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Curve Reconstructiontaken from [1]

The simplest class of manifolds that pose nontrivial reconstruction problems are curves in the
plane. We will describe two algorithms for curve reconstruction, C and NN-C in this
chapter. First, we will develop some general results that will be applied to prove the correctness
of the both algorithms.

A single curve in the plane is defined by a mapξ : [0,1] → R2 where [0,1] is the closed
interval between 0 and 1 on the real line. The functionξ is one-to-one everywhere except at
the endpoints whereξ(0) = ξ(1). The curve isC1-smoothif ξ has a continuous non-zero first
derivative in the interior of [0,1] and the right derivative at 0 is same as the left derivative at 1
both being non-zero. Ifξ has continuousith derivatives at each point as well, the curve is called
Ci-smooth. When we refer to a curveΣ in the plane, we actually mean the image of one or more
such maps. By definitionΣ does not self-intersect though it can have multiple components each
of which is a closed curve, i.e., without any end point.

For a finite sample to be anε-sample for someε > 0, it is essential that the local feature size
f is positive everywhere. While this is true for allC2-smooth curves, there areC1-smooth curves
with zero local feature size at some point. For example, consider the curve

y = |x|
4
3 for −1 ≤ x ≤ 1

and join the endpoints (−1,1) and (1,1) with a smooth curve. This curve isC1-smooth at (0,0)
and its medial axis passes through the point (0,0). Therefore, the local feature size is zero at
(0,0).

We learnt thatC1-smooth curves do not necessarily have positive minimum local feature
size whileC2-smooth curves do. Are there curves in betweenC1- andC2-smooth classes with
positive local feature size everywhere? Indeed, there is a class calledC1,1-smooth curves with
this property. These curves areC1-smooth and have normals satisfying a Lipschitz continuity
property. To avoid confusions about narrowing down the class, we explicitly assume thatΣ has
strictly positive local feature size everywhere.

For any two pointsx, y in Σ define two curve segments,γ(x, y) andγ′(x, y) betweenx andy,
i.e.,Σ = γ(x, y)∪γ′(x, y) andγ(x, y)∩γ′(x, y) = {x, y}. Let P be a set of sample points fromΣ. We
say a curve segment isemptyif its interior does not contain any point fromP. An edge connecting
two sample points, sayp andq, is calledcorrect if either γ(p,q) or γ′(p,q) is empty. In other
words, p andq are two consecutive sample points onΣ. Any edge that is not correct is called
incorrect. The goal ofcurve reconstructionis to compute a piecewise linear curve consisting
of all and only correct edges. In Figure 27(b) all solid edges are correct and dotted edges are
incorrect.

We will describe C in Section 21 and NN-C in Section 22. Some general results are
presented in Subsection 20 which are used later to claim the correctness ofthe algorithms.

20 Consequences ofε-sampling

Let P be anε-sample ofΣ. For sufficiently smallε > 0, several properties can be proved.
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(a) (b)

Figure 27: (a) A smooth curve, (b) its reconstruction from a sample shownwith solid edges.

Lemma 14(Empty Segment.). Let p∈ P and x∈ Σ so thatγ(p, x) is empty. Let the perpendicular
bisector of px intersect the empty segmentγ(p, x) at z. Ifε < 1 then

(i) the ball Bz,‖p−z‖ intersectsΣ only inγ(p, x),

(ii) the ball Bz,‖p−z‖ is empty, and

(iii) ‖p− z‖ ≤ ε f (z).

