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Basics for Reconstruction from Datataken from [1]

Simply stated, the problem we study here is: how to approximate a shape from the co-
ordinates of a given set of points from the shape. The set of points is called a point sample,
or simply asampleof the shape. The specific shape that we will deal with are curves in two
dimensions and surfaces in three dimensions. The problem is motivated by theavailability of
modern scanning devices that can generate a point sample from the surface of a geometric object.
For example, a range scanner can provide the depth values of the sampledpoints on a surface
from which the three dimensional coordinates can be extracted. Advanced hand held laser scan-
ners can scan a machine or a body part to provide a dense sample of the surfaces. A number
of applications in computer aided design, medical imaging, geographic data processing and drug
designs, to name a few, can take advantage of the scanning technology to produce samples and
then compute a digital model of a geometric shape with reconstruction algorithms.Figure 16
shows such an example for a sample on a surface which is approximated by atriangulated surface
interpolating the input points.

The reconstruction algorithms described here produce a piecewise linear approximation of the
sampled curves and surfaces. By approximation we mean that the output captures the topology
and geometry of the sampled shape. This requires some concepts from topology which we already
covered.

Clearly a curve or a surface cannot be approximated from a sample unless it is dense enough
to capture the features of the shape. The notions of features and densesampling are formalized in
Section 18.

All reconstruction algorithms described here use the data structures calledVoronoi diagrams
and their duals calledDelaunay triangulations. The key properties of these data structures are
described in Section 19.

18 Feature size and sampling

We will mainly concentrate on smooth curves inR2 and smooth surfaces inR3 as the sampled
spaces. The notationΣ will be used to denote this generic sampled space throughout. It is suffi-
cient to assume thatΣ is a 1-manifold inR2 and a 2-manifold inR3 for the definitions and results
described in this chapter.

Obviously it is not possible to extract any meaningful information aboutΣ if it is not suffi-
ciently sampled. This means features ofΣ should be represented with sufficiently many sample
points. Figure 17 shows a curve in the plane which is reconstructed from asufficiently dense
sample. But, this brings up the question of defining features. We aim for a measure that can tell
us how complicatedΣ is around each pointx ∈ Σ. A geometric structure called themedial axis
turns out to be useful to define such a measure.

For a setP ⊆ Rk and a pointx ∈ Rk, let d(x,P) denote the Euclidean distance ofx from P;
that is,

d(x,P) = inf
p∈P
{‖p− x‖}.
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Figure 16: (a) A sample of M, (b) a reconstruction, (c) rendered Mmodel.

We will also consider distances called

Definition 43. TheHausdorff distancebetween two setsX,Y ⊆ Rk is given by

max{sup
x∈X

d(x,Y), sup
y∈Y

d(y,X)}.

Roughly speaking, the Hausdorff distance tells how much one set needs to be moved to be iden-
tical with the other set.

18.1 Medial axis

The medial axis of a curve or a surfaceΣ is meant to capture the middle of the shape bounded
by Σ. There are slightly different definitions of the medial axis in the literature. We adopt one of
them and mention the differences with the others.

Assume thatΣ is embedded inRk. A ball B ⊂ Rk is empty if the interior ofB is empty of
points fromΣ. A ball B is maximal if every empty ball that containsB equalsB. Theskeleton S kΣ
of Σ is the set of centers of all maximal balls. LetMo

Σ
be the set of points inRk whose distance
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Figure 17: (a) A curve in the plane, (b) a sample of it, (c) the reconstructed curve.

to Σ is realized by at least two points inΣ. The closure ofMo
Σ

is MΣ, that is,MΣ = Cl Mo
Σ
. The

following inclusions hold:
Mo
Σ ⊆ S kΣ ⊆ MΣ.

There are examples where the inclusions are strict. For example, considerthe curve in Fig-
ure 18(a). The two end pointsu and v are not inMo

Σ
though they are inS kΣ. These are the

centers of the curvature balls that meet the curve only at a single point. Consider the curve in
Figure 18(b):

y =

{

0 if −1 ≤ x ≤ 0
x3 sin 1

x if 0 < x ≤ 1.

