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Basics for Reconstruction from Datasomp

Simply stated, the problem we study here is: how to approximate a shape feogoth
ordinates of a given set of points from the shape. The set of pointdléxl G point sample,
or simply asampleof the shape. The specific shape that we will deal with are curves in two
dimensions and surfaces in three dimensions. The problem is motivated hyattbility of
modern scanning devices that can generate a point sample from theesafreageometric object.
For example, a range scanner can provide the depth values of the sguopiedon a surface
from which the three dimensional coordinates can be extracted. Advéracel held laser scan-
ners can scan a machine or a body part to provide a dense sample offde@su A number
of applications in computer aided design, medical imaging, geographic dategsing and drug
designs, to name a few, can take advantage of the scanning technolagyltce samples and
then compute a digital model of a geometric shape with reconstruction algoritRigsre 16
shows such an example for a sample on a surface which is approximatedangalated surface
interpolating the input points.

The reconstruction algorithms described here produce a piecewise |ppraxanation of the
sampled curves and surfaces. By approximation we mean that the ouppurtesathe topology
and geometry of the sampled shape. This requires some concepts frdagtopbich we already
covered.

Clearly a curve or a surface cannot be approximated from a samples utnledense enough
to capture the features of the shape. The notions of features andsdengkng are formalized in
Section 18.

All reconstruction algorithms described here use the data structures Yaltgabi diagrams
and their duals calle®elaunay triangulations The key properties of these data structures are
described in Section 19.

18 Feature size and sampling

We will mainly concentrate on smooth curvesRA and smooth surfaces ik® as the sampled
spaces. The notatianhwill be used to denote this generic sampled space throughout. Iffis su
cient to assume thatis a 1-manifold inR? and a 2-manifold irR3 for the definitions and results
described in this chapter.

Obviously it is not possible to extract any meaningful information akbiitit is not sufi-
ciently sampled. This means featureszo$hould be represented withfEgiently many sample
points. Figure 17 shows a curve in the plane which is reconstructed freuficiently dense
sample. But, this brings up the question of defining features. We aim for sureethat can tell
us how complicated is around each point € . A geometric structure called theedial axis
turns out to be useful to define such a measure.

For a setP ¢ R¥ and a pointx € R, let d(x, P) denote the Euclidean distancefrom P;
that is,

d(x,P) = {lp = I}

inf
peP
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Figure 16: (a) A sample of MNequiN, (b) a reconstruction, (¢) renderedsMequin model.

We will also consider distances called

Definition 43. TheHausdoyf distancebetween two setX, Y ¢ R¥ is given by

max{supd(x, Y), supd(y, X)}.
xeX yeY

Roughly speaking, the Hausdbdistance tells how much one set needs to be moved to be iden-
tical with the other set.

18.1 Medial axis

The medial axis of a curve or a surfakds meant to capture the middle of the shape bounded
by £. There are slightly dierent definitions of the medial axis in the literature. We adopt one of
them and mention the fllerences with the others.

Assume that is embedded iR, A ball B c R¥is empty if the interior ofB is empty of
points fromZ. A ball B is maximal if every empty ball that contaiBsequalsB. Theskeleton Sk
of X is the set of centers of all maximal balls. L be the set of points itk whose distance
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Figure 17: (a) A curve in the plane, (b) a sample of it, (c) the reconstiuxtere.

to X is realized by at least two points 1 The closure oM? is Ms, that is,Ms = CIMJ. The
following inclusions hold:

Mg C Sk C Ms.