P. Let B = Bz,‖p−z‖ andγ = γ(p, x). SupposeB∩Σ , γ, see Figure 28. ShrinkB continuously
centeringz until Int B∩ Σ becomes a 1-ball and it is tangent to some other point ofΣ. Let B′ be
the shrunken ball. The ballB′ exists asBz,δ ∩ Σ is a 1-ball for some sufficiently smallδ > 0 and
B ∩ Σ is not a 1-ball. The ballB′ is empty of any sample point as IntB′ intersectsΣ only in a
subset ofγ which is empty. But, sinceB′ ∩ Σ is not a 1-ball, it contains a medial axis point by the
Feature Ball Lemma 11. Thus, its radius is at leastf (z). The pointz does not have any sample
point within f (z) distance asB′ is empty. This contradicts thatP is anε-sample ofΣ whereε < 1.
Therefore,B intersectsΣ only in γ(p, x) completing the proof of (i).

Property (ii) follows immediately asγ(p, x) is empty andB intersectsΣ only in γ(p, x). By
ε-sampling, the nearest sample pointp to z is within ε f (z) distance establishing (iii). ¤
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Figure 28: Illustration for the Empty Segment Lemma 14. The picture on the left isimpossible
while the one on the right is correct.

The Empty Segment Lemma 14 implies that points in an empty segment are close and any
correct edge is Delaunay whenε is small.
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Lemma 15(Small Segment.). Let x, y be any two points so thatγ(x, y) is empty. Then‖x− y‖ ≤
2ε

1−ε f (x) for ε < 1.

P. Sinceγ(x, y) is empty, it is a subset of an empty segmentγ(p,q) for two sample pointsp
andq. Let z be the point where the perpendicular bisector ofpq meetsγ(p,q). Consider the ball
B = Bz,‖p−z‖. Sinceγ(p,q) is empty, the ballB has the properties stated in the Empty Segment
Lemma 14. SinceB containsγ(p,q), both x andy are inB. Therefore,‖z− x‖ ≤ ε f (z) by the
ε-sampling condition. By the Feature Translation Lemma 13f (z) ≤ f (x)

1−ε . We have

‖x− y‖ ≤ 2‖p− z‖ ≤ 2ε f (z)

≤
2ε

1− ε
f (x).

¤

¤

Lemma 16(Small Edge.). Let pq be a correct edge. Forε < 1,

(i) ‖p− q‖ ≤ 2ε
1−ε f (p) and

(ii) pq is Delaunay.

P. Any correct edgepq has the property that eitherγ(q, p) or γ(p,q) is empty. Therefore,
(i) is immediate from the Small Segment Lemma 15. It follows from property (ii) of the Empty
Segment Lemma 14 that there exists an empty ball circumscribing the correct edge pq proving
(ii). ¤

¤

If three pointsx, y, andzonΣ are sufficiently close, the segmentsxyandyzmake small angles
with the tangent aty. This implies that the angle∠xyzis close toπ. As a corollary two adjacent
correct edges make an angle close toπ.

Lemma 17(Segment Angle.). Let x, y, and z be three points onΣ with ‖x− y‖ and‖y− z‖ being
no more than 2ε

1−ε f (y) for ε < 1
2. Letα be the angle between the tangent toΣ at y and the line

segment yz. One has

(i) α ≤ arcsin ε1−ε and

(ii) ∠xyz≥ π − 2 arcsin ε1−ε .

P. Consider the two medial balls sandwichingΣ at y as in Figure 29. Letα be the angle
between the tangent aty and the segmentyz. Sincez lies outside the medial balls, the length of
the segmentyz′ is no more than that ofyzwherez′ is the point of intersection ofyzand a medial
ball as shown.

In that case,
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Figure 29: Illustration for the Segment Angle Lemma 17.

α ≤ arcsin

((

‖y− z′‖
2

)

/ (‖m− y‖)

)

= arcsin

((

‖y− z‖
2

)

/ (‖m− y‖)

)

.

It is given that‖y−z‖ ≤ 2ε
1−ε f (y) whereε < 1

2. Also, ‖m−y‖ ≥ f (y) sincem is a medial axis point.
Plugging in these values we get

α ≤ arcsin
ε

1− ε
completing the proof of (i). We have

∠myz ≥
π

2
− α

∠myz ≥
π

2
− arcsin

ε

1− ε
.