The two endpoints (−1,0) and (1, sin 1) can be connected with a smooth curve so that the
resulting curveΣ is closed, that is, without any boundary point, see Figure 18(b). The set Mo

Σ
has

infinitely many branches, namely one for each oscillation of they = x3 sin 1
x curve. The closure

of Mo
Σ

has a vertical segment atx = 0 which is not part ofS kΣ and thusS kΣ is a strict subset of
MΣ. However, this example is a bit pathological since it is known that a large class of curves and
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Figure 18: (a) The two endpoints on the middle segment are not inMo
Σ
, but are inS kΣ andMΣ, (b)

right half of the bottom curve isy = x3 sin 1
x. S kΣ does not include the segment inMΣ at x = 0.

surfaces haveS kΣ = MΣ. All curves and surfaces that are at leastC2-smooth3 haveS kΣ = MΣ.
The example we considered in Figure 18(b) is aC1-smooth curve which is tangent continuous but
not curvature continuous.

In our case we will consider only the class of curves and surfaces where S kΣ = MΣ and thus
define themedial axisof Σ asMΣ. For simplicity we writeM in place ofMΣ.

Definition 44. The medial axisM of a curve (surface)Σ ⊂ Rk is the closure of the set of points
in Rk that have at least two closest points inΣ.

Each point ofM is the center of a ball that meetsΣ only tangentially. We call each ballBx,r ,
x ∈ M, amedial ballwherer = d(x,Σ). If a medial ballBx,r is tangent toΣ at p ∈ Σ, we sayBx,r

is a medial ballat p.
Figure 19(a) shows a subset of the medial axis of a curve. Notice that themedial axis may

have a branching point such asv and boundary points such asu andw. Also, the medial axis need
not be connected. For example, the part of the medial axis in the region bounded by the curve may
be disjoint from the rest, see Figure 19(a). In fact, ifΣ is C2-smooth, the two parts of the medial
axis are indeed disjoint. The subset of the medial axis residing in the unbounded component of
R

2 \ Σ is called theoutermedial axis. The rest is called theinnermedial axis.
It follows from the definition that if one grows a ball around a point on the medial axis, it will

meetΣ for the first time tangentially in one or more points, see Figure 19(b). Conversely, for a
point x ∈ Σ one can start growing a ball keeping it tangent toΣ at x until it hits another point
y ∈ Σ or becomes maximally empty. At this moment the ball is medial and the segments joining
the centerm to x andy are normal toΣ at x andy respectively, see Figure 19.

If we move along the medial axis and consider the medial balls as we move, the radius of
the medial balls increases or decreases accordingly to maintain the tangencywith Σ. At the
boundaries it coincides with the radius of thecurvature ballwhere all tangent points merge into a
single one. See Figure 19(b).

It will be useful for our proofs later to know the following property of balls intersecting the
sampled spaceΣ. The proof of the lemma assumes thatΣ is either a smooth curve or a smooth
surface whose definitions are given in later chapters. Also, the proof uses some concepts from
differential topology (critical point theory). The readers may skip the proofat this point if they
are not familiar with these concepts.

3see the definition ofCi-smoothness for curves in the next chapter



36 Notes by Tamal K. Dey, OSU

u

v

w

u
v

w

m

p

q
y

x

(a) (b)

Figure 19: (a) A subset of the medial axis of the curve in Figure 17, (b) medial ball centered atv
touches the curve in three points, whereas the ones with centersu andw touch it in only one point
and coincide with the curvature ball.

We say that a topological space is ak-ball or ak-sphere if it is homeomorphic toBk or Sk

respectively.

Lemma 11(Feature Ball.). If a d-ball B= Bc,r intersects a k-manifoldΣ ⊂ Rd at more than one
point where either (i) B∩ Σ is not a k-ball or (ii)Bd (B∩ Σ) is not a(k− 1)-sphere, then a medial
axis point is in B.

P. First we show that ifB intersectsΣ at more than one point andB is tangent toΣ at some
point,B contains a medial axis point. Letx be the point of this tangency. ShrinkB further keeping
it tangent toΣ at x. This means the center ofB moves towardsx along a normal direction atx. We
stop whenB meetsΣ only tangentially. Observe that, sinceB∩ Σ , x to start with, this happens
eventually whenB is maximally empty. At this momentB becomes a medial ball and its center is
a medial axis point which must lie in the original ballB, refer to Figure 20.

