12 Notes by Tamal K. Dey, OSU

Complexes

6 Simplicial complex

A complex is a collection of some basic elements which satisfy certain propérni@simplicial
complex, these basic elements are simplices.

Definition 20 (simplex) A k-simplexo-is the convex hull of a sd® of k+ 1 afinely independent
points. In particular, a O-simplex isvertex a 1-simplex is ardge a 2-simplex is driangle, and

a 3-simplex is aetrahedron A k-simplex is said to havdimension k A faceof o is a simplex
that is the convex hull of a nonempty subsefofFaces otr come in all dimensions from zero
(o's vertices) tok; o is a face ofo~. A proper faceof o is a simplex that is the convex hull of a
proper subset dP; i.e. any face except. In particular, the — 1)-faces ofo- are calledacetsof
o; o hask + 1 facets. For instance, the facets of a tetrahedron are its four triarigoda:.

Definition 21 (simplicial complex) A simplicial complexX, also known as &iangulation, is a
set containing finitel§ many simplices that satisfies the following two restrictions.

e X contains every face of every simplexda

e For any two simplicesr, T € XK, their intersectionr N 7 is either empty or a face of both
andr.

Definition 22 (underlying space)The underlying spacef a complexX, denotedX], is the
pointwise union of its cells; that i§K| = | e o

The above definition is very geometric which is why sometimes they are réferas geo-
metric simplicial complexes. There is a parallel notion of simplicial complexes thvisid of
geometry.

Definition 23 (abstract simplicial complex)A collection A of subsets of a given set is an
abstract simplicial complex if every elemente A has all of its subsets’ C o also inA. The
elements ofA are the vertices ofl. Each (sub)set il is a simplex whose dimension equals its
cardinality.

An abstract simplicial complexX with m vertices can be embedded (geometrically realized)
in R™! as a subcomplex of a geometriesimplex. Thus, we define its underlying space as the
underlying space of its geometric realization.

Definition 24 (k-skeleton) Thek-skeleton of a simplicial complex is the subcomplex formed by
all of its k-dimensional simplices and their faces.

2Topologists usually define complexes so they have countable cardinadityedvict complexes to finite cardinality
here.
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Figure 8: Every triangle in a Delaunay triangulation has an empty open ciiskmd

7 Delaunay complex

This is a special complex that can be constructed out of a poift s&t9. This complex embeds
in RY.

Definition 25 (Delaunay simplex; complex)in the context of a finite point se® € RY, a k-
simplexo is Delaunayif its vertices are irP and there is an opafitball whose boundary contains
its vertices and i&mpty—contains no point iP. Note that any number of points Fican lie on
the boundary of this ball. But, for simplicity, we will assume that only the vertafes are on
the boundary of its empty ball. Belaunay complerf P, denoted DeP, is a simplicial complex
with vertices inP in which every simplex is Delaunay afidel P| coincides with the convex hull
of P, as illustrated in Figure 9.

In 3d, a Delaunay complex of a set of points in general position is madefdd¢launay
tetrahedra and all of its lower dimensional faces.

Fact 1. Every non-degenerate point set (na-@ points are co-spherical) admits a unique De-
launay complex.

Delaunay complexes are dual to the famous Voronoi diagrams which we ughtgpon later.

8 Cech and Rips complex

Given a point seP with a metric, that is, pairwise distancesfnare known, we can build an
abstract simplicial complex with vertices ihwhich respects the metric.

Definition 26 (metric space) A metric space is a paiM, d) whereM is a set andl is a distance
functiond : M x M — R satisfying the following properties:

1. dix,y) = 0VY(xy) e Mx M

2. d(x,y)=0ifandonly ifx=y

3.d(xy) =d(y,X) Y(x,¥) e Mx M

4. d(xy) <d(X%2+d(zy) V(x,y,2 e Mx M x M
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Figure 9:Cech complex’ (P) and Rips comple' (P)

An open geodesic ball of radiusentering a poinp € M is the seB(p,r) = {x€ M|d(p, X) < r}.