Similarly it can be shown that∠myx ≥ π
2 − arcsin ε1−ε . Property (ii) follows immediately as

∠xyz= ∠myz+ ∠myx. ¤

¤

Since any correct edgepqhas a length no more than2ε1−ε f (p) for ε < 1 (Small Edge Lemma 16),
we have the following result.

Lemma 18 (Edge Angle.). Let pq and pr be two correct edges incident to p. We have∠qpr ≥
π − 2 arcsin ε1−ε for ε < 1

2.

21 Crust

We have already seen that all correct edges connecting consecutivesample points in anε-sample
are present in the Delaunay triangulation of the sample points ifε < 1. The main algorithmic



Notes by Tamal K. Dey, OSU 51

challenge is to distinguish these edges from the rest of the Delaunay edges. The C algorithm
achieves this by observing some properties of the Voronoi vertices.

Figure 30: Voronoi vertices approximate the medial axis of a curve in the plane. The Voronoi
vertices are shown with hollow circles in the right picture.

21.1 Algorithm

Consider Figure 30. The left picture shows the Voronoi diagram clippedwithin a box for a dense
sample of a curve. The picture on the right shows the Voronoi vertices separately. A careful
observation reveals that the Voronoi vertices lie near the medial axis of thecurve (Exercise 8).
The C algorithm exploits this fact. All empty balls circumscribing incorrect edges in Del P
cross the medial axis and hence contain Voronoi vertices inside. Therefore, they cannot appear
in the Delaunay triangulation ofP ∪ V whereV is the set of Voronoi vertices in VorP. On the
other hand, all correct edges still survive in Del (P∪ V). So, the algorithm first computes VorP
and then computes the Delaunay triangulation ofP∪ V whereV is the set of Voronoi vertices of
Vor P. The Delaunay edges of Del (P ∪ V) that connect two points inP are output. It is proved
that an edge is output if and only if it is correct.

C(P)
1 compute VorP;
2 letV be the Voronoi vertices of VorP;
3 compute Del (P∪ V);
4 E := ∅;
5 for each edgepq ∈ Del (P∪ V) do
6 if p ∈ P andq ∈ P
7 E := E ∪ pq;
8 endif

9 output E.
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The Voronoi and the Delaunay diagrams of a set ofn points in the plane can be computed
in O(n logn) time andO(n) space. The second Delaunay triangulation in step 3 deals withO(n)
points as the Voronoi diagram ofn points can have at most 2n Voronoi vertices. Therefore, C
runs inO(n logn) time and takesO(n) space.

21.2 Correctness

The correctness of C is proved in two parts. First, it is shown that each correct edge is present
in the output of C (Correct Edge Lemma 19). Then, it is shown that no incorrect edge is
output (Incorrect Edge Lemma 20).

Lemma 19(Correct Edge.). Each correct edge is output byC whenε < 1
5.

P. Let pq be a correct edge. Letz be the point where the perpendicular bisector ofpq
intersects the empty segmentγ(p,q). Consider the ballB = Bz,‖p−z‖. This ball is empty of any
point fromP whenε < 1 (Empty Segment Lemma 14 (i)). We show that this ball does not contain
any Voronoi vertex of VorP either.
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Figure 31: Illustration for the Correct Edge Lemma 19.

Suppose thatB contains a Voronoi vertex, sayv, from V (Figure 31). Then by simple circle
geometry the maximum distance ofv from p is 2‖p − z‖. Thus, ‖p − v‖ ≤ 2‖p − z‖. Since
‖p− z‖ ≤ ε f (z) by the Empty Segment Lemma 14(iii), we have

‖p− v‖ ≤ 2ε f (z) ≤
2ε

1− ε
f (p).

