We will describe Gust in Section 21 and NN-&ist in Section 22. Some general results are
presented in Subsection 20 which are used later to claim the correctrtbssadgjorithms.

20 Consequences of-sampling

Let P be ans-sample of£. For suficiently smalle > 0, several properties can be proved.
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Figure 27: (a) A smooth curve, (b) its reconstruction from a sample skothrsolid edges.

Lemma 14(Empty Segment.)Let pe P and xe X so thaty(p, X) is empty. Let the perpendicular
bisector of px intersect the empty segmgt, X) at z. Ife < 1then

(i) the ball B,p- intersects only iny(p, X),
(i) the ball B,p- is empty, and
(i) lp—12l<ef(2.

Proor. LetB = B,jp—z andy = y(p, X). Supposd8NX # v, see Figure 28. Shrink continuously
centeringz until Int BN X becomes a 1-ball and it is tangent to some other poilt dfet B’ be
the shrunken ball. The bal’ exists asB,s N X is a 1-ball for some dticiently smalls > 0 and
B N X is not a 1-ball. The balB’ is empty of any sample point as IBt intersects only in a
subset ofy which is empty. But, sinc® N X is not a 1-ball, it contains a medial axis point by the
Feature Ball Lemma 11. Thus, its radius is at lel§g}. The pointz does not have any sample
point within f (Z) distance a®’ is empty. This contradicts th&is ans-sample o wheres < 1.
Therefore B intersect< only in y(p, X) completing the proof of (i).

Property (ii) follows immediately ag(p, X) is empty andB intersect only in y(p, X). By
e-sampling, the nearest sample pgirib z is within e f(2) distance establishing (iii). O

m]

Figure 28: lllustration for the Empty Segment Lemma 14. The picture on the lefipisssible
while the one on the right is correct.

The Empty Segment Lemma 14 implies that points in an empty segment are closeyand an
correct edge is Delaunay whers small.
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Lemma 15(Small Segment.)Let X, y be any two points so thafx, y) is empty. Thelfix — y|| <
2 f(x) fore < 1.

Proor. Sincey(x,y) is empty, it is a subset of an empty segme(f, g) for two sample pointg
andg. Letzbe the point where the perpendicular bisectopgimeetsy(p, ). Consider the ball

B = B,p-z. Sincey(p,q) is empty, the balB has the properties stated in the Empty Segment
Lemma 14. Sincd3 containsy(p, q), bothx andy are inB. Therefore)|z- x| < £f(2) by the

e-sampling condition. By the Feature Translation Lemmd (3 < % We have

IA

2¢f(2)

2e
1—s f(X).

Ix =yl < 2p- 2

IA

Lemma 16 (Small Edge.) Let pqg be a correct edge. Far< 1,

@) lIp—all <+ f(p) and
(i) pqgis Delaunay.

Proor. Any correct edgepq has the property that eithefq, p) or y(p, q) is empty. Therefore,
(i) is immediate from the Small Segment Lemma 15. It follows from property (ii) efEmpty
Segment Lemma 14 that there exists an empty ball circumscribing the corgeepggroving
(ii). m]

O

If three pointsx, y, andzonX are stficiently close, the segmenty andyzmake small angles
with the tangent ay. This implies that the anglexyzis close tor. As a corollary two adjacent
correct edges make an angle closeto

Lemma 17 (Segment Angle.)Let X, y, and z be three points &with ||x — y|| and|ly — Z]| being
no more than f(y) for & < 3. Leta be the angle between the tangenttat y and the line
segment yz. One has

() a < arcsingz and

. .
(i) £xyz>nm—2arcsingZ.

Proor. Consider the two medial balls sandwichiBgaty as in Figure 29. Letr be the angle
between the tangent gtand the segmenjiz Sincez lies outside the medial balls, the length of
the segmenyZ is no more than that ofzwhereZ is the point of intersection gfzand a medial
ball as shown.

In that case,
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Figure 29: lllustration for the Segment Angle Lemma 17.

arcsir((”y )/(u y||))
arcsir((”y Z”)/(um yll))

Itis given thally-2| < 1= 2 f(y) wheres <3 L. Also,|Im-vVi| > f(y) sincemis a medial axis point.
Plugging in these values we get

S
A

. &
a < arcsin——
1-¢

completing the proof of (i). We have

T

/myz > = -—
/myz > 2 arcsin—
yz = 3 1-¢
Similarly it can be shown thatmyx > 7 — arcsing=. Property (i) follows immediately as
/XYyZ= /Myz+ /MyX m]

O

Since any correct edgmyhas a length no more thaﬁﬁg f(p) fore < 1 (Small Edge Lemma 16),
we have the following result.