Now consider when condition (ii) holds. Define a functionh: B∩ Σ → R whereh(x) is the
distance ofx from the centerc of B. The functionh is a scalar function defined over a smooth
manifold. At the critical points ofh where its gradient vanishes the ballB becomes tangent toΣ
when shrunk appropriately.

Let m be a point inΣ so thath(m) is a global minimum. If there is more than one such global
minimum, the ballB meetsΣ only tangentially at more than one point when radially shrunk to a
radius ofh(m). Then,B becomes a medial ball which implies that the originalB contains a medial
axis point, namely its center. So, assume that there is only global minimummof h.

We claim that the functionh has a critical pointp in Int (B∩Σ) other thanmwhereB becomes
tangent toΣ. If not, as we shrinkB centrally the level set Bd (B∩ Σ) does not change topology
until it reaches the minimumm when it vanishes. This follows from the Morse theory of smooth
functions over smooth manifolds. Sincem is a minimum, there is a small enoughδ > 0 so that
Bc,h(m)+δ∩Σ is ak-ball. The boundary of thisk-ball given by (BdBc,h(m)+δ)∩Σ should be a (k−1)-
sphere. This contradicts the fact that Bd (B∩ Σ) is not a (k − 1)-sphere and remains that way till
the end. Therefore, there is a critical point, sayy , m of h in Int (B∩ Σ). At this pointy, the ball
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Figure 20: (a) The ballB intersecting the upper right lobe is shrunk till it becomes tangent to
another point other thanx. The new ballB′ intersects the medial axis. (b) The ballB intersecting
the lower lobe is shrunk radially to the ballB′ that is tangent to the curve aty and also intersects
the curve in other points.B′ can further be shrunk till it meets the curve only tangentially.

Bc,‖y−c‖ becomes tangent toΣ, see also Figure 20. Now we can apply our previous argument to
claim thatB contains a medial axis point.

Next, consider when condition (i) holds. If condition (ii) also holds, we havethe previous
argument. So, assume that Bd (B ∩ Σ) is a (k − 1)-sphere andB ∩ Σ is not ak-ball. Again, we
claim that the functionh as defined earlier has a critical point other thanm. If not, consider the
subset ofΣ swept byB while shrinking it till it meetsΣ only atm. This subset is homeomorphic
to a space which is formed by taking the product ofSk−1 with the closed unit intervalI in R and
then collapsing one of its boundary to a single point, i.e. the quotient space (S

k−1× I )/(Sk−1×{0}).
This space is ak-ball which contradicts the fact thatB∩Σ is not ak-ball to begin with. Therefore,
asB is continually shrunk, it becomes tangent toΣ at a pointy , m. Apply the previous argument
to claim thatB has a medial axis point.

¤

¤

Figure 21 illustrates the different cases of Feature Ball Lemma inR2.

18.2 Local feature size

The medial axisM with the distance toΣ at each pointm ∈ M captures the shape ofΣ. In fact,
Σ is the boundary of the union of all medial balls centering points of the inner (or outer) medial
axis. So, as a first attempt to capture local feature size one may define the following two functions
onΣ.

ρi , ρo : Σ → R whereρi(x), ρo(x) are the radii of the inner and outer medial balls
respectively both of which are tangent toΣ at x.
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Figure 21: (a)B∩Σ is not a 1-ball, (b)B∩Σ is a 1-ball, but BdB∩Σ is not a 0-sphere, (c) BdB∩Σ
is a 0-sphere, butB∩ Σ is not a 1-ball.

The functionsρi andρo are continuous for a large class of curves and surfaces. However,we
need a stronger form of continuity on the local feature size function to carry out the proofs. This
property, called theLipschitz property, stipulates that the difference in the function values at two
points is bounded by a constant times the distance between the points. Keepingthis in mind we
define the following.

Definition 45. The local feature size f(x) at a pointx ∈ Σ is the distance ofx ∈ Σ to the medial
axisM, that is, f (x) = d(x,M).

Figure 22 illustrates how the local feature size can vary over a shape. Asone can observe, the
local feature sizes at the leg and tail are much smaller than the local feature sizes at the middle
in accordance with our intuitive notion of features. For example,f (b) is much smaller thanf (a).
Local feature size can be determined either by the inner or outer medial axis. For example,f (c)
is determined by the outer medial axis whereasf (d) is determined by the inner one.