There are examples where the inclusions are strict. For example, cotisdairve in Fig-
ure 18(a). The two end pointsandv are not inMg though they are irSk. These are the
centers of the curvature balls that meet the curve only at a single poinsideorthe curve in
Figure 18(b):

3 0 if-1<x<0
y—{ x3sinl if0O<x<1

The two endpoints<1,0) and (1sin1) can be connected with a smooth curve so that the
resulting curveX is closed, that is, without any boundary point, see Figure 18(b). Thdghas
infinitely many branches, namely one for each oscillation ofytkex® sin;l( curve. The closure
of M2 has a vertical segment &t= 0 which is not part o6 k and thusSk is a strict subset of
Ms. However, this example is a bit pathological since it is known that a large ofasurves and
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Figure 18: (a) The two endpoints on the middle segment are d€jrbut are inS k. andMs, (b)
right half of the bottom curve ig = x° sin%. Sl does not include the segmentMy, atx = 0.

surfaces havS ke = Ms. All curves and surfaces that are at le@$tsmootif haveSlk = Ms.
The example we considered in Figure 18(b) B'asmooth curve which is tangent continuous but
not curvature continuous.

In our case we will consider only the class of curves and surfacesae = My and thus
define themedial axisof X asMs. For simplicity we writeM in place ofMs.

Definition 44. The medial axisVl of a curve (surfaceY c RX is the closure of the set of points
in RX that have at least two closest pointsin

Each point ofM is the center of a ball that meeisonly tangentially. We call each b,
x € M, amedial ballwherer = d(x, X). If a medial ballBy; is tangent t& at p € X, we sayBy;
is a medial balhat p.

Figure 19(a) shows a subset of the medial axis of a curve. Notice thatedel axis may
have a branching point suchyaand boundary points such asndw. Also, the medial axis need
not be connected. For example, the part of the medial axis in the regioé&dby the curve may
be disjoint from the rest, see Figure 19(a). In fack is C2-smooth, the two parts of the medial
axis are indeed disjoint. The subset of the medial axis residing in the udedwomponent of
R2\ T is called theoutermedial axis. The rest is called tiener medial axis.

It follows from the definition that if one grows a ball around a point on theiedeaxis, it will
meetX for the first time tangentially in one or more points, see Figure 19(b). Ceeleirfor a
point X € ¥ one can start growing a ball keeping it tangenZtat x until it hits another point
y € X or becomes maximally empty. At this moment the ball is medial and the segments joining
the centemto x andy are normal t& at x andy respectively, see Figure 19.

If we move along the medial axis and consider the medial balls as we move,dibs od
the medial balls increases or decreases accordingly to maintain the tangémdy. At the
boundaries it coincides with the radius of twrvature ballwhere all tangent points merge into a
single one. See Figure 19(b).

It will be useful for our proofs later to know the following property ofllsantersecting the
sampled spacE. The proof of the lemma assumes tRais either a smooth curve or a smooth
surface whose definitions are given in later chapters. Also, the psas some concepts from
differential topology (critical point theory). The readers may skip the pabdiis point if they
are not familiar with these concepts.

3see the definition of’-smoothness for curves in the next chapter
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Figure 19: (a) A subset of the medial axis of the curve in Figure 17, (ljahball centered at
touches the curve in three points, whereas the ones with cerdeidy touch it in only one point
and coincide with the curvature ball.

We say that a topological space isk#all or ak-sphere if it is homeomorphic t8¥ or SK
respectively.

Lemma 11 (Feature Ball.) If a d-ball B = By, intersects a k-manifold ¢ RY at more than one
point where either (i) By X is not a k-ball or (ii)Bd (BN X) is not a(k — 1)-sphere, then a medial
axis pointisin B.

Proor. First we show that iB intersects at more than one point ariélis tangent t& at some
point, B contains a medial axis point. Lete the point of this tangency. Shrilfurther keeping

it tangent tax atx. This means the center Bfmoves towards along a normal direction at We
stop whenB meetsX only tangentially. Observe that, sinBan X # x to start with, this happens
eventually wherB is maximally empty. At this momer® becomes a medial ball and its center is
a medial axis point which must lie in the original b8l refer to Figure 20.