The Delaunay ballB′ centeringv contains three points fromP on its boundary. This means
Bd B′ ∩ Σ is not a 0-sphere. So,B′ contains a medial axis point by the Feature Ball Lemma 11.
As the Delaunay ballB′ is empty,p cannot lie in IntB′. So, the medial axis point inB′ lies within
2‖p−v‖ distance fromp. Therefore, 2‖p−v‖ ≥ f (p). But, ‖p−v‖ ≤ 2ε

1−ε f (p) enabling us to reach
a contradiction when2ε

1−ε <
1
2, i.e., whenε < 1

5.
Therefore, forε < 1

5, there is a circumscribing ball ofpqempty of any point fromP∪ V. So,
it appears in Del (P∪ V) and is output by C as it connects two points fromP. ¤

¤
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Lemma 20(Incorrect Edge.). No incorrect edge is output byC whenε < 1/5.

P. We need to show that there is no ball, empty of both sample points and Voronoiver-
tices, circumscribing an incorrect edge between two sample points, sayp andq. For the sake of
contradiction, assume thatD is such a ball.

Let v andv′ be the two points where the perpendicular bisector ofpq intersects the boundary
of D, see Figure 32. Consider the two ballsB = Bv,r andB′ = Bv′,r′ that circumscribepq.

We claim that bothB andB′ are empty of any sample points. Suppose on the contrary, any
one of them, sayB, contains a sample point. Then, one can pushD continually towardsB by
moving its center on the perpendicular bisector ofpq and keepingp,q on its boundary. During
this motion, the deformedD would hit a sample points for the first time before its center reaches
v. At that momentp, q, ands define a ball empty of any other sample points. The center of this
ball is a Voronoi vertex in VorP which resides insideD. This is a contradiction asD is empty of
any Voronoi vertex fromV.
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Figure 32: Illustration for the Incorrect Edge Lemma 20.

The angle∠vpv′ is π/2 asvv′ is a diameter ofD. The tangents to the boundary circles ofB
andB′ at p are perpendicular tovp andv′p respectively. Therefore, the tangents make an angle
of π/2. This implies thatΣ cannot be tangent to bothB andB′ at p.

First consider the case whereΣ is tangent neither toB nor to B′ at p. Let p1 and p2 be the
points of intersection ofΣ with the boundaries ofB andB′ respectively that are consecutive to
p among all such intersections. Our goal will be to show that either the curve segmentpp1 or
the curve segmentpp2 intersectsB or B′ rather deeply and thereby contributing a long empty
segment which is prohibited by the sampling condition.

The curve segment betweenp and p1 and the curve segment betweenp and p2 do not have
any sample point other thanp. By the Small Segment Lemma 15 both‖p− p1‖ and‖p− p2‖ are
no more than2ε

1−ε f (p) for ε < 1
5. So by the Segment Angle Lemma 17,∠p1pp2 ≤ π−2 arcsin ε1−ε .

Without loss of generality, let the angle betweenpp1 and the tangent toB at p be larger than
the angle betweenpp2 and the tangent toB′ at p. Then,pp1 makes an angleα with the tangent
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to B at p where

α ≥
1
2

((

π − 2 arcsin
ε

1− ε

)

−
π

2

)

=
π

4
− arcsin

ε

1− ε
.

Consider the other case whereΣ is tangent to one of the two ballsB andB′ at p. Without loss
of generality, assume that it is tangent toB′ at p. Again the lower bound on the angleα as stated
above holds.

Let x be the point where the perpendicular bisector ofpp1 intersects the curve segment be-
tweenp and p1. Clearly, x is in B. SinceB intersectsΣ at p andq which are not consecutive
sample points, it cannot containγ(p,q) or γ′(p,q) inside completely. This meansB∩ Σ cannot
be a 1-ball. So by the Feature Ball Lemma 11,B has a medial axis point and thus its radiusr is at
least f (x)/2. By simple geometry, one gets that

‖p− x‖ ≥
1
2
‖p− p1‖

= r sinα

≥
1
2

f (x) sinα.

By property (iii) of the Empty Segment Lemma 14‖p− x‖ ≤ ε f (x). We reach a contradiction if

2ε < sin
(

π

4
− arcsin

ε

1− ε

)

.