It follows from the definitions thatf (x) ≤ min{ρi(x), ρo(x)}. In Figure 22, f (d) is much
smaller than the radius of the drawn medial ball atd. Lipschitz property of the local feature size
function f follows easily from the definition.

Lemma 12(Lipschitz Continuity.). f (x) ≤ f (y) + ‖x− y‖ for any two points x and y inΣ.

P. Let mbe a point on the medial axis so thatf (y) = ‖y−m‖. By triangular inequality,

‖x−m‖ ≤ ‖y−m‖ + ‖x− y‖, and

f (x) ≤ ‖x−m‖ ≤ f (y) + ‖x− y‖.
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Figure 22: Local feature sizesf (a), f (b), f (c), and f (d) are the lengths of the corresponding
dotted line segments.

18.3 Sampling

A sample Pof Σ is a set of points fromΣ. Once we have quantized the feature size, we would
require the sample respect the features, i.e., we require more sample points where the local feature
size is small compared to the regions where it is not.

Definition 46. A sampleP of Σ is anε-sample if each pointx ∈ Σ has a sample pointp ∈ P so
that‖x− p‖ ≤ ε f (x).

The value ofε has to be smaller than 1 to have a dense sample. In fact, practical experiments
suggest thatε < 0.4 constitutes a dense sample for reconstructingΣ from P. An ε-sample is also
anε′-sample for anyε′ > ε. The definition ofε-sample allows a sample to be arbitrarily dense
anywhere onΣ. It only puts a lower bound on the density. Figure 23 illustrates a sample of a
circle which is a 0.2-sample. By definition, it is also a 0.3-sample of the same.

A useful application of the Lipschitz Continuity Lemma 12 is that the distance between two
points expressed in terms of the local feature size of one can be expressed in terms of that of the
other.

Lemma 13(Feature Translation.). For any two points x, y in Σ with ‖x− y‖ ≤ ε f (x) andε < 1 we
have

(i) f (x) ≤ 1
1−ε f (y) and
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r

Figure 23: Local feature size at any point on the circle is equal to the radius r. Each point on the
circle has a sample point within 0.2r distance.

(ii) ‖x− y‖ ≤ ε
1−ε f (y).

P. We have

f (x) ≤ f (y) + ‖x− y‖

or, f (x) ≤ f (y) + ε f (x).

Forε < 1 the above inequality gives

f (x) ≤
1

1− ε
f (y) proving (i).

Plug the above inequality in‖x− y‖ ≤ ε f (x) to obtain (ii). ¤

¤

Uniform sampling. The definition ofε-sample allows non-uniform sampling overΣ. A globally
uniformsampling is more restrictive. It means that the sample is equally dense everywhere. Local
feature size does not play a role in such sampling. There could be variousdefinitions of globally
uniform samples. We will say a sampleP ⊂ Σ is globally δ-uniform if any point x ∈ Σ has a
point in P within δ > 0 distance. In between globally uniform and non-uniform samplings, there
is another one called thelocally uniform sampling. This sampling respects feature sizes and is
uniform only locally. We sayP ⊂ Σ is locally (ε, δ)-uniformfor δ > 1 > ε > 0 if each pointx ∈ Σ
has a point inP within ε f (x) distance and no pointp ∈ P has another pointq ∈ P within ε

δ
f (p)

distance. This definition does not allow two points to be arbitrarily close which may become a
severe restriction for sampling in practice. So, there is an alternate definitionof local uniformity.
A sampleP is locally (ε, κ)-uniform for someε > 0 andκ ≥ 1 if each pointx ∈ Σ has at least one
and no more thanκ points withinε f (x) distance.

