
2

also bring in library object files that contain the definitions of library functions like
printf() and malloc(). The overall process looks like this...

main.c module1.c module2.c

main.o module1.o module2.o

program

library
functions

C compiler

Linker

Section 1 — gcc
The following discussion is about the gcc compiler, a product of the open-source GNU
project (www.gnu.org). Using gcc has several advantages— it tends to be pretty up-to-
date and reliable, it's available on a variety of platforms, and of course it's free and open-
source. Gcc can compile C, C++, and objective-C. Gcc is actually both a compiler and a
linker. For simple problems, a single call to gcc will perform the entire compile-link
operation. For example, for small projects you might use a command like the following
which compiles and links together three .c files to create an executable named "program".

gcc main.c module1.c module2.c -o program

The above line equivalently could be re-written to separate out the three compilation
steps of the .c files followed by one link step to build the program.

gcc -c main.c ## Each of these compiles a .c
gcc -c module1.c
gcc -c module2.c
gcc main.o module1.o module2.o -o program ## This line links the .o's

to build the program

The general form for invoking gcc is...

gcc options files

where options is a list of command flags that control how the compiler works, and
files is a list of files that gcc reads or writes depending on the options

Command-line options
Like most Unix programs, gcc supports many command-line options to control its
operation. They are all documented in its man page. We can safely ignore most of these
options, and concentrate on the most commonly used ones: -c, -o, -g, -Wall,
-I, -L, and -l.

3

-c files Direct gcc to compile the source files into an object files without going
through the linking stage. Makefiles (below) use this option to compile
files one at a time.

-o file Specifies that gcc's output should be named file. If this option is not
specified, then the default name used depends on the context...(a) if
compiling a source .c file, the output object file will be named with the
same name but with a .o extension. Alternately, (b) if linking to create
an executable, the output file will be named a.out. Most often, the -o
option is used to specify the output filename when linking an
executable, while for compiling, people just let the default .c/.o
naming take over.

It's a memorable error if your -o option gets switched around in the
command line so it accidentally comes before a source file like
"...-o foo.c program" -- this can overwrite your source file --
bye bye source file!

-g Directs the compiler to include extra debugging information in its
output. We recommend that you always compile your source with this
option set, since we encourage you to gain proficiency using the
debugger such as gdb (below).

Note -- the debugging information generated is for gdb, and could
possibly cause problems with other debuggers such as dbx.

-Wall Give warnings about possible errors in the source code. The issues
noticed by -Wall are not errors exactly, they are constructs that the
compiler believes may be errors. We highly recommend that you
compile your code with -Wall. Finding bugs at compile time is soooo
much easier than run time. the -Wall option can feel like a nag, but it's
worth it. If a student comes to me with an assignment that does not
work, and it produces -Wall warnings, then maybe 30% of the time,
the warnings were a clue towards the problem. 30% may not sound
like that much, but you have to appreciate that it's free debugging.

Sometimes -Wall warnings are not actually problems. The code is ok,
and the compiler just needs to be convinced. Don't ignore the warning.
Fix up the source code so the warning goes away. Getting used to
compiles that produce "a few warnings" is a very bad habit.

Here's an example bit of code you could use to assign and test a flag
variable in one step...

int flag;

if (flag = IsPrime(13)) {
...

}

The compiler will give a warning about a possibly unintended
assignment, although in this case the assignment is correct. This
warning would catch the common bug where you meant to type == but
typed = instead. To get rid of the warning, re-write the code to make
the test explicit...

4

int flag;

if ((flag = IsPrime(13)) != 0) {
...

}

This gets rid of the warning, and the generated code will be the same
as before. Alternately, you can enclose the entire test in another set of
parentheses to indicate your intentions. This is a small price to pay to
get -Wall to find some of your bugs for you.

-Idir Adds the directory dir to the list of directories searched for #include
files. The compiler will search several standard directories
automatically. Use this option to add a directory for the compiler to
search. There is no space between the "-I" and the directory name. If
the compile fails because it cannot find a #include file, you need a -I to
fix it.

Extra: Here's how to use the unix "find" command to find your
#include file. This example searches the /usr/include directory for all
the include files with the pattern "inet" in them...

nick% find /usr/include -name '*inet*'
/usr/include/arpa/inet.h
/usr/include/netinet
/usr/include/netinet6

-lmylib (lower case 'L') Search the library named mylib for unresolved
symbols (functions, global variables) when linking. The actual name of
the file will be libmylib.a, and must be found in either the default
locations for libraries or in a directory added with the -L flag (below).

The position of the -l flag in the option list is important because the
linker will not go back to previously examined libraries to look for
unresolved symbols. For example, if you are using a library that
requires the math library it must appear before the math library on the
command line otherwise a link error will be reported. Again, there is
no space between the option flag and the library file name, and that's a
lower case 'L', not the digit '1'. If your link step fails because a symbol
cannot be found, you need a -l to add the appropriate library, or
somehow you are compiling with the wrong name for the function or
global variable.-Ldir Adds the directory dir to the list of directories searched for library files
specified by the -l flag. Here too, there is no space between the
option flag and the library directory name. If the link step fails because
a library file cannot be found, you need a -L, or the library file name is
wrong.