Forε < 1
5, this inequality is satisfied. ¤

¤

Combining the Correct Edge Lemma 19 and the Incorrect Edge Lemma 20 we get the follow-
ing theorem.

Theorem 21. For ε < 1
5, C outputs all and only correct edges.

22 NN-crust

The next algorithm for curve reconstruction is based on the concept ofnearest neighbors. A point
p ∈ P is a nearest neighbor ofq ∈ P if there is no other points ∈ P\ {p,q} with ‖q− s‖ < ‖q− p‖.
Notice thatp being a nearest neighbor ofq does not necessarily mean thatq is a nearest neighbor
of p.

We first observe that edges that connect nearest neighbors inP must be correct edges ifP is
sufficiently dense. But, all correct edges do not connect nearest neighbors. Figure 33 shows all
edges that connect nearest neighbors. The missing correct edges inthis example connect points
that are not nearest neighbors. However, these correct edges connect points that are not very far
from being nearest neighbors. We capture them in NN-C using the notion ofhalf neighbors.



Notes by Tamal K. Dey, OSU 55

r

p q

r

p q

(a) (b)

Figure 33: (a) Only nearest neighbor edges may not reconstruct a curve, (b) half neighbor edges
such aspr fill up the gaps.

22.1 Algorithm

Let pqbe an edge connectingp to its nearest neighborqand−→pqbe the vector fromp toq. Consider
the closed halfplaneH bounded by the line passing throughp with −→pqas outward normal. Clearly,
q < H. The nearest neighbor top in the setH ∩ P is called itshalf neighbor. In Figure 33(b),r is
the half neighbor ofp. It can be shown that two correct edges incident to a sample point connect
it to its nearest and half neighbors.

The above discussion immediately suggests an algorithm for curve reconstruction. But, we
need efficient algorithms to compute nearest neighbor and half neighbor for each sample point.
The Delaunay triangulation DelP turns out to be useful for this computation as all correct edges
are Delaunay ifP is sufficiently dense. The Small Edge Lemma 16 implies that, for each sample
point p, it is sufficient to check only the Delaunay edges to determine correct edges. We check all
edges incident top in DelP and determine the shortest edge connecting it to its nearest neighbor,
sayq. Next, we check all other edges incident top which make at leastπ2 angle withpq at p and
choose the shortest among them. This second edge connectsp to its half neighbor. The entire
computation can be done in time proportional to the number of edges incident top. Since the
sum of the number of incident edges over all vertices in the Delaunay triangulation isO(n) where
|P| = n, correct edge computation takes onlyO(n) time once DelP is computed. The Delaunay
triangulation of a set ofn points in the plane can be computed inO(n logn) time which implies
that NN-crust takesO(n logn) time.

NN-C(P)
1 compute DelP;
2 E = ∅;
3 for eachp ∈ P do
4 compute the shortest edgepq in DelP;
5 compute the shortest edgepsso that∠pqs≥ π2;
6 E = E ∪ {pq, ps};
7 endfor

8 output E.
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22.2 Correctness

As we discussed before, NN-C computes edges connecting each sample point to its nearest
and half neighbors. The correctness of NN-C follows from the proofs that these edges are
correct.

qp
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s γ
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Figure 34: Diametric ball ofpq intersectsΣ in (a) two components, (b) single component.

Lemma 22 (Neighbor.). Let p∈ P be any sample point and q be its nearest neighbor. The edge
pq is correct forε < 1

3.

