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Complexes

6 Simplicial complex

A complex is a collection of some basic elements which satisfy certain properties.In a simplicial
complex, these basic elements are simplices.

Definition 20 (simplex). A k-simplexσ is the convex hull of a setP of k+ 1 affinely independent
points. In particular, a 0-simplex is avertex, a 1-simplex is anedge, a 2-simplex is atriangle, and
a 3-simplex is atetrahedron. A k-simplex is said to havedimension k. A faceof σ is a simplex
that is the convex hull of a nonempty subset ofP. Faces ofσ come in all dimensions from zero
(σ’s vertices) tok; σ is a face ofσ. A proper faceof σ is a simplex that is the convex hull of a
proper subset ofP; i.e. any face exceptσ. In particular, the (k− 1)-faces ofσ are calledfacetsof
σ; σ hask+ 1 facets. For instance, the facets of a tetrahedron are its four triangularfaces.

Definition 21 (simplicial complex). A simplicial complexK, also known as atriangulation, is a
set containing finitely2 many simplices that satisfies the following two restrictions.

• K contains every face of every simplex inK.

• For any two simplicesσ, τ ∈ K, their intersectionσ ∩ τ is either empty or a face of bothσ
andτ.

Definition 22 (underlying space). The underlying spaceof a complexK, denoted|K|, is the
pointwise union of its cells; that is,|K| = ⋃σ∈Kσ.

The above definition is very geometric which is why sometimes they are referred to as geo-
metric simplicial complexes. There is a parallel notion of simplicial complexes that isdevoid of
geometry.

Definition 23 (abstract simplicial complex). A collection A of subsets of a given setA is an
abstract simplicial complex if every elementσ ∈ A has all of its subsetsσ′ ⊆ σ also inA. The
elements ofA are the vertices ofA. Each (sub)set inA is a simplex whose dimension equals its
cardinality.

An abstract simplicial complexA with m vertices can be embedded (geometrically realized)
in Rm−1 as a subcomplex of a geometricm-simplex. Thus, we define its underlying space as the
underlying space of its geometric realization.

Definition 24 (k-skeleton). Thek-skeleton of a simplicial complex is the subcomplex formed by
all of its k-dimensional simplices and their faces.

2Topologists usually define complexes so they have countable cardinality. We restrict complexes to finite cardinality
here.
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Figure 8: Every triangle in a Delaunay triangulation has an empty open circumdisk.

7 Delaunay complex

This is a special complex that can be constructed out of a point setP ∈ Rd. This complex embeds
in Rd.

Definition 25 (Delaunay simplex; complex). In the context of a finite point setP ∈ Rd, a k-
simplexσ is Delaunayif its vertices are inP and there is an opend-ball whose boundary contains
its vertices and isempty—contains no point inP. Note that any number of points inP can lie on
the boundary of this ball. But, for simplicity, we will assume that only the verticesof σ are on
the boundary of its empty ball. ADelaunay complexof P, denoted DelP, is a simplicial complex
with vertices inP in which every simplex is Delaunay and|DelP| coincides with the convex hull
of P, as illustrated in Figure 9.

In 3d, a Delaunay complex of a set of points in general position is made out of Delaunay
tetrahedra and all of its lower dimensional faces.

Fact 1. Every non-degenerate point set (no d+ 2 points are co-spherical) admits a unique De-
launay complex.

Delaunay complexes are dual to the famous Voronoi diagrams which we will touch upon later.

8 Čech and Rips complex

Given a point setP with a metric, that is, pairwise distances inP are known, we can build an
abstract simplicial complex with vertices inP which respects the metric.

Definition 26 (metric space). A metric space is a pair (M,d) whereM is a set andd is a distance
functiond : M × M → R satisfying the following properties:

1. d(x, y) ≥ 0 ∀(x, y) ∈ M × M

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x) ∀(x, y) ∈ M × M

4. d(x, y) ≤ d(x, z) + d(z, y) ∀(x, y, z) ∈ M × M × M
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Figure 9:Čech complexCr (P) and Rips complexRr (P)

An open geodesic ball of radiusr centering a pointp ∈ M is the setB(p, r) = {x ∈ M |d(p, x) < r}.