Now consider when condition (ii) holds. Define a functionB N X — R whereh(X) is the
distance ofx from the centec of B. The functionh is a scalar function defined over a smooth
manifold. At the critical points oh where its gradient vanishes the bBlbecomes tangent ©
when shrunk appropriately.

Let mbe a point inz so thath(m) is a global minimum. If there is more than one such global
minimum, the ballB meetsZ only tangentially at more than one point when radially shrunk to a
radius ofh(m). Then,B becomes a medial ball which implies that the origiBalontains a medial
axis point, namely its center. So, assume that there is only global minimafn.

We claim that the functioh has a critical poinp in Int (BN X) other tharmwhereB becomes
tangent tax. If not, as we shrinkB centrally the level set BAB N X) does not change topology
until it reaches the minimurmm when it vanishes. This follows from the Morse theory of smooth
functions over smooth manifolds. Sinoeis a minimum, there is a small enough> 0 so that
Behm)+s N2 is ak-ball. The boundary of thik-ball given by (BdBc hm)+s) N Z should be ak - 1)-
sphere. This contradicts the fact that Bd{X) is not a k — 1)-sphere and remains that way till
the end. Therefore, there is a critical point, gay mof hin Int (B N X). At this pointy, the ball
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Figure 20: (a) The balB intersecting the upper right lobe is shrunk till it becomes tangent to
another point other thax The new balB’ intersects the medial axis. (b) The bBlintersecting

the lower lobe is shrunk radially to the b&! that is tangent to the curve ypaind also intersects
the curve in other point’ can further be shrunk till it meets the curve only tangentially.

B,y becomes tangent o, see also Figure 20. Now we can apply our previous argument to
claim thatB contains a medial axis point.

Next, consider when condition (i) holds. If condition (ii) also holds, we hidneprevious
argument. So, assume that B X) is a k — 1)-sphere andB N X is not ak-ball. Again, we
claim that the functiorn as defined earlier has a critical point other tmanlf not, consider the
subset o swept byB while shrinking it till it meetsX only atm. This subset is homeomorphic
to a space which is formed by taking the producsbf! with the closed unit interval in R and
then collapsing one of its boundary to a single point, i.e. the quotient spéde«()/(S% 1 x {0}).
This space is &-ball which contradicts the fact th&n X is not ak-ball to begin with. Therefore,
asBis continually shrunk, it becomes tangenttat a pointy # m. Apply the previous argument
to claim thatB has a medial axis point.

m]
m|
Figure 21 illustrates the flerent cases of Feature Ball Lemm&Rif

18.2 Local feature size

The medial axigM with the distance t& at each pointn € M captures the shape Bf In fact,
¥ is the boundary of the union of all medial balls centering points of the inmmesuier) medial
axis. So, as a first attempt to capture local feature size one may defireddtingrfg two functions
onx.

i, po . T — R wherepj(X), po(X) are the radii of the inner and outer medial balls
respectively both of which are tangentiat x.
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Figure 21: (aBNZXis nota 1-ball, (bBNXis a 1-ball, but BBNZX is not a 0-sphere, (c) BANX
is a 0-sphere, buB N X is not a 1-ball.

The functiongo; andp, are continuous for a large class of curves and surfaces. Howeser,
need a stronger form of continuity on the local feature size function ty cart the proofs. This
property, called thé&ipschitz propertystipulates that the fference in the function values at two
points is bounded by a constant times the distance between the points. Kéegimgnind we
define the following.

Definition 45. Thelocal feature size (x) at a pointx € X is the distance ok € X to the medial
axisM, that is, f(x) = d(x, M).

Figure 22 illustrates how the local feature size can vary over a shapmedsan observe, the
local feature sizes at the leg and tail are much smaller than the local feeteseas the middle
in accordance with our intuitive notion of features. For examp(b) is much smaller tharfi(a).
Local feature size can be determined either by the inner or outer medialFaxigxample f(c)
is determined by the outer medial axis wheré@d) is determined by the inner one.