P. Consider the ballB with pqas diameter. IfB does not intersectΣ in a 1-ball, it contains a
medial axis point by the Feature Ball Lemma 11. See Figure 34(a). This means‖p− q‖ > f (p).
A correct edgepssatisfies‖p− s‖ ≤ 2ε

1−ε f (p) by the Small Edge Lemma 16. Thus, forε < 1
3 we

have‖p− s‖ < ‖p− q‖, a contradiction to the fact thatq is the nearest neighbor top.
So,B intersectsΣ in a 1-ball, namelyγ = γ(p,q) as shown in Figure 34(b). Ifpq is not cor-

rect,γ contains a sample point, says, betweenp andq insideB. Again, we reach a contradiction
as‖p− s‖ < ‖p− q‖. ¤

¤

Next we show that edges connecting a sample point to its half neighbors are also correct.

Lemma 23(Half Neighbor.). An edge pq where q is a half neighbor of p is correct whenε < 1
3.

P. Let r be the nearest neighbor ofp. According to the definition−→pq makes at leastπ2 angle
with −→pr.

If pq is not correct, consider the correct edgeps incident top other thanpr. By the Edge
Angle Lemma 18−→psalso makes at leastπ2 angle with−→pr for ε < 1/3. We show thats is closer to
p thanq. This contradicts thatq is the half neighbor ofp since both−→psand−→pq make an angle at
leastπ2 with −→pr.

Consider the ballB with pqas a diameter. IfB does not intersectΣ in a 1-ball (Figure 35(a)),
it would contain a medial axis point and thus‖p − q‖ ≥ f (p). On the other hand, forε < 1

3,
‖p − s‖ ≤ 2ε

1−ε f (p) by the Small Edge Lemma 16. We get‖p − s‖ < ‖p − q‖ for ε < 1
3 as

required for contradiction. Next, assume thatB intersectsΣ in a 1-ball, namely inγ(p,q), as
in Figure 35(b). Sincepq is not a correct edge,s must be on this curve segment. It implies
‖p− s‖ < ‖p− q‖ as required for contradiction. ¤

¤
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Figure 35: Diametric ball ofpq intersectsΣ in (a) more than one component, (b) a single compo-
nent.

Theorem 24. NN-C computes all and only correct edges whenε < 1
3.

P. By the Small Edge Lemma 16 all correct edges are Delaunay. Step 4 and 5 assure that all
edges joining samples points to their nearest and half neighbors are computed as output. These
edges are correct by the Neighbor Lemma 22 and the Half Neighbor Lemma 23whenε < 1

3.
Also, there is no other correct edges since each sample point can only beincident to exactly two
correct edges. ¤

Exercises

(The exercise numbers with the superscripth ando indicatehardandopenquestions respectively.)

1. Give an example of a point setP such thatP is an 1-sample of two curves for which the
correct reconstructions are different.

2. Given a1
4-sampleP of a smooth curve, show that all correct edges are Gabriel in Del (P∪V)

whereV is the set of Voronoi vertices in VorP.

3. LetP be anε-sample of a smooth curve without boundary. Letηpq be the sum of the angles
opposite topq in the two (or one ifpq is a convex hull edge) triangles incident topq in
DelP. Prove that there is anε for which pq is correct if and only ifηpq < π.

4. Show that the NN-C algorithm can reconstruct curves in three dimensions from suffi-
ciently dense samples.

5. The Correct Edge Lemma 19 is proved forε < 1
5. Show that it also holds forε ≤ 1

5.
Similarly show that the Neighbor Lemma 22 and the Half Neighbor Lemma 23 hold for
ε ≤ 1/3.

6h. Establish a relation betweenα andδ to guarantee that anα-shape reconstructs a smooth
curve in the plane from a globallyδ-uniform sample.

7o. It is known that the NN-C algorithm can be proved to reconstruct curves fromε-
samples forε < 0.5. Can this bound onε be improved? What is the largest value ofε
for which curves can be reconstructed fromε-samples?
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8h. Let v ∈ Vp be a Voronoi vertex in the Voronoi diagram VorP of anε-sampleP of a smooth
curveΣ. Show that there exists a pointm in the medial axis ofΣ so that‖m− v‖ = Õ(ε) f (p)
whenε is sufficiently small (see Section 18.3 for̃O definition).
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