CSE 6341; LISP Interpreter Project, Part 2; Autumn 2018
Due: Nov. 5, 2018, 11:59 pm

This is the second part of the interpreter project and will consist mainly of the Lisp expression evaluator, i.e.,
eval [] and associated functions. This part of the project is worth 50 points. Use the same programming
language for this part as you did for part 1 since you have to use, in this part, the functions you implemented
in part 1. As was the case for part 1 of the project, this is an individual project. Discussions with other
students in the class is permitted and should, preferably, take place on the Piazza site. But the code you
submit must be your own. If you borrow anything from any source, you must document it carefully in your
submission. If you don’t, you will be considered guilty of academic misconduct which can have serious
consequences.

In this part of the project, your main () function will use the input () routine you implemented in part
1 of the project to read in the next s-expression from the standard input stream. The s-expression will be
expected to be a Lisp expression, unlike in part 1 where it could be any legal s-expression; but it will be the
job of eval[] and associated functions to check this, not that of input() or main(). Next, the main () function
will use your output () function from part 1 to output the s-expression that was just read. The main ()
function will then call the eval [] function, passing it the just-read s-expression as the Lisp expression to
be evaluated, and NIL as the a-list. When control returns, eval [] will return the resulting value which
will, of course, be another s-expression. The main () function will then use the output () function to
output this resulting s-expression. Once this is complete, the main () function should loop back to the
start and use input () to read the next input s-expression; etc. If the next line contains “$$”, signifying
the end of the input stream, you should print an appropriate message and quit. You may want extend your
output () function so that it outputs also in list notation but this is not required.

If, in any of these steps, you run into an error, you should output an appropriate error message, raise
an exception, which the main () function should catch and print, and then continue to read the next s-
expression. Note that you may run into an error not only during input () but also during evaluation. The
main errors of this kind are, unbound atom; all the bi’s in a COND evaluating to NIL and inappropriate
arguments in a function call, such as passing a non-integer argument to PLUS; use of a function that has not
been previously defined. If you come across other kinds of errors, please email or post on Piazza. Note also
that you may assume that the input () function will not encounter any errors in this part of the project
(since those errors really belong in part 1). So the only errors you have to worry about are those that occur
during evaluation of the Lisp expressions.

What To Submit And When: On or before 11:59 pm, Nov. 5, you should submit this part of the project.
You should submit the same types of files as for part 1: i.e., your source file(s) which includes a standard
comment of the form: Author: xxx. The second file should be a Makefile. The third file should be a
design-and-documentation file [called ‘designP1.txt’]; this should be a plain text file describing your inter-
preter, anything unusual in its design, or in the implementation; if you borrowed ideas or anything else from
anywhere, that should be documented in this file. The fourth file [called README] should contain clear
instructions on how to use (that part of) the interpreter, in other words how to compile it and how to run it.
Any unusual things about the expected input etc. [such as “don’t include COND’s with all bi’s evaluating to
NIL, else the machine will crash”] should go in this file. The grader will look at all the files, compile and
run your interpreter as per the instructions in your README file, and then assign the grade. Make sure your
project works in the standard Linux environment. Do NOT submit tar files; do NOT submit object files; do
NOT submit the project by e-mail; if your CSE account has suddenly stopped working, get it to work before
the deadline; etc.



Additional details: The LISP you implement should include the following primitives:
T, NIL,
CAR, CDR, CONS, ATOM, EQ, NULL, INT,
PLUS, MINUS, TIMES, QUOTIENT, REMAINDER, LESS, GREATER
COND, QUOTE, DEFUN.

T and NIL represent true and false. In general atoms may be symbolic identifiers or integers. As in part
1, a symbolic identifier will start with a letter of the alphabet, and maybe followed by zero or more letters
or digits; only uppercase letters will be used. No underscores or other characters are allowed in identifiers.
Integers may be signed or unsigned, i.e., 25, 425, —25 are all legal; no more than 10 characters in an
identifier or integer; you may assume that all integers will fit in a standard 32-bit word.

CAR, CDR, CONS are the standard LISP primitive functions. ATOM returns T if its argument is atomic,
and returns NIL otherwise. INT returns T if its argument is an atom that is a number. EQ works only on
atomic arguments; it returns T if its two atomic arguments are the same identifier [or equal, for integers] and
NIL otherwise. NULL returns T if its argument is NIL and NIL otherwise (non-atomic arguments should
be acceptable to NULL).

PLUS, MINUS etc., take two integers as their arguments and return the result, an integer. LESS and
GREATER allow you to compare two integers and return T if the first is less or greater than the second
respectively.

COND and QUOTE are the standard LISP forms. DEFUN allows the user to define a new function and use it
later. But you must use the format we discussion in class, i.e.:

(DEFUN (F (X Y)) fb)

where F is the function being defined; its formal parameters are named X, Y; and its body is the lisp-
expression fb. This differs from the standard format, the one shown on the slides; but, as we discussed in
class, we will use this format. When this definition is “evaluated”, it should add apair (F . ((X Y) . £fb))
to the d-list [the list of definitions that your interpreter should maintain internally; actually, how you store
function definitions on the d-list is upto you; the above is only one possibility]. The features of pure LISP
that have not been included are: LAMBDA, LABEL. These are not needed because DEFUN is sufficient for
defining new functions. (Actually, LAMBDA allows anonymous functions which DEFUN does not allow but
ignore that.)

How To Submit: On or before 11:59 pm, Nov. 5, you should submit your project on Carmen/Canvas. I will
post the details later.
Repeat: DO NOT submit object code, .doc files, etc.