Lemma 18 (Edge Angle.) Let pg and pr be two correct edges incident to p. We hayer >
- 2arcsingZ for e < 1.

21 Crust

We have already seen that all correct edges connecting consesautiyge points in an-sample
are present in the Delaunay triangulation of the sample points<ifl. The main algorithmic
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challenge is to distinguish these edges from the rest of the Delaunay. 8thge&ust algorithm
achieves this by observing some properties of the Voronoi vertices.

.
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Figure 30: Voronoi vertices approximate the medial axis of a curve in theepldhe Voronoi
vertices are shown with hollow circles in the right picture.

21.1 Algorithm

Consider Figure 30. The left picture shows the Voronoi diagram clipytdn a box for a dense
sample of a curve. The picture on the right shows the Voronoi vertiqgesrately. A careful
observation reveals that the Voronoi vertices lie near the medial axis @lutive (Exercise 8).
The Grust algorithm exploits this fact. All empty balls circumscribing incorrect edges inFDe
cross the medial axis and hence contain Voronoi vertices inside. Dhnerdfiey cannot appear
in the Delaunay triangulation d? U V whereV is the set of Voronoi vertices in V@. On the
other hand, all correct edges still survive in Dl V). So, the algorithm first computes \Br
and then computes the Delaunay triangulatio®? of V whereV is the set of Voronoi vertices of
Vor P. The Delaunay edges of D&t (U V) that connect two points iR are output. It is proved
that an edge is output if and only if it is correct.

Crust(P)
1 compute VoP;

letV be the Voronoi vertices of Vd?;
compute DelP U V);
E :=0;
for each edgeq e Del (PU V) do

ifpePandqeP

E:=EUDpqg

endif

output E.

©CoO~NOOOUAWDN
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The Voronoi and the Delaunay diagrams of a seh g@oints in the plane can be computed
in O(nlogn) time andO(n) space. The second Delaunay triangulation in step 3 dealsQth
points as the Voronoi diagram ofpoints can have at mosh2/oronoi vertices. Therefore,KTst
runs inO(nlogn) time and take®©(n) space.

21.2 Correctness

The correctness of&@st is proved in two parts. First, it is shown that each correct edge is gresen
in the output of Gust (Correct Edge Lemma 19). Then, it is shown that no incorrect edge is
output (Incorrect Edge Lemma 20).

Lemma 19(Correct Edge.) Each correct edge is output Irust whene < %

Proor. Let pq be a correct edge. Letbe the point where the perpendicular bisectompgf
intersects the empty segmer(ip, q). Consider the balB = Bp—. This ball is empty of any
point fromP whene < 1 (Empty Segment Lemma 14 (i)). We show that this ball does not contain
any Voronoi vertex of VoP either.

Figure 31: lllustration for the Correct Edge Lemma 19.

Suppose thaB contains a Voronoi vertex, say from V (Figure 31). Then by simple circle
geometry the maximum distance wffrom pis 2|p — Z|. Thus,||p — V|| < 2||p — Z|. Since
lIp — 2| < ef(2) by the Empty Segment Lemma 14(iii), we have

2¢c
lp—Vl <2ef(2 < 1—f(p).
-&

The Delaunay balB’ centeringv contains three points fror® on its boundary. This means
BdB’ N X is not a 0-sphere. S& contains a medial axis point by the Feature Ball Lemma 11.
As the Delaunay baB’ is empty,p cannot lie in IntB’. So, the medial axis point iB’ lies within
2||p— V]| distance fronp. Therefore, 8p—V|| > f(p). But,||p—V|| < %f(p) enabling us to reach
a contradiction wher < 1, i.e., where < £.

Therefore, fore < % there is a circumscribing ball gfg empty of any point fronP U V. So,
it appears in DelP U V) and is output by @ust as it connects two points froif. O

O
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Lemma 20(Incorrect Edge.) No incorrect edge is output bgrust whene < 1/5.

Proor. We need to show that there is no ball, empty of both sample points and Vorenroi
tices, circumscribing an incorrect edge between two sample pointy aagiq. For the sake of
contradiction, assume thBtis such a ball.

Letvandv be the two points where the perpendicular bisectquepintersects the boundary
of D, see Figure 32. Consider the two bais- B, andB’ = By, that circumscribgaq.

We claim that botlB and B’ are empty of any sample points. Suppose on the contrary, any
one of them, sayB, contains a sample point. Then, one can pDstontinually towardsB by
moving its center on the perpendicular bisectopgfand keepingp, q on its boundary. During
this motion, the deformed would hit a sample poirg for the first time before its center reaches
v. At that momentp, g, ands define a ball empty of any other sample points. The center of this
ball is a Voronoi vertex in VOP which resides insid®. This is a contradiction ab is empty of
any Voronoi vertex fronV.