Definition 27 (Vietoris-Rips complex) Let (P, d) be a metric space whekReis a point set. Given
arealr > 0, the Vietoris-Rips (Rips in short) complex is the abstract simplicial comgl¢R)
where a simplex- € R'(P) if and only if d(p, g) < r for every pair of vertices aof-.

Notice that the 1-skeleton &&"(P) determines all of its simplices. It is the completion (in
terms of simplices) of its 1-skeleton.

The Rips complex is related to another complex calleth complex which is often used in
topological data analysis.

Definition 28 (nerve) Let M be a topological space. L&t be a set of subsets &. The nerve
of M is the abstract simplicial compléX defined on the setl where a simplexcy, ..., c} € M
is in X if

m!‘zlci #0.

Definition 29. Let (M, d) be a metric space with a topology induced by its metric. Rédte a
subset ofM. Given a rear > 0, theCech complex¢’(P) is defined to be the nerve of the set
{B(p,r/2)| p € P} where

B(p,r/2) = {xe M|d(p,x) <r/2}

is the metric open ball of radiug?2 centeringp.
An easy but important observation is that the Rips @edh complexes interleave.

Lemma 1. Let P be a subset of a metric spadé, d). Then,
C"(P) € R"(P) C ¥ (P).

Proor. The firstinclusion is obvious because if there is a printthe intersectiom!‘:lB( pi,r/2),
the distancesl(p;, p;) for every pair (, j), 1 < i, ] < k, are at most. It follows that for every
simplex{ps, ..., p} € C"(P) is also inR"(P).

To prove the second inclusion, consider a simgiex. .., px} € R"(P). Since by definition
of the Rips complex(p;, p1) <r foreveryp;,i =1,...,k we havem!‘:lB(pi, r) > p1 # 0. Then,
by definition,{p, ..., p«} is also a simplex i©? (P). o
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9 Witness complex

The Rips andCech complexes are often too large to handle. For example, the Rips comitiex w
n points inRY can have(n%) simplices. In practice, also they become too large to handle even in
dimension as low as three. Just to have a sense of the scale of the problaotevhat the Rips or
Cech complex built out of a few thousand points often has triangles in tige &millions. The
witness complex defined by de Silva and Carlsson [5] sidesteps this praylensubsampling
strategy. Given a point sampliefrom a metric space, we subsamplavith a subsetQ c P and

then build a complex o instead ofP.

Definition 30. Let Q be a finite subset of a metric spadd, ). A simplexo = {q1,...,0k} iS
weakly witnessed by € M if d(g, X) < d(p, x) for everyqg € {qi, ..., 0k} andp € Q\ {q, ..., 0k}
The simplexs is strongly witnessed if, additionallg(qgi, X) = - - - = d(k, X).

The following fact is proved in [6].

Proposition 2. A simplexo is strongly witnessed if and only if every subsimplexo is weakly
witnessed.

We now define the withess complex using the notion of weak witnesses.

Definition 31. Let P be a finite subset of a metric spadé,d). For a subse® C M, consider all
simplices with vertex set i that are strongly witnessed by a pointfn The witness complex
W(Q, P) is defined as the collection of all these simplices.

Observe that a simplex which is weakly witnessed may not have all its subsispléezkly
witnessed (think about an example). This is why the definition above fdheesondition of
strong witness. A dierent complex that can be built is by considering all weakly witnessed
simplices and their faces. This has not been proposed in the original defioitja].

When the metric space is a Euclidean spated), we have some connections of the witness
complex to the Dealunay complex. By definition, we know the following:

Fact 2. Let Q be a finite subset ¢RK,d). Then a simplex- is in the Delaunay triangulation
DelQ if and only ifo is strongly witnessed by a point &K,

By combining the above fact and the observation that every simplex in a witieasplex is
strongly witnessed, we have the following result which was observee Silda [6].