Õ(ε) notation Our analysis for different algorithms obviously involve the sampling parameter
ε. To ease these analyses, sometimes we resort toÕ notation which provides the asymptotic
dependences onε. A value isÕ(ε) if there exist two constantsε0 > 0 andc > 0 so that the value
is less thancε for any positiveε ≤ ε0. Notice thatÕ notation is slightly different from the well
known big-O notation since the latter would requireε greater than or equal toε0.
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19 Voronoi diagram and Delaunay triangulation

Voronoi diagrams and Delaunay triangulations are important geometric data structures that are
built on the notion of ‘nearness’. Many differential properties of curves and surfaces are defined
on local neighborhoods. Voronoi diagrams and their duals, Delaunay triangulations, provide a
tool to approximate these neighborhoods in the discrete domain. They are defined for a point set
in any Euclidean space. We define them in two dimensions and mention the extensions to three
dimensions since the curve and surface reconstruction algorithms as dealthere are concerned with
these two Euclidean spaces. Before the definitions we state a non-degeneracy condition for the
point setP defining the Voronoi and Delaunay diagrams. This non-degeneracy condition not only
makes the definitions less complicated but also makes the algorithms avoid specialcases.

Definition 47. A point setP ⊂ Rk is non-degenerateif (i) the affine hull of anyℓ points fromP
with 1 ≤ ℓ ≤ k is homeomorphic toRℓ−1 and (ii) nok+ 2 points are co-spherical.

19.1 Two dimensions

Let P be a set of non-degenerate points in the planeR2.

Voronoi diagrams. The Voronoi cellVp for each pointp ∈ P is given as

Vp = {x ∈ R
2 |d(x,P) = ‖x− p‖}.

In words,Vp is the set of all points in the plane that have no other point inP closer to it thanp. For
any two pointsp,q the set of points closer top thanq are demarked by the perpendicular bisector
of the segmentpq. This means the Voronoi cellVp is the intersection of the closed halfplanes
determined by the perpendicular bisectors betweenp and each other pointq ∈ P. An implication
of this observation is that each Voronoi cell is a convex polygon since theintersection of convex
sets remains convex.

Voronoi cells haveVoronoi facesof different dimensions. A Voronoi face of dimensionk is
the intersection of 3− k Voronoi cells. This means ak-dimensional Voronoi face fork ≤ 2 is the
set of all points that are equidistant from 3− k points inP. A zero dimensional Voronoi face,
calledVoronoi vertexis equidistant from three points inP, whereas an one dimensional Voronoi
face, calledVoronoi edgecontains points that are equidistant from two points inP. A Voronoi cell
is a two dimensional Voronoi face.

Definition 48. The Voronoi diagram VorP of P is the cell complex formed by Voronoi faces.

Figure 24(a) shows a Voronoi diagram of a point set in the plane whereu and v are two
Voronoi vertices anduv is a Voronoi edge.

Some of the Voronoi cells may be unbounded with unbounded edges. It is astraightforward
consequence of the definition that a Voronoi cellVp is unbounded if and only ifp is on the
boundary of the convex hull ofP. In Figure 24(a)Vp andVq are unbounded andp andq are on
the convex hull boundary.
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Figure 24: (a) The Voronoi diagram and (b) the Delaunay triangulation of a point set in the plane.

Delaunay triangulations. There is adual structure to the Voronoi diagram VorP, called the
Delaunay triangulation.

Definition 49. The Delaunay triangulation ofP is a simplicial complex

DelP = {σ = conv{T} |
⋂

p∈T⊆P

Vp , ∅}.

In words,k + 1 points inP form a Delaunayk-simplex in DelP if their Voronoi cells have
nonempty intersection. We know thatk + 1 Voronoi cells meet in a (2− k)-dimensional Voronoi
face. So, eachk-simplex in DelP is dual to a (2− k)-dimensional Voronoi face. Thus, each
Delaunay trianglepqr in DelP is dual to a Voronoi vertex whereVp, Vq, andVr meet, each
Delaunay edgepq is dual to a Voronoi edge shared by Voronoi cellsVp andVq, and each vertexp
is dual to its corresponding Voronoi cellVp. In Figure 24(b), the Delaunay trianglepqr is dual to
the Voronoi vertexv and the Delaunay edgepr is dual to the Voronoi edgeuv. In general, whenµ
is a dual Voronoi face of a Delaunay simplexσ we sayµ = dualσ and converselyσ = dualµ.

A circumscribing ballof a simplexσ is a ball whose boundary contains the vertices of the
simplex. The smallest circumscribing ball ofσ is called itsdiametricball. A triangle in the plane
has only one circumscribing ball, namely the diametric one. However, an edgehas infinitely many
circumscribing balls among which the diametric one is unique, namely the one with thecenter on
the edge.