8

you need to recompile from scratch. The TAGS rule creates a tag file that most Unix
editors can use to search for symbol definitions.

Compiling in Emacs
Emacs has built-in support for the compile process. To compile your code from emacs,
type M-x compile. You will be prompted for a compile command. If you have a
makefile, just type make and hit return. The makefile will be read and the appropriate
commands executed. The emacs buffer will split at this point, and compile errors will be
brought up in the newly created buffer. In order to go to the line where a compile error
occurred, place the cursor on the line which contains the error message and hit ^c-^c.
This will jump the cursor to the line in your code where the error occurred (“cc” is the
historical name for the C compiler).

Section 3 — gdb
You may run into a bug or two in your programs. There are many techniques for finding
bugs, but a good debugger can make the job a lot easier. In most programs of any
significant size, it is not possible to track down all of the bugs in a program just by staring
at the source — you need to see clues in the runtime behavior of the program to find the
bug. It's worth investing time to learn to use debuggers well.

GDB
We recommend the GNU debugger gdb, since it basically stomps on dbx in every
possible area and works nicely with the gcc compiler. Other nice debugging
environments include ups and CodeCenter, but these are not as universally available as
gdb, and in the case of CodeCenter not as cheaply. While gdb does not have a flashy
graphical interface as do the others, it is a powerful tool that provides the knowledgeable
programmer with all of the information they could possibly want and then some.

This section does not come anywhere close to describing all of the features of gdb, but
will hit on the high points. There is on-line help for gdb which can be seen by using the
help command from within gdb. If you want more information try xinfo if you are
logged onto the console of a machine with an X display or use the info-browser mode
from within emacs.

Starting the debugger
As with make there are two different ways of invoking gdb. To start the debugger from
the shell just type...

gdb program

where program is the name of the target executable that you want to debug. If you do
not specify a target then gdb will start without a target and you will need to specify one
later before you can do anything useful.

As an alternative, from within emacs you can use the command [Esc]-x gdb which
will then prompt you for the name of the executable file. You cannot start an inferior gdb
session from within emacs without specifying a target. The emacs window will then split
between the gdb buffer and a separate buffer showing the current source line.

Running the debugger
Once started, the debugger will load your application and its symbol table (which
contains useful information about variable names, source code files, etc.). This symbol

9

table is the map produced by the -g compiler option that the debugger reads as it is
running your program.

The debugger is an interactive program. Once started, it will prompt you for commands.
The most common commands in the debugger are: setting breakpoints, single stepping,
continuing after a breakpoint, and examining the values of variables.

Running the Program
run Reset the program, run (or rerun) from the

beginning. You can supply command-line
arguments the same way you can supply command-
line arguments to your executable from the shell.

step Run next line of source and return to debugger. If a
subroutine call is encountered, follow into that
subroutine.

step count Run count lines of source.

next Similar to step, but doesn't step into subroutines.

finish Run until the current function/method returns.

return Make selected stack frame return to its caller.

jump address Continue program at specified line or address.

When a target executable is first selected (usually on startup) the current source file is set
to the file with the main function in it, and the current source line is the first executable
line of the this function.

As you run your program, it will always be executing some line of code in some source
file. When you pause the program (when the flow of control hits a “breakpoint” of by
typing Control-C to interrupt), the “current target file” is the source code file in which the
program was executing when you paused it. Likewise, the “current source line” is the line
of code in which the program was executing when you paused it.

Breakpoints
You can use breakpoints to pause your program at a certain point. Each breakpoint is
assigned an identifying number when you create it, and so that you can later refer to that
breakpoint should you need to manipulate it.

A breakpoint is set by using the command break specifying the location of the code
where you want the program to be stopped. This location can be specified in several
ways, such as with the file name and either a line number or a function name within that
file (a line needs to be a line of actual source code — comments and whitespace don't
count). If the file name is not specified the file is assumed to be the current target file, and
if no arguments are passed to break then the current source line will be the breakpoint.
gdb provides the following commands to manipulate breakpoints:

info break Prints a list of all breakpoints with numbers and
status.

10

break function Place a breakpoint at start of the specified function
break linenumber Prints a breakpoint at line, relative to current source

file.
break filename:linenumber Place a breakpoint at the specified line within the

specified source file.

You can also specify an if clause to create a conditional breakpoint:

break fn if expression Stop at the breakpoint, only if expression evaluates
to true. Expression is any valid C expression,
evaluated within current stack frame when hitting
the breakpoint.

disable breaknum
enable breaknum Disable/enable breakpoint identified by breaknum

delete breaknum Delete the breakpoint identified by breaknum

commands breaknum Specify commands to be executed when breaknum
is reached. The commands can be any list of C
statements or gdb commands. This can be useful to
fix code on-the-fly in the debugger without re-
compiling (Woo Hoo!).

cont Continue a program that has been stopped.