It follows from the definitions thatf (x) < min{p;i(X), po(X)}. In Figure 22,f(d) is much
smaller than the radius of the drawn medial balllat.ipschitz property of the local feature size
function f follows easily from the definition.

Lemma 12 (Lipschitz Continuity.) f(x) < f(y) + ||x - y|| for any two points x and y iB.
Proor. Letmbe a point on the medial axis so thid) = |ly — ml||. By triangular inequality,

X =il < [ly - mif| +[[x - yil, and
fO) < lix=mil < f(y) +lIx =yl
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Figure 22: Local feature sizeHa), f(b), f(c), and f(d) are the lengths of the corresponding
dotted line segments.

18.3 Sampling

A sample Pof X is a set of points fron. Once we have quantized the feature size, we would
require the sample respect the features, i.e., we require more sample geenésthe local feature
size is small compared to the regions where it is not.

Definition 46. A sampleP of X is ane-sample if each point € ¥ has a sample poini € P so
that|lx — pl| < ef(x).

The value ofe has to be smaller than 1 to have a dense sample. In fact, practical experiments
suggest that < 0.4 constitutes a dense sample for reconstrudifiggm P. An e-sample is also
an¢’-sample for any’ > . The definition ofe-sample allows a sample to be arbitrarily dense
anywhere orE. It only puts a lower bound on the density. Figure 23 illustrates a sample of a
circle which is a ®-sample. By definition, it is also a®sample of the same.

A useful application of the Lipschitz Continuity Lemma 12 is that the distance leettweo
points expressed in terms of the local feature size of one can be exghiagserms of that of the
other.

Lemma 13(Feature Translation.yor any two points xy in X with || x—y|| < ef(X) ande < 1 we
have

(i) f(x) <L f(y)and
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Figure 23: Local feature size at any point on the circle is equal to thesadEach point on the
circle has a sample point within2) distance.

(i) Ix=yll < = f(y).
Proor. We have

f(x)

or, f(X)

f(y) + I =i
f(y) + ef(x).

IAN A

Fore < 1 the above inequality gives

f(x) < 1Tlgf(y) proving (i).

Plug the above inequality iifx — y|| < ef(x) to obtain (ii). O
m]

Uniform sampling. The definition ofs-sample allows non-uniform sampling o&rA globally
uniformsampling is more restrictive. It means that the sample is equally dense eeseywlbcal
feature size does not play a role in such sampling. There could be vaedingions of globally
uniform samples. We will say a sampRec X is globally §-uniformif any pointx € X has a
point in P within § > 0 distance. In between globally uniform and non-uniform samplings, there
is another one called tHecally uniform sampling This sampling respects feature sizes and is
uniform only locally. We say’ c X islocally (g, 6)-uniformfor § > 1 > ¢ > 0 if each pointx € =

has a point irP within f(x) distance and no poirg € P has another poirg € P within £ f(p)
distance. This definition does not allow two points to be arbitrarily close whighbeaome a
severe restriction for sampling in practice. So, there is an alternate defioitiocal uniformity.

A sampleP is locally (&, )-uniformfor somee > 0 andk > 1 if each pointx € X has at least one
and no more thar points withine f (X) distance.

O(e) notation  Our analysis for dferent algorithms obviously involve the sampling parameter
. To ease these analyses, sometimes we resddt otation which provides the asymptotic
dependences an A value isO(¢) if there exist two constants, > 0 andc > 0 so that the value

is less tharce for any positives < £o. Notice thatO notation is slightly diferent from the well
known big-O notation since the latter would requiggreater than or equal .
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19 Voronoi diagram and Delaunay triangulation