Proposition 3. If P is a finite subset ofR¥, d) and Q< P, thenW(Q, P)  Del Q.

One important implication of the above observation is that the withess complaxpsiffi
samples in an Euclidean space are embedded in that space.

The concept of the witness complex has a parallel in the concept of thietexs Delaunay
triangulation. When the sétin Proposition 3 is not necessarily a finite subset, but only a subset
of R¥, andQ is a finite point set, what can we say abdWQ, P)?

Proposition 4.

1. W(Q,R¥) = Dellp« Q := DelQ [6].
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2. W(Q, M) = Deljy Q if M c R is a smootHL- or 2-manifold [1].

3. W(Q,P) = Delly Q where P and Q are gficiently dense sample of amanifold M in
R2 and the result does not extend to other cases of submanifolds embadgecidean
spaces [4].

10 Graph induced complex

The witness complex does not capture the topology of a manifold even if th siaynple is
dense except for smooth curves in the plane. One can modify them withsésdcdures such
as putting weights on the points and changing the metric to weighted distance&léottas
problem as shown in [2]. But, this becomes clumsy in terms of the ‘practicafigysolution. We
study another complex calleplaph induced complé&IC) introduced by Dey, Fan, and Wang [3]
which also works on the notion of subsampling, but is more powerful in ciayttopology and
in some case geometry. The adavantage of GIC over the withness comples atributed to the
fact that GIC is not necessarily a subcomplex of the Delaunay complekemze contains few
more simplices which aid topology inference. But, for the same reason, it otanrbed in the
Euclidean space where its input vertices lie.

Definition 32. Let (P, d) be a metric space wheRas a finite set an(P) be a graph with vertices

in P. LetQ C P be a subset whene: P — Q be the vertex map given by(p) = argmin d(p, Q).

The graph induced complex(G(P), Q) is the simplicial complex containing lasimplexo =

{01, ..., k1) if and only if there exists ak(+ 1)-clique{ps, ..., pkr1} € P so thatv(p) = q; for

eachi € {1,2,...,k+ 1}. To see that it is indeed a simplicial complex, observe that a subset of a
clique is also a clique.

Figure 10: A graph induced complex shown with bold vertices, edgesa aha@ded triangle on
left. The input graph within the shaded triangle is shown on right. The thfesrehtly colored
vertices of the input graph (shown inside the shaded triangle on rightgdhe shaded traingle
to be in the graph induced complex.

Given a neighborhood graph on a point dBtaquipped with a metric, one can build a graph
induced complex on a subsami@ec P by throwing in a simplex with a vertex sgtc Q if a set
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of points inP, each being closest to exactly one verte¥informs a clique. Figure 10 shows a
graph induced complex for a point data in the plane widascthe Euclidean metric.

Input graph G(P). The input point seP can be a finite sample of a subs€bf an Euclidean
space, such as a manifold or a compact subset. In this case, we willeoti&dnput grapls(P)
to be the neighborhood gragf'(P) := (P, E) where there is an edd®, q} € E if and only if
Ilp — dll < a. The intuion is that ifP is a suficiently dense sample of, thenG*(P) captures
the local neighborhoods of the pointsXa To emphasize the dependencecowe will use the
notationG*(P, Q) := §(G*(P), Q).

SubsampleQ. Of course, the ability of capturing the topology of the sampled space after su
sampling withQ depends on the quality &@. We will quantify this quality with a parameter
6>0.

Definition 33. A subsetQ c P is called as-sample of a finite seP if the following condition
holds:

e ¥pe P, there exists g € Q, so thatd(p, q) < 6.

Qs calleds-sparse if the following condition holds:

e Y(g,r) e QxQ, d(g,r) >46.