Figure 32: lllustration for the Incorrect Edge Lemma 20.

The anglezvpV is /2 asvv is a diameter oD. The tangents to the boundary circlesBf
andB’ at p are perpendicular tep andV’ p respectively. Therefore, the tangents make an angle
of #/2. This implies thak cannot be tangent to bothandB’ at p.

First consider the case wheXes tangent neither t® nor to B” at p. Let p; and p, be the
points of intersection oE with the boundaries oB and B’ respectively that are consecutive to
p among all such intersections. Our goal will be to show that either the cegmentpp, or
the curve segmerpp, intersectsB or B’ rather deeply and thereby contributing a long empty
segment which is prohibited by the sampling condition.

The curve segment betweg@rand p; and the curve segment betwegmand p, do not have
any sample point other thgm By the Small Segment Lemma 15 bdith— p1]| and||p — p2l| are
no more thanf_‘f—‘E f(p) fore < % So by the Segment Angle Lemma Yy pp; < 7—2arcsing=.

Without loss of generality, let the angle betweggm and the tangent tB at p be larger than
the angle betweepp, and the tangent t8" at p. Then, pp; makes an angle with the tangent



54 Notes by Tamal K. Dey, OSU

to B at p where

> }(( —2arcsini)—z)
@ = 27 1-¢) 2

n arcsin &
4 1-¢

Consider the other case wheiés tangent to one of the two balBandB’ at p. Without loss
of generality, assume that it is tangent&oat p. Again the lower bound on the angleas stated
above holds.

Let x be the point where the perpendicular bisectoppf intersects the curve segment be-
tweenp and p;. Clearly, x is in B. SinceB intersectsE at p andqg which are not consecutive
sample points, it cannot contajtp, q) or v'(p, q) inside completely. This mearisn X cannot
be a 1-ball. So by the Feature Ball Lemma Bhas a medial axis point and thus its radius at
leastf(x)/2. By simple geometry, one gets that

\

1
P =Xl SIP = Pl

= rsSina

> %f(x)sina.

By property (iii) of the Empty Segment Lemma [Ig — x|| < ef(X). We reach a contradiction if

~)
1-¢)°

Fore < % this inequality is satisfied. O

. T .
2e < sm(z1 — arcsin

Combining the Correct Edge Lemma 19 and the Incorrect Edge Lemma 20 wedellow-
ing theorem.

Theorem 21. For e < % Crust outputs all and only correct edges.

22 NN-crust

The next algorithm for curve reconstruction is based on the concegavést neighbors. A point
p € Pis a nearest neighbor gfe P if there is no other poins € P\ {p, g} with ||g— d| < |lg— pl|.
Notice thatp being a nearest neighbor @floes not necessarily mean tlgds a nearest neighbor
of p.

We first observe that edges that connect nearest neighb&rmimst be correct edgeskfis
suficiently dense. But, all correct edges do not connect nearest regyhbigure 33 shows all
edges that connect nearest neighbors. The missing correct edpesaerample connect points
that are not nearest neighbors. However, these correct edgeeat@oints that are not very far
from being nearest neighbors. We capture them in NiNs€using the notion ohalf neighbors



Notes by Tamal K. Dey, OSU 55

[ d
(. ‘\‘\‘_‘ /. ‘\} .\'\’—'/{'\\\
r N

< Ny

K / .\‘\p‘\d . ~
(a)

a (b)

Figure 33: (a) Only nearest neighbor edges may not reconstrueve, ¢b) half neighbor edges
such ar fill up the gaps.

22.1 Algorithm

Let pgbe an edge connectingto its nearest neighbarandpgbe the vector fronpto g. Consider
the closed halfplankl bounded by the line passing throughvith pgas outward normal. Clearly,
g ¢ H. The nearest neighbor fin the setH N P is called itshalf neighbor In Figure 33(b)r is
the half neighbor op. It can be shown that two correct edges incident to a sample pointconne
it to its nearest and half neighbors.

The above discussion immediately suggests an algorithm for curve ragtitsir But, we
need dicient algorithms to compute nearest neighbor and half neighbor for eagdlesaoint.
The Delaunay triangulation DE8lturns out to be useful for this computation as all correct edges
are Delaunay iP is suficiently dense. The Small Edge Lemma 16 implies that, for each sample
point p, it is suficient to check only the Delaunay edges to determine correct edges.adlealh
edges incident tg in Del P and determine the shortest edge connecting it to its nearest neighbor,
sayq. Next, we check all other edges incidentgavhich make at leas} angle withpgat p and
choose the shortest among them. This second edge cormmexits half neighbor. The entire
computation can be done in time proportional to the number of edges incident$mnce the
sum of the number of incident edges over all vertices in the Delaunay et isO(n) where
|[P| = n, correct edge computation takes o@n) time once DeP is computed. The Delaunay
triangulation of a set of points in the plane can be computeddnlogn) time which implies
that NN-crust take®(nlogn) time.