Voronoi diagrams and Delaunay triangulations are important geometric watauses that are
built on the notion of ‘nearness’. Manyftirential properties of curves and surfaces are defined
on local neighborhoods. Voronoi diagrams and their duals, Delauremgtriations, provide a
tool to approximate these neighborhoods in the discrete domain. Theyfaredd®r a point set

in any Euclidean space. We define them in two dimensions and mention theientetusthree
dimensions since the curve and surface reconstruction algorithms akelesdire concerned with
these two Euclidean spaces. Before the definitions we state a non-timeocendition for the
point setP defining the Voronoi and Delaunay diagrams. This non-degeneradijtzm not only
makes the definitions less complicated but also makes the algorithms avoid spsesl

Definition 47. A point setP c R¥ is non-degenerat (i) the affine hull of any¢ points fromP
with 1 < ¢ < kis homeomorphic t&‘~* and (ii) nok + 2 points are co-spherical.

19.1 Two dimensions

Let P be a set of non-degenerate points in the plafie

Voronoi diagrams. The Voronoi cellV,, for each pointp € P is given as
Vp = (x € R?[d(x, P) = [Ix~ pl}.

In words,V, is the set of all points in the plane that have no other poiftdtoser to it tharp. For
any two pointsp, g the set of points closer tpthanq are demarked by the perpendicular bisector
of the segmenpg. This means the Voronoi cell, is the intersection of the closed halfplanes
determined by the perpendicular bisectors betwgand each other poimte P. An implication

of this observation is that each Voronoi cell is a convex polygon sincenteesection of convex
sets remains convex.

Voronoi cells have/oronoi facesof different dimensions. A Voronoi face of dimensikiis
the intersection of 3- k Voronoi cells. This meansladimensional Voronoi face fdt < 2 is the
set of all points that are equidistant from-3 points inP. A zero dimensional Voronoi face,
calledVoronoi vertexs equidistant from three points i, whereas an one dimensional Voronoi
face, calledvoronoi edgecontains points that are equidistant from two pointB.i\ Voronoi cell
is a two dimensional Voronoi face.

Definition 48. The Voronoi diagram VoP of P is the cell complex formed by Voronoi faces.

Figure 24(a) shows a Voronoi diagram of a point set in the plane whenedv are two
Voronoi vertices andivis a Voronoi edge.

Some of the Voronoi cells may be unbounded with unbounded edges. strigightforward
consequence of the definition that a Voronoi ¢&jl is unbounded if and only ip is on the
boundary of the convex hull d?. In Figure 24(a)V, andV, are unbounded andandq are on
the convex hull boundary.
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Figure 24: (a) The Voronoi diagram and (b) the Delaunay triangulafiarpoint set in the plane.

Delaunay triangulations. There is adual structure to the Voronoi diagram VB called the
Delaunay triangulation

Definition 49. The Delaunay triangulation @ is a simplicial complex

DelP = {o = con(T}| ()] Vp#0).
peTcP

In words, k + 1 points inP form a Delaunayk-simplex in DelP if their Voronoi cells have
nonempty intersection. We know thiat- 1 Voronoi cells meet in a (2 k)-dimensional Voronoi
face. So, eacl-simplex in DelP is dual to a (2- k)-dimensional Voronoi face. Thus, each
Delaunay trianglepgr in DelP is dual to a Voronoi vertex wherep, Vg, andV, meet, each
Delaunay edg@qis dual to a Voronoi edge shared by Voronoi c&lfsandVy, and each vertep
is dual to its corresponding Voronoi c&f},. In Figure 24(b), the Delaunay triangber is dual to
the Voronoi vertex and the Delaunay edg® is dual to the Voronoi edgev. In general, whep
is a dual Voronoi face of a Delaunay simplexve sayu = dualo- and conversely- = dualu.

A circumscribing ballof a simplexo is a ball whose boundary contains the vertices of the
simplex. The smallest circumscribing ball@fis called itsdiametricball. A triangle in the plane
has only one circumscribing ball, namely the diametric one. However, arhedgefinitely many
circumscribing balls among which the diametric one is unique, namely the one withrler on
the edge.

A dual Voronoi vertex of a Delaunay triangle is equidistant from its thregices. This
means that the center of the circumscribing ball of a Delaunay triangle is &éh&chonoi vertex.