The first condition ensured to be a good sample &f with respect to the paramet&and the
second condition enforces that the point&igannot be too close relative to the distadce

Metric d. The metricd assumed in the metric spack ¢) will be of two types, (i) the Eu-
clidean metric denotedg, (ii) the graph metridg derived from the the input grapB(P) where
da(p, g) is the shrtest path distance betwgeandq in the graphG(P) assuming its edges have
non-negative weights such as their Euclidean lengths.

When equipped with appropriate metric, the GIC can decipher the topology data. It
retains the simplicity of the Rips complex as well as the sparsity of the witness cantipd®es
not build a Rips complex on the subsample and thus is sparser than the Ripgxaevitp the
same set of vertices. This fact makes a refiedence in practice as experiments show.

Figure 11 shows experimental results on two data sets, 40,000 sample painta Klein
bottle inR* and 15,000 sample points from the primary circle of natural image data coegide
in R?5. The graphs connecting any two points withkir= 0.05 unit distance for Klein bottle and
a = 0.6 unit distance for the primary circle were taken as input for the graptceaioomplexes.
The 2-skeleton of the Rips complexes for thegearameters have 60800 and 1329 672 867
simplices respectively. These sizes are too large to carry out fast tatiops.

For comparisons, we constructed the graph induced complex, spaRifistcomplex, and
the withess complex on the same subsample determined by a para@melbe parametes
is also used in the graph induced complex and the withess complex. The iadipesRips
complex built on the samsubsamplavere of lengths at most + 25. We varieds and observed
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Figure 11: Comparison results for Klein bottleRA (top row) and primary circle iiR?® (bottom
row). The estimate@; for three complexes are shown on the left, and their sizes are shown on
log scale on right.

the rank of the one dimensional homology gro@g)( As evident from the plots, the graph
induced complex captureg} correctly for a significantly wider range éf(left plots) while its
size remained comparable to that of the witness complex (right plots). In sases,dhe graph
induced complex could capture the corrggtwith remarkably small number of simplices. For
example, it hagd; = 2 for Klein bottle when there were 278 simplices tor= 0.7 and 154
simplices fors = 1.0. In both cases Rips and witness complexes had wganghile the Rips
complex had a much larger size (logcale plot) and the witness complex had comparable size.
This illustrates why the graph induced complex can be a better choice thaiptharkl witness
complexes.

Constructing a GIC. One may wonder how tofciently construct the graph induced com-
plexes in practice. Experiments show that the following procedure ruies gficiently in prac-
tice. It takes advantage of computing nearest neighbors within a ramgeramne importantly,
computing cliques only in a sparsified graph.

Let the ballB(qg, ) in metricd be called th&-cover for the poing. A graph induced complex
G¥(P, Q, d) whereQ is as-sparse&-sample can be built easily by identifyidgcovers with a rather
standard greedy (farthest point) iterative algorithm. Qet {qs, ..., qi} be the point set sampled
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so far fromP. We maintain the invariants (; is 5-sparse and (ii) every poir € P that are
in the union ofs-coversUqeq B(q, 6) have their closest point(p) = argminq, d(p,q) in Q
identified. To augmen®; to Q.1 = Q; U {gi+1}, we choose a poirg;,1 € P that is outside the
o-coversJqeq B(0,0). Certainly,gi,1 is at least units away from all points i); thus satisfying
the first invariant. For the second invariant, we check every pwiint the §-cover of g, and
updatev(p) to beq;,; if its distance tag .1 is smaller than the distancgp, v(p)). At the end, we
obtain a sampl€ c P whoses-covers cover the entire point 8tand thus is @-sample of P, d)
which is alsos-sparse. Next, we construct the simplicesg6{P, Q,d). This needs identifying
cliques inG*(P) that have vertices with flierent closest points i. We delete every edgep
from G*(P) wherev(p) = v(p’). Then, we determine every cligyes, ... pk} in the remaining
sparsified graph and include the simpjefp1), ..., v(p«)} in §*(P, Q, d). The main saving here is
that many cliques of the original graph are removed before it is prodésselique computation.
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