
Name:

CSE 6341 Mid-term #1 Sample

(Closed book, closed notes, closed neighbor.)
(A single “cheat sheet” is allowed; if you use one, write your name on it, and turn it in with your exam.)

There are 5 questions, each worth ??/varying points. The questions are not all equally difficult but none
should take you more than about 8 to 10 minutes to answer. Please keep your answers brief and to the point.
Rambling, irrelevant discussions may be penalized. If a question (or part thereof) does not make sense, ask
me for clarification; if it still does not make sense, say so, and explain why it does not make sense.

1. Suppose B is a BNF grammar and AB an attribute grammar built on B (i.e., by adding appropriate
attributes, evaluation rules, and conditions to B). Answer the following questions:
a. If B is ambiguous can AB be unambiguous?
b. If B is unambiguous, can AB be ambiguous?
In each case, if your answer is “no”, explain why; if your answer is “yes”, give a simple example to
justify your answer.

1



2. Consider a simple block-structured language (no procedures or functions), consisting of simple com-
mands such as 〈if〉, 〈while〉, sequential composition, assignment, etc., with 〈block〉 also being a com-
mand. A 〈block〉, as usual, consists of a sequence of (variable) declarations followed by a 〈stmt seq〉.
The standard static scope rule for such a language allows us refer, from inside a block, to the variables
of the current block, the surrounding block, etc. and these can be checked using the standard ap-
proach we have seen. Suppose we want to impose an additional condition that no variable name may
be declared more than three times in a program; note that this condition applies even for blocks that
are completely separated from each other, i.e., not nested inside each other. How would you express
this condition in the attribute grammar? Explain briefly. Or if this cannot be done, explain what the
problem is.

2



3. Consider the translational semantics (in which we defined the Code attribute) that we defined. Suppose
we want to add a new type of 〈command〉 to the language, the break command. The break command
can appear only inside a loop. The effect of executing the break (at run-time) should be to transfer
control to the point immediately following the innermost loop that the break appears in. How would
you modify the translational semantics to take care of the break? Briefly describe the main changes
you would have to make.

3



4. Write a Lisp function isIn[S1,S2] that takes two arguments S1 and S2 both of which are S-
expressions (either, both, or neither, might be atomic; one might be a “list”, the other not; etc.).
isIn[] should return T if S1 “appears in” S2 and NIL otherwise. What I mean by “appears in” is
that if you wrote them both out (using the dot notation), you will see that S1 textually appears in S2
(ignoring whitespace etc.). Use only the part of Lisp we have discussed in class. If such a function
cannot be written, explain why not. If you need to define auxiliary functions, feel free to do so.

4



5. Define a Lisp function maxList[L] that takes a non-empty list of numbers and returns the largest
number in the list; briefly explain your solution (unless it is obvious how it works!). If this cannot be
done in Lisp, explain what the problem is.

5