NN-Crust(P)
1 compute DeP;
2 E=0;
3 foreachpe Pdo
4 compute the shortest edggin Del P;
5 compute the shortest edgsso thatzpgs> %;
6 E=EU{pgps;
7 endfor
8 output E.
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22.2 Correctness

As we discussed before, NNrGsT computes edges connecting each sample point to its nearest
and half neighbors. The correctness of NNs&r follows from the proofs that these edges are

correct.
I
b T b Tlq

(@) (b)

Figure 34: Diametric ball opgintersect< in (a) two components, (b) single component.

Lemma 22 (Neighbor.) Let pe P be any sample point and g be its nearest neighbor. The edge
1

pq is correct fore < 3.
Proor. Consider the balB with pgas diameter. 1B does not interse& in a 1-ball, it contains a
medial axis point by the Feature Ball Lemma 11. See Figure 34(a). This npangl| > f(p).
A correct edgepssatisfieg|p — 9| < %f(p) by the Small Edge Lemma 16. Thus, fok % we
have|lp — 9| < ||p — gll, a contradiction to the fact thatis the nearest neighbor o

So, B intersects in a 1-ball, namely = y(p, g) as shown in Figure 34(b). kqis not cor-
rect,y contains a sample point, saybetweenp andq insideB. Again, we reach a contradiction

as||p— sl < llp—qll. o
]

Next we show that edges connecting a sample point to its half neighborisamarect.
Lemma 23 (Half Neighbor.) An edge pg where q is a half neighbor of p is correct wheﬂ%.

Proor. Letr be the nearest neighbor pf According to the definitiopg makes at leas angle
with pf.

If pqgis not correct, consider the correct edggincident top other thanpr. By the Edge
Angle Lemma 18p5also makes at leagtangle withpf for e < 1/3. We show thasis closer to
p thang. This contradicts thad is the half neighbor op since bothpsand pg make an angle at
least with pf.

Consider the balB with pgas a diameter. IB does not intersed& in a 1-ball (Figure 35(a)),
it would contain a medial axis point and thlis — ql| > f(p). On the other hand, far < %
Ip- sl < £ f(p) by the Small Edge Lemma 16. We gt — | < [[p- gl fore < 1 as
required for contradiction. Next, assume tigaintersectsE in a 1-ball, namely iny(p, q), as
in Figure 35(b). Sincepq is not a correct edges must be on this curve segment. It implies
llp - gl < |Ip— gl as required for contradiction. O

m|
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Figure 35: Diametric ball opgintersect< in (a) more than one component, (b) a single compo-
nent.

Theorem 24. NN-Crust computes all and only correct edges whea %

Proor. By the Small Edge Lemma 16 all correct edges are Delaunay. Step 4 asdre éhat all
edges joining samples points to their nearest and half neighbors are cdnaguetput. These
edges are correct by the Neighbor Lemma 22 and the Half Neighbor Lemmé&3s < %
Also, there is no other correct edges since each sample point can adnlgident to exactly two
correct edges. O

Exercises

(The exercise numbers with the supersdniphdo indicatehard andopenquestions respectively.)

1. Give an example of a point sBtsuch thatP is an 1-sample of two curves for which the
correct reconstructions arefidirent.

2. Given a%l-sampIeP of a smooth curve, show that all correct edges are Gabriel inFReV]
whereV is the set of Voronoi vertices in V1.

3. LetP be ans-sample of a smooth curve without boundary. g be the sum of the angles
opposite topg in the two (or one ifpqis a convex hull edge) triangles incident po| in
DelP. Prove that there is anfor which pqis correct if and only ifypq < 7.

4. Show that the NN-&ust algorithm can reconstruct curves in three dimensions froffi su
ciently dense samples.

gl

5. The Correct Edge Lemma 19 is proved fox ;13 Show that it also holds fos <
Similarly show that the Neighbor Lemma 22 and the Half Neighbor Lemma 23 hold for

£<1/3.

6". Establish a relation betweenands to guarantee that am-shape reconstructs a smooth
curve in the plane from a globallruniform sample.

7°. It is known that the NN-@ust algorithm can be proved to reconstruct curves frem
samples fore < 0.5. Can this bound ol be improved? What is the largest valuesof
for which curves can be reconstructed frersamples?
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8". Letve Vp be a Voronoi vertex in the Voronoi diagram @iof ane-sampleP of a smooth
curveX. Show that there exists a poimtin the mgdial axis ok so thafm-v|| = O(e) f(p)
whene is suficiently small (see Section 18.3 f@rdefinition).
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