Definition 27 (Vietoris-Rips complex). Let (P,d) be a metric space whereP is a point set. Given
a realr > 0, the Vietoris-Rips (Rips in short) complex is the abstract simplicial complexRr (P)
where a simplexσ ∈ Rr (P) if and only if d(p,q) ≤ r for every pair of vertices ofσ.

Notice that the 1-skeleton ofRr (P) determines all of its simplices. It is the completion (in
terms of simplices) of its 1-skeleton.

The Rips complex is related to another complex calledČech complex which is often used in
topological data analysis.

Definition 28 (nerve). Let M be a topological space. LetM be a set of subsets ofM. The nerve
of M is the abstract simplicial complexK defined on the setM where a simplex{c1, . . . , ck} ⊆M

is in K if
∩k

i=1ci , ∅.

Definition 29. Let (M,d) be a metric space with a topology induced by its metric. LetP be a
subset ofM. Given a realr > 0, theČech complexCr (P) is defined to be the nerve of the set
{B(p, r/2) | p ∈ P} where

B(p, r/2) = {x ∈ M |d(p, x) < r/2}

is the metric open ball of radiusr/2 centeringp.

An easy but important observation is that the Rips andČech complexes interleave.

Lemma 1. Let P be a subset of a metric space(M,d). Then,

Cr (P) ⊆ Rr (P) ⊆ C2r (P).

P. The first inclusion is obvious because if there is a pointx in the intersection∩k
i=1B(pi , r/2),

the distancesd(pi , p j) for every pair (i, j), 1 ≤ i, j ≤ k, are at mostr. It follows that for every
simplex{p1, . . . , pk} ∈ Cr (P) is also inRr (P).

To prove the second inclusion, consider a simplex{p1, . . . , pk} ∈ Rr (P). Since by definition
of the Rips complexd(pi , p1) ≤ r for everypi , i = 1, . . . , k, we have∩k

i=1B(pi , r) ⊃ p1 , ∅. Then,
by definition,{p1, . . . , pk} is also a simplex inC2r (P). ¤
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9 Witness complex

The Rips anďCech complexes are often too large to handle. For example, the Rips complex with
n points inRd can haveΩ(nd) simplices. In practice, also they become too large to handle even in
dimension as low as three. Just to have a sense of the scale of the problem, we note that the Rips or
Čech complex built out of a few thousand points often has triangles in the range of millions. The
witness complex defined by de Silva and Carlsson [5] sidesteps this problemby a subsampling
strategy. Given a point sampleP from a metric space, we subsampleP with a subsetQ ⊆ P and
then build a complex onQ instead ofP.

Definition 30. Let Q be a finite subset of a metric space (M,d). A simplexσ = {q1, . . . ,qk} is
weakly witnessed byx ∈ M if d(q, x) ≤ d(p, x) for everyq ∈ {q1, . . . ,qk} andp ∈ Q\ {q1, . . . ,qk}.
The simplexσ is strongly witnessed if, additionally,d(q1, x) = · · · = d(qk, x).

The following fact is proved in [6].

Proposition 2. A simplexσ is strongly witnessed if and only if every subsimplexτ ≤ σ is weakly
witnessed.

We now define the witness complex using the notion of weak witnesses.

Definition 31. Let P be a finite subset of a metric space (M,d). For a subsetQ ⊆ M, consider all
simplices with vertex set inQ that are strongly witnessed by a point inP. The witness complex
W(Q,P) is defined as the collection of all these simplices.

Observe that a simplex which is weakly witnessed may not have all its subsimplices weakly
witnessed (think about an example). This is why the definition above forcesthe condition of
strong witness. A different complex that can be built is by considering all weakly witnessed
simplices and their faces. This has not been proposed in the original definition of [?].

When the metric space is a Euclidean space (R
k,d), we have some connections of the witness

complex to the Dealunay complex. By definition, we know the following:

Fact 2. Let Q be a finite subset of(Rk,d). Then a simplexσ is in the Delaunay triangulation
DelQ if and only ifσ is strongly witnessed by a point inRk.

By combining the above fact and the observation that every simplex in a witness complex is
strongly witnessed, we have the following result which was observed by de Silva [6].