It implies that no point fronP can lie in the interior of the circumscribing ball of a Delaunay
triangle. These balls are call&klaunay A ball is emptyif its interior does not contain any point
from P. Clearly, the Delaunay balls aeenpty The converse also holds.

Property 1 (Triangle emptiness.)A triangle is in the Delaunay triangulation if and only if its
circumscribing ball is empty.

The Triangle Emptiness Property of Delaunay triangles also implies a similar esgpfore
Delaunay edges. Clearly, each Delaunay edge has an empty circungst@tiipassing through
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its endpoints. It turns out that the converse is also true, that is, any pglgéth an empty
circumscribing ball must also be in the Delaunay triangulation. To see this, theempty ball
of pgalways keeping, q on its boundary. If it never meets any other point fréythe edgepq
is on the boundary of cofi?} and is in the Delaunay triangulation sindg andV, has to share
an edge extending to infinity. Otherwise, when it meets a third pointr $aoym P, we have an
empty circumscribing ball passing throughg, andr. By the Triangle Emptiness Propenygr
must be in the Delaunay triangulation and hence the gdge

Property 2 (Edge emptiness.)An edge is in the Delaunay triangulation if and only if the edge
has an empty circumscribing ball.

The Delaunay triangulation form a planar graph since no two Delaunagsedtersect in
their interiors. It follows from the property of planar graphs that the nemab Delaunay edges
is at most 8 — 6 for a set ofn points. The number of Delaunay triangles is at mast 2. This
means that the dual Voronoi diagram also has at most @ Voronoi edges andr2—- 4 Voronoi
vertices. The Voronoi diagram and the Delaunay triangulation of a sgpoints in the plane can
be computed i©(nlog n) time andO(n) space.

Restricted Voronoi diagrams. When the input point se® is a sample of a curve or a surface
¥, the Voronoi diagram VoP imposes a structure an. It turns out that this diagram plays an
important role in reconstructing from P. Formally, a restricted Voronoi ceMlp|s is defined as
the intersection of the Voronoi cell, in Vor Pwith X, i.e.,

Vplz = VpnZ wherepe P.

@) (b)

Figure 25: (a) Restricted Voronoi diagram for a point set on a cub)ethe corresponding re-
stricted Delaunay triangulation.

Similar to the Voronoi faces, we can definestricted Voronoi facess the intersection of
the restricted Voronoi cells. They can also be viewed as the intersectidorahoi faces with
¥. In Figure 25(a) the white circles represent restricted Voronoi fateimension zero. The
curve segments between them are restricted Voronoi faces of dimems&omhich are restricted
Voronoi cells in this case. Notice that the restricted Voronoi¢gl in the figure consists of two
curve segments where¥gy consists of a single curve segment.

Definition 50. The restricted Voronoi diagram \MeiP of P with respect t& is the collection of
all restricted Voronoi faces.
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Restricted Delaunay triangulations. As with Voronoi diagrams we can define a simplicial
complex dual to a restricted Voronoi diagram Ris.

Definition 51. The restricted Delaunay triangulation Bfwith respect toX is a subcomplex
Del P|y of the Delaunay complex D& where a Delaunay simplex € Del Py if and only if the
dual Voronoi face ofr intersect<.

Figure 25(b) shows the restricted Delaunay triangulation for the restNoteahoi diagram in
(a). The vertexp is connected tg andr in the restricted Delaunay triangulation singgls meets
bothVgls andV,|s. However, the trianglg@qr is not in the triangulation sincéls, Vgls andVy|x
do not meet at a point.

19.2 Three dimensions

We chose the plane to explain the concepts of the Voronoi diagrams ancetaeny triangu-
lations in the previous subsection. However, these concepts extendttargrdimensions. We
will mention these extensions for three dimensions which will be important faréaositions.