For example, the commands...

break binky.c:120
break DoGoofyStuff

set a breakpoint on line 120 of the file binky.c and another on the first line of the function
DoGoofyStuff. When control reaches these locations, the program will stop and give
you a chance to look around in the debugger.

Gdb (and most other debuggers) provides mechanisms to determine the current state of
the program and how it got there. The things that we are usually interested in are (a)
where are we in the program? and (b) what are the values of the variables around us?

Examining the stack
To answer question (a) use the backtrace command to examine the run-time stack.
The run-time stack is like a trail of breadcrumbs in a program; each time a function call is
made, a crumb is dropped (an run-time stack frame is pushed). When a return from a
function occurs, the corresponding stack frame is popped and discarded. These stack
frames contain valuable information about the sequence of callers which brought us to the
current line, and what the parameters were for each call.

Gdb assigns numbers to stack frames counting from zero for the innermost (currently
executing) frame. At any time gdb identifies one frame as the “selected” frame. Variable
lookups are done with respect to the selected frame. When the program being debugged
stops (at a breakpoint), gdb selects the innermost frame. The commands below can be
used to select other frames by number or address.

11

backtrace Show stack frames, useful to find the calling
sequence that produced a crash.

frame framenumber Start examining the frame with framenumber. This
does not change the execution context, but allows
to examine variables for a different frame.

down Select and print stack frame called by this one. (The
metaphor here is that the stack grows down with
each function call.)

up Select and print stack frame that called this one.

info args Show the argument variables of current stack
frame.

info locals Show the local variables of current stack frame.

Examining source files
Another way to find our current location in the program and other useful information is to
examine the relevant source files. gdb provides the following commands:

list linenum Print ten lines centered around linenum in current
source file.

list function Print ten lines centered around beginning of
function (or method).

list Print ten more lines.

The list command will show the source lines with the current source line centered in
the range. (Using gdb from within emacs makes these command obsolete since it does
all of the current source stuff for you.)

Examining data
To answeer the question (b) “what are the values of the variables around us?” use the
following commands...

print expression Print value of expression. Expression is any valid C
expression, can include function calls and
arithmetic expressions, all evaluated within current
stack frame.

set variable = expression Assign value of variable to expression. You can
set any variable in the current scope. Variables
which begin with $ can be used as temporary
variables local to gdb.

display expression Print value of expression each time the program
stops. This can be useful to watch the change in a
variable as you step through code.

undisplay Cancels previous display requests.

12

In gdb, there are two different ways of displaying the value of a variable: a snapshot of
the variable’s current value and a persistent display for the entire life of the variable. The
print command will print the current value of a variable, and the display command
will make the debugger print the variable's value on every step for as long as the variable
exists. The desired variable is specified by using C syntax. For example...

print x.y[3]

will print the value of the fourth element of the array field named y of a structure variable
named x. The variables that are accessible are those of the currently selected function's
activation frame, plus all those whose scope is global or static to the current target file.
Both the print and display functions can be used to evaluate arbitrarily complicated
expressions, even those containing, function calls, but be warned that if a function has
side-effects a variety of unpleasant and unexpected situations can arise.

Shortcuts
Finally, there are some things that make using gdb a bit simpler. All of the commands
have short-cuts so that you don’t have to type the whole command name every time you
want to do something simple. A command short-cut is specified by typing just enough of
the command name so that it unambiguously refers to a command, or for the special
commands break, delete, run, continue, step, next and print you need only
use the first letter. Additionally, the last command you entered can be repeated by just
hitting the return key again. This is really useful for single stepping for a range while
watching variables change.

Miscellaneous
editmode mode Set editmode for gdb command line. Supported

values for mode are emacs, vi, dumb.

shell command Execute the rest of the line as a shell command.

history Print command history.

Debugging Strategies
Some people avoid using debuggers because they don't want to learn another tool. This is
a mistake. Invest the time to learn to use a debugger and all its features — it will make
you much more productive in tracking down problems.

Sometimes bugs result in program crashes (a.k.a. “core dumps”, “register dumps”, etc.)
that bring your program to a halt with a message like “Segmentation Violation” or the
like. If your program has such a crash, the debugger will intercept the signal sent by the
processor that indicates the error it found, and allow you to examine the state program.
Thus with almost no extra effort, the debugger can show you the state of the program at
the moment of the crash.

Often, a bug does not crash explicitly, but instead produces symptoms of internal
problems. In such a case, one technique is to put a breakpoint where the program is
misbehaving, and then look up the call stack to get some insight about the data and
control flow path that led to the bad state. Another technique is to set a breakpoint at
some point before the problems start and step forward towards the problems, examining
the state of the program along the way.