Proposition 3. If P is a finite subset of(Rk,d) and Q⊆ P, thenW(Q,P) ⊆ DelQ.

One important implication of the above observation is that the witness complexes for point
samples in an Euclidean space are embedded in that space.

The concept of the witness complex has a parallel in the concept of the restricted Delaunay
triangulation. When the setP in Proposition 3 is not necessarily a finite subset, but only a subset
of Rk, andQ is a finite point set, what can we say aboutW(Q,P)?

Proposition 4.

1. W(Q,Rk) = Del|Rk Q := DelQ [6].
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2. W(Q,M) = Del|M Q if M ⊆ Rk is a smooth1- or 2-manifold [1].

3. W(Q,P) = Del|M Q where P and Q are sufficiently dense sample of a1-manifold M in
R

2 and the result does not extend to other cases of submanifolds embeddedin Euclidean
spaces [4].

10 Graph induced complex

The witness complex does not capture the topology of a manifold even if the input sample is
dense except for smooth curves in the plane. One can modify them with extrastructures such
as putting weights on the points and changing the metric to weighted distances to tackle this
problem as shown in [2]. But, this becomes clumsy in terms of the ‘practicality’ of a solution. We
study another complex calledgraph induced complex(GIC) introduced by Dey, Fan, and Wang [3]
which also works on the notion of subsampling, but is more powerful in capturing topology and
in some case geometry. The adavantage of GIC over the witness complex canbe attributed to the
fact that GIC is not necessarily a subcomplex of the Delaunay complex andhence contains few
more simplices which aid topology inference. But, for the same reason, it may not embed in the
Euclidean space where its input vertices lie.

Definition 32. Let (P,d) be a metric space whereP is a finite set andG(P) be a graph with vertices
in P. Let Q ⊆ P be a subset whereν : P→ Q be the vertex map given byν(p) = argmin d(p,Q).
The graph induced complexG(G(P),Q) is the simplicial complex containing ak-simplexσ =
{q1, . . . ,qk+1} if and only if there exists a (k + 1)-clique{p1, . . . , pk+1} ⊆ P so thatν(pi) = qi for
eachi ∈ {1,2, . . . , k + 1}. To see that it is indeed a simplicial complex, observe that a subset of a
clique is also a clique.

Figure 10: A graph induced complex shown with bold vertices, edges, anda shaded triangle on
left. The input graph within the shaded triangle is shown on right. The three differently colored
vertices of the input graph (shown inside the shaded triangle on right) cause the shaded traingle
to be in the graph induced complex.

Given a neighborhood graph on a point dataP equipped with a metric, one can build a graph
induced complex on a subsampleQ ⊆ P by throwing in a simplex with a vertex setV ⊆ Q if a set
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of points inP, each being closest to exactly one vertex inV, forms a clique. Figure 10 shows a
graph induced complex for a point data in the plane whered is the Euclidean metric.

Input graph G(P). The input point setP can be a finite sample of a subsetX of an Euclidean
space, such as a manifold or a compact subset. In this case, we will consider the input graphG(P)
to be the neighborhood graphGα(P) := (P,E) where there is an edge{p,q} ∈ E if and only if
‖p − q‖ ≤ α. The intuion is that ifP is a sufficiently dense sample ofX, thenGα(P) captures
the local neighborhoods of the points inX. To emphasize the dependence onα we will use the
notationGα(P,Q) := G(Gα(P),Q).

SubsampleQ. Of course, the ability of capturing the topology of the sampled space after sub-
sampling withQ depends on the quality ofQ. We will quantify this quality with a parameter
δ > 0.

Definition 33. A subsetQ ⊆ P is called aδ-sample of a finite setP if the following condition
holds:

• ∀p ∈ P, there exists aq ∈ Q, so thatd(p,q) ≤ δ.

Q is calledδ-sparse if the following condition holds:

• ∀(q, r) ∈ Q× Q, d(q, r) ≥ δ.

The first condition ensuresQ to be a good sample ofP with respect to the parameterδ and the
second condition enforces that the points inQ cannot be too close relative to the distanceδ.