Voronoi cells of a point seP in R2 are three dimensional convex polytopes some of which
are unbounded. There are four types of Voronoi faces; Voreextices, Voronoi edges, Voronoi
facets, and Voronoi cells in increasing order of dimension starting with aed ending with
three. Four Voronoi cells meet at a Voronoi vertex which is equidistamb flour points inP.
Three Voronoi cells meet at a Voronoi edge, and two Voronoi cells atesei/oronoi facet.

The Delaunay triangulation &f contains four types of simplices dual to each of the four types
of Voronoi faces. The vertices are dual to the Voronoi cells, the Delpedges are dual to the
Voronoi facets, the Delaunay triangles are dual to the Voronoi edgelthe Delaunay tetrahedra
are dual to the Voronoi vertices. The circumscribing ball of each tetiraings empty. Conversely,
any tetrahedron with empty circumscribing ball is in the Delaunay triangulationth&r, each
Delaunay triangle and edge has an empty circumscribing ball. Conversedgge or a triangle
belongs to the Delaunay triangulation if there exists an empty ball circumscitbing

The number of edges, triangles, and tetrahedra in the Delaunay triangud&tioset ofn
points in three dimensions can [¥n?) in the worst case. By duality the Voronoi diagram can
also haveD(n?) Voronoi faces. Both of the diagrams can be compute@(inf) time and space.

We can define the restricted Voronoi diagram and its dual restricted Dmfadangulation
for a point sample on a surfacelt in the same way as we did for a curveRA. Figure 26 shows
the restricted Voronoi diagram and its dual restricted Delaunay triangulfaii@ set of points on
a surface. The trianglpqr is in the restricted Delaunay triangulation singgls, Vgls, andVy|s
meet at a common point

Exercises

1. Construct a triangulation ¢ and verify thatv — e + f = 2 wherev is the number of
vertices,eis the number of edges, arfds the number of triangles. Prove that the number
v— e+ f (Euler characteristic) is always 2 for any triangulatiorséf

2. Let p be a vertex in DeP in three dimensions. Show that a poink V, if and only if
IIp— X|| < |lg— X|| for each vertexj wherepqis a Delaunay edge.
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(b)

Figure 26: (a) The restricted Voronoi diagram and (b) the restrictdauDay triangulation for a
sample on a surface.

3. Show that for any Delaunay simplexand its dual Voronoi facg = dualo, the dfine hulls
aff u and df o intersect orthogonally.

4. An edgeein a triangulationT (P) of a point setP ¢ R? is calledlocally Delaunayif e is
a convex hull edge or the circumscribing ball of one triangle incideptdoes not contain
the other triangle incident te completely inside. Show thdt(P) = Del P if and only if
each edge of (P) is locally Delaunay.

5. Given a point seP c R?, an edge connecting two poinfsq in P is called a nearest
neighbor edge if no point iR is closer tog thanpis. Show thatpqis a Delaunay edge.

6. Given a point seP c R?, an edge connecting two points Ris called Gabriel if its
diametric ball is empty. The Gabriel graph #iis the graph induced by all Gabriel edges.
Give anO(nlogn) algorithm to compute the Gabriel graph #whereP hasn points.

7. Let pq be a Delaunay edge in DBIfor a point setP ¢ R3. Show that ifpg does not
intersect its dual Voronoi facegt= dualpg, the line ofpg does not intersed either.

8. Fora > 0, a functionf: ¥ — R is calleda-Lipschitz if f(x) < f(y) + a||x — y|| for any
two pointsx,y in . Given an arbitrary functiori : ¥ — R, one can make ik-Lipschitz by
considering the functions

fm(x) = rpeizn{f(p)mIIX—pll},
fu(x) = rpeazﬂf(p)—allx—pll}.

Show that bothf,,, and fy; area-Lipschitz.

9. Consider the functiong; andp, as in Section 18.2. Show that these functions may be
continuous but not 1-Lipschitz.
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