A dual Voronoi vertex of a Delaunay triangle is equidistant from its three vertices. This
means that the center of the circumscribing ball of a Delaunay triangle is the dual Voronoi vertex.
It implies that no point fromP can lie in the interior of the circumscribing ball of a Delaunay
triangle. These balls are calledDelaunay. A ball is emptyif its interior does not contain any point
from P. Clearly, the Delaunay balls areempty. The converse also holds.

Property 1 (Triangle emptiness.). A triangle is in the Delaunay triangulation if and only if its
circumscribing ball is empty.

The Triangle Emptiness Property of Delaunay triangles also implies a similar emptiness for
Delaunay edges. Clearly, each Delaunay edge has an empty circumscribing ball passing through
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its endpoints. It turns out that the converse is also true, that is, any edgepq with an empty
circumscribing ball must also be in the Delaunay triangulation. To see this, grow the empty ball
of pq always keepingp,q on its boundary. If it never meets any other point fromP, the edgepq
is on the boundary of conv{P} and is in the Delaunay triangulation sinceVp andVq has to share
an edge extending to infinity. Otherwise, when it meets a third point, sayr from P, we have an
empty circumscribing ball passing throughp, q, andr. By the Triangle Emptiness Propertypqr
must be in the Delaunay triangulation and hence the edgepq.

Property 2 (Edge emptiness.). An edge is in the Delaunay triangulation if and only if the edge
has an empty circumscribing ball.

The Delaunay triangulation form a planar graph since no two Delaunay edges intersect in
their interiors. It follows from the property of planar graphs that the number of Delaunay edges
is at most 3n− 6 for a set ofn points. The number of Delaunay triangles is at most 2n− 4. This
means that the dual Voronoi diagram also has at most 3n− 6 Voronoi edges and 2n− 4 Voronoi
vertices. The Voronoi diagram and the Delaunay triangulation of a set ofn points in the plane can
be computed inO(n logn) time andO(n) space.

Restricted Voronoi diagrams. When the input point setP is a sample of a curve or a surface
Σ, the Voronoi diagram VorP imposes a structure onΣ. It turns out that this diagram plays an
important role in reconstructingΣ from P. Formally, a restricted Voronoi cellVp|Σ is defined as
the intersection of the Voronoi cellVp in Vor P with Σ, i.e.,

Vp|Σ = Vp ∩ Σ wherep ∈ P.

r

qp

r

qp

(a) (b)

Figure 25: (a) Restricted Voronoi diagram for a point set on a curve,(b) the corresponding re-
stricted Delaunay triangulation.

Similar to the Voronoi faces, we can definerestricted Voronoi facesas the intersection of
the restricted Voronoi cells. They can also be viewed as the intersection ofVoronoi faces with
Σ. In Figure 25(a) the white circles represent restricted Voronoi facesof dimension zero. The
curve segments between them are restricted Voronoi faces of dimension one which are restricted
Voronoi cells in this case. Notice that the restricted Voronoi cellVp|Σ in the figure consists of two
curve segments whereasVr |Σ consists of a single curve segment.

Definition 50. The restricted Voronoi diagram Vor|Σ P of P with respect toΣ is the collection of
all restricted Voronoi faces.
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Restricted Delaunay triangulations. As with Voronoi diagrams we can define a simplicial
complex dual to a restricted Voronoi diagram VorP|Σ.

Definition 51. The restricted Delaunay triangulation ofP with respect toΣ is a subcomplex
DelP|Σ of the Delaunay complex DelP where a Delaunay simplexσ ∈ DelP|Σ if and only if the
dual Voronoi face ofσ intersectsΣ.

Figure 25(b) shows the restricted Delaunay triangulation for the restrictedVoronoi diagram in
(a). The vertexp is connected toq andr in the restricted Delaunay triangulation sinceVp|Σ meets
bothVq|Σ andVr |Σ. However, the trianglepqr is not in the triangulation sinceVp|Σ, Vq|Σ andVr |Σ

do not meet at a point.

19.2 Three dimensions

We chose the plane to explain the concepts of the Voronoi diagrams and the Delaunay triangu-
lations in the previous subsection. However, these concepts extend to arbitrary dimensions. We
will mention these extensions for three dimensions which will be important for later expositions.