Metric d. The metricd assumed in the metric space (P,d) will be of two types, (i) the Eu-
clidean metric denoteddE, (ii) the graph metricdG derived from the the input graphG(P) where
dG(p,q) is the shrtest path distance betweenp andq in the graphG(P) assuming its edges have
non-negative weights such as their Euclidean lengths.

When equipped with appropriate metric, the GIC can decipher the topology from data. It
retains the simplicity of the Rips complex as well as the sparsity of the witness complex. It does
not build a Rips complex on the subsample and thus is sparser than the Rips complex with the
same set of vertices. This fact makes a real difference in practice as experiments show.

Figure 11 shows experimental results on two data sets, 40,000 sample points from a Klein
bottle inR4 and 15,000 sample points from the primary circle of natural image data considered
in R25. The graphs connecting any two points withinα = 0.05 unit distance for Klein bottle and
α = 0.6 unit distance for the primary circle were taken as input for the graph induced complexes.
The 2-skeleton of the Rips complexes for theseα parameters have 608,200 and 1,329,672,867
simplices respectively. These sizes are too large to carry out fast computations.

For comparisons, we constructed the graph induced complex, sparsifiedRips complex, and
the witness complex on the same subsample determined by a parameterδ. The parameterδ
is also used in the graph induced complex and the witness complex. The edgesin the Rips
complex built on the samesubsamplewere of lengths at mostα + 2δ. We variedδ and observed
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Figure 11: Comparison results for Klein bottle inR4 (top row) and primary circle inR25 (bottom
row). The estimatedβ1 for three complexes are shown on the left, and their sizes are shown on
log scale on right.

the rank of the one dimensional homology group (β1). As evident from the plots, the graph
induced complex capturedβ1 correctly for a significantly wider range ofδ (left plots) while its
size remained comparable to that of the witness complex (right plots). In some cases, the graph
induced complex could capture the correctβ1 with remarkably small number of simplices. For
example, it hadβ1 = 2 for Klein bottle when there were 278 simplices forδ = 0.7 and 154
simplices forδ = 1.0. In both cases Rips and witness complexes had wrongβ1 while the Rips
complex had a much larger size (loge scale plot) and the witness complex had comparable size.
This illustrates why the graph induced complex can be a better choice than the Rips and witness
complexes.

Constructing a GIC. One may wonder how to efficiently construct the graph induced com-
plexes in practice. Experiments show that the following procedure runs quite efficiently in prac-
tice. It takes advantage of computing nearest neighbors within a range and, more importantly,
computing cliques only in a sparsified graph.

Let the ballB(q, δ) in metricd be called theδ-cover for the pointq. A graph induced complex
Gα(P,Q,d) whereQ is aδ-sparseδ-sample can be built easily by identifyingδ-covers with a rather
standard greedy (farthest point) iterative algorithm. LetQi = {q1, . . . ,qi} be the point set sampled
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so far fromP. We maintain the invariants (i)Qi is δ-sparse and (ii) every pointp ∈ P that are
in the union ofδ-covers

⋃

q∈Qi
B(q, δ) have their closest pointν(p) = argminq∈Qi

d(p,q) in Qi

identified. To augmentQi to Qi+1 = Qi ∪ {qi+1}, we choose a pointqi+1 ∈ P that is outside the
δ-covers

⋃

q∈Qi
B(q, δ). Certainly,qi+1 is at leastδ units away from all points inQi thus satisfying

the first invariant. For the second invariant, we check every pointp in the δ-cover ofqi+1 and
updateν(p) to beqi+1 if its distance toqi+1 is smaller than the distanced(p, ν(p)). At the end, we
obtain a sampleQ ⊆ P whoseδ-covers cover the entire point setP and thus is aδ-sample of (P,d)
which is alsoδ-sparse. Next, we construct the simplices ofGα(P,Q,d). This needs identifying
cliques inGα(P) that have vertices with different closest points inQ. We delete every edgepp′

from Gα(P) whereν(p) = ν(p′). Then, we determine every clique{p1, . . . pk} in the remaining
sparsified graph and include the simplex{ν(p1), . . . , ν(pk)} in Gα(P,Q,d). The main saving here is
that many cliques of the original graph are removed before it is processed for clique computation.
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