
Randomized Algorithms II

Advanced Algorithms (CSE 794)
Instructor: Tamal K. Dey

Scribe: Praneeth Uppalapati ∗

May 28, 2009

1 Introduction
A randomized algorithm or probabilistic algorithm is an algorithm which employs a degree of randomness
as part of its logic. The algorithm typically uses uniformly random bits as an auxiliary input to guide its be-
havior, in the hope of achieving good performance in the ”average case” over all possible choices of random
bits. Formally, the algorithm’s performance will be a random variable determined by the random bits; thus
either the running time, or the output (or both) are random variables.

The basic approach is:
1. Randomize the algorithm internally.
2. Produce the correct output with a high probability.

2 Preliminaries
A Random variable can be thought of as an unknown value that may change every time it is inspected.
Thus, a random variable can be thought of as a function mapping the sample space of a random process to
the real numbers. More formally, Let (Ω, F , P) be a probability space and (Y, Σ) be a measurable space,
then a random variable X is defined as a measurable function X: Ω → Y.

In probability theory and statistics, the Expected value (or expectation value, or mathematical expecta-
tion, or mean, or first moment) of a random variable is the integral of the random variable with respect to
its probability measure. For discrete random variables this is equivalent to the probability-weighted sum of
the possible values, and for continuous random variables with a density function it is the probability density
-weighted integral of the possible values.

If X is a discrete random variable with probability mass function p(x), then the expected value becomes

E(X) =
∑

i xi p(xi)

If the probability distribution of X admits a probability density function f(x), then the expected value can be
computed as

∗Department of Computer and Information Sciences, The Ohio State University, Columbus, Ohio, USA.

E(X) =
∫ ∞

−∞
x f(x) dx .

The expected value operator (or expectation operator) E is linear in the sense that

E(X + c) = E(X) + c
E(X + Y) = E(X) + E(Y)

X E(aX) = a E(X)

Similarly, if X =
n∑

i=1

xi then E(X) =
n∑

i=1

E(xi)

Waiting for first success: Suppose we conduct experiments such that the probability of success of the
experiment is p. Then, ”Waiting for the first success” is the expected number of trails before we meet suc-
cess.

If X = # of trails needed to meet success, then

p(X = j) = (1 - p)j−1 p

E(X) =
∞∑

j=0

j (1 − p)j−1 p

= p
1−p

∞∑

j=1

j (1 - p)j = p
1−p

. 1−p

p2 = 1

p

note :
x = 1(1-p) + 2(1-p)2 + 3(1-p)3 +

x(1-p) = 1(1-p)2 + 2(1-p)3 + 3(1-p)4 +
x - x(1-p) = (1-p) + (1-p)2 + (1-p)3 + = 1−p

p

x = 1−p
p2

3 The Max 3-SAT Problem
Satisfiability is the problem of determining if the variables of a given Boolean formula can be assigned in
such a way as to make the formula evaluate to TRUE.Boolean satisfiability problem (SAT) is a decision
problem, whose instance is a Boolean expression written using only AND, OR, NOT, variables, and paren-
theses.

The 3-SAT problem is defined over a set of boolean variables X = { x1,x2,....,xn } and a set of clauses
C = c1,c2,....,ck

where each clause ci = (ti1 ∨ ti1 ∨ ti1) i.e. 3 variables per clause giving the name 3-SAT and ti ∈ (
xi, x̄i)

Problem: Set an assignment to X such that ci is true ∀ i

2

The 3-SAT problem is polynomial time reducible to NP-complete , 3-SAT ≤ (NP)

So, the Max 3-SAT problem is defined as : Find a truth assignment such that maximum # of clauses become
satisfied.

The Randomized approach for this problem is to randomly assign values. This method has proved to give
good results most of the time. Let Z denote the random variable equal to the # of satisfied clauses.

zi = 1 if ci satisfies
= 0 otherwise

Z = z1 + z2 + + zk

E(Z) = E(Z1) + E(Z2) + + E(Zk)

E(Zi) = 1 - 1

2
.1
2
.1
2

= 7

8

E(Z) = 7

8
k = 7

8
optimal ; where k = # of clauses

Theorem 1. The Expected number of clauses satisfied by a random assignment is within an approximation
factor of 7

8

th the optimal.

Corollary For every instance of 3-SAT, there is a truth assignment that satisfies at least 7

8

th fraction of
the clauses.

⇒ if k ≤ 7, then the 3-SAT is always solvable. So conduct the trails until at least 7

8
k clauses are satis-

fied.

For j = 0,1,.....,k, let pj be the probability that a random assignment satisfies exactly j clauses. Then

E(Z) =
k∑

j=0

j pj = 7

8
k

We are interested in the probability p =
k∑

j≥ 7

8
k

pj

7

8
k =

∞∑

j=0

j pj =
k∑

j< 7

8
k

j pj +
k∑

j≥ 7

8
k

j pj

Let k′ be the largest natural number less than 7

8
k .

7

8
k ≤

k∑

j< 7

8
k

k′ pj +
k∑

j≥ 7

8
k

k pj = k′(1-p) + kp

hence, kp ≥ 7

8
k - k′.

3

But 7

8
k - k′ ≥ 1

8
⇒ p ≥ 7

8
k - k′ / k = 1

8k
⇒ 1

p
≤ 8k

∴ # of iterations is at most 8k.

∴ This is a polynomial time algorithm.

Theorem 2. There is a randomized algorithm with polynomial expected time that is guaranteed to produce
a truth assignment satisfying at least 7

8
of the clauses.

4 Median Finding Problem
Given a set of ”n” unordered numbers we want to find the median of the numbers. Sometimes is also stated
as the problem of finding the kth smallest number where k is between 1 and n. A deterministic algorithm in
the worst case takes O(n2) time. So, we define a randomized algorithm where the pivot is choosen randomly.
It is proven that it is better than the deterministic algorithm.

Let us divide the process of finding the solution into phases, where each phase j is the time during which
the size s of the set under consideration is between (3

4
)j+1n ≤ s ≤ (3

4
)jn. Note: there can be more

than one iterations in each phase.

Let the Expected time spent in phase j is Xj

Suppose at phase j, we prove that expected time is k,

then the total time taken =
n∑

j=0

k.

If k = (3

4
)jn, then the total time is linear in n.

We define central element as the splitter that throws away at least 1

4

th of the elements of the array.
Note: If at any iteration of phase j, the splitter is central , then the phase j ends.

At least half of the elements in a list are central. So, the probability that the splitter is central is 1

2
. Then by

the waiting time principle, the Expected number of iterations before a central element is found is 2.

E(Xj) = O((3

4

j) n) or 2.C.(3

4

j) n

E(X) =
∑

E(Xj) = 2C
∑

(3

4

j) n = Θ(n) i.e. linear time in n

5 Concluding remarks
When the model of computation is restricted to Turing machines, it is currently an open question whether
the ability to make random choices allows some problems to be solved in polynomial time that cannot be
solved in polynomial time without this ability. However, in other contexts, there are specific examples of
problems where randomization yields strict improvements.

4

References
[1] Tamal K Dey, Advanced Algorithms class, spring 09, OSU.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Chapter 5: Proba-
bilistic Analysis and Randomized Algorithms, pp.91122.

[3] http : //en.wikipedia.org/wiki/Random variable

[4] http : //en.wikipedia.org/wiki/Boolean satisfiability problem

5