Voronoi cells of a point setP in R3 are three dimensional convex polytopes some of which
are unbounded. There are four types of Voronoi faces; Voronoivertices, Voronoi edges, Voronoi
facets, and Voronoi cells in increasing order of dimension starting with zero and ending with
three. Four Voronoi cells meet at a Voronoi vertex which is equidistant from four points inP.
Three Voronoi cells meet at a Voronoi edge, and two Voronoi cells meetat a Voronoi facet.

The Delaunay triangulation ofP contains four types of simplices dual to each of the four types
of Voronoi faces. The vertices are dual to the Voronoi cells, the Delaunay edges are dual to the
Voronoi facets, the Delaunay triangles are dual to the Voronoi edges,and the Delaunay tetrahedra
are dual to the Voronoi vertices. The circumscribing ball of each tetrahedron is empty. Conversely,
any tetrahedron with empty circumscribing ball is in the Delaunay triangulation. Further, each
Delaunay triangle and edge has an empty circumscribing ball. Conversely, an edge or a triangle
belongs to the Delaunay triangulation if there exists an empty ball circumscribingit.

The number of edges, triangles, and tetrahedra in the Delaunay triangulation of a set ofn
points in three dimensions can beO(n2) in the worst case. By duality the Voronoi diagram can
also haveO(n2) Voronoi faces. Both of the diagrams can be computed inO(n2) time and space.

We can define the restricted Voronoi diagram and its dual restricted Delaunay triangulation
for a point sample on a surface inR3 in the same way as we did for a curve inR2. Figure 26 shows
the restricted Voronoi diagram and its dual restricted Delaunay triangulation for a set of points on
a surface. The trianglepqr is in the restricted Delaunay triangulation sinceVp|Σ, Vq|Σ, andVr |Σ

meet at a common pointv.

Exercises

1. Construct a triangulation ofS2 and verify thatv − e+ f = 2 wherev is the number of
vertices,e is the number of edges, andf is the number of triangles. Prove that the number
v− e+ f (Euler characteristic) is always 2 for any triangulation ofS2.

2. Let p be a vertex in DelP in three dimensions. Show that a pointx ∈ Vp if and only if
‖p− x‖ ≤ ‖q− x‖ for each vertexq wherepq is a Delaunay edge.
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Figure 26: (a) The restricted Voronoi diagram and (b) the restricted Delaunay triangulation for a
sample on a surface.

3. Show that for any Delaunay simplexσ and its dual Voronoi faceµ = dualσ, the affine hulls
aff µ and aff σ intersect orthogonally.

4. An edgee in a triangulationT(P) of a point setP ⊂ R2 is calledlocally Delaunayif e is
a convex hull edge or the circumscribing ball of one triangle incident toe does not contain
the other triangle incident toe completely inside. Show thatT(P) = DelP if and only if
each edge ofT(P) is locally Delaunay.

5. Given a point setP ⊂ R2, an edge connecting two pointsp,q in P is called a nearest
neighbor edge if no point inP is closer toq thanp is. Show thatpq is a Delaunay edge.

6. Given a point setP ⊂ R2, an edge connecting two points inP is calledGabriel if its
diametric ball is empty. The Gabriel graph forP is the graph induced by all Gabriel edges.
Give anO(n logn) algorithm to compute the Gabriel graph forP whereP hasn points.

7. Let pq be a Delaunay edge in DelP for a point setP ⊂ R3. Show that ifpq does not
intersect its dual Voronoi facetg = dualpq, the line ofpqdoes not intersectg either.

8. Forα > 0, a function f : Σ → R is calledα-Lipschitz if f (x) ≤ f (y) + α‖x − y‖ for any
two pointsx, y in Σ. Given an arbitrary functionf : Σ→ R, one can make itα-Lipschitz by
considering the functions

fm(x) = min
p∈Σ
{ f (p) + α‖x− p‖},

fM(x) = max
p∈Σ
{ f (p) − α‖x− p‖}.

Show that bothfm and fM areα-Lipschitz.

9. Consider the functionsρi andρo as in Section 18.2. Show that these functions may be
continuous but not 1-Lipschitz.



46 Notes by Tamal K. Dey, OSU

References

[1] T. K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.
Cambridge U. Press, 2007.


