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Abstract

Shared-memory parallel programs are inherently nondeterministic,
making it difficult to diagnose rare bugs and to achieve determin-
istic execution. Existing multithreaded record & replay approaches
have serious limitations such as relying on custom hardware, han-
dling only data-race-free executions, or slowing programs by an or-
der of magnitude. Furthermore, language virtual machines (VMs)
such as Java VMs (JVMs) introduce various sources of nondeter-
minism that thwart demonstrating deterministic replay.

This paper introduces an approach for multithreaded record &
replay based on tracking and reproducing shared-memory depen-
dences accurately and efficiently. Building on prior work that intro-
duces an efficient dependence recorder, we develop a new analysis
for replaying dependences. To demonstrate multithreaded record
& replay, we modify a JVM to support a new methodology that
enables demonstrating and evaluating replay in the inherently non-
deterministic JVM. Overall, the performance of both recorded and
replayed executions compares favorably with performance reported
by prior work for competing record & replay approaches.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Debuggers, Run-time environ-
ments

Keywords record & replay; language virtual machines

1. Introduction

Shared-memory programs are inherently nondeterministic because
memory accesses interleave in different ways. Nondeterminism
makes it difficult to diagnose production-time errors and to execute
replicated multithreaded processes.

*This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PPPJ ’15, September 8-11, 2015, Melbourne, FL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3712-0/15/09. .. $15.00.
http://dx.doi.org/10.1145/2807426.2807434

Milind Kulkarni

Purdue University
milind@purdue.edu

Man Cao

Ohio State University
caoma@cse.ohio-state.edu

Jipeng Huang
Microsoft
jiphuang@microsoft.com

Researchers have proposed record & replay to address this chal-
lenge [2, 20, 22, 24-26, 29-31, 34, 36, 39, 42, 43, 46, 48, 51, 52].
One execution records enough information to allow another execu-
tion to replay the same thread interleavings faithfully, thus achiev-
ing the same execution result. Record & replay can support of-
[line replay, online replay, or both. Offline replay supports replay-
ing a recorded execution at a later time, enabling debugging of
production-time errors. Online replay executes the replayed run
concurrently with the recorded run, enabling replication-based fault
tolerance [13] and distribution of dynamic analysis among multiple
execution instances [17, 40].

In order to replay multithreaded executions faithfully, record &
replay approaches must record how threads interleave, which in-
cludes not only the order of synchronization operations (e.g., the
order that two threads acquire the same lock), but also the order of
unsynchronized memory accesses (i.e., loads and stores involved
in data races)—which is expensive since many accesses can poten-
tially be unsynchronized. Existing record & replay approaches in-
cur high overhead to track cross-thread dependences [29, 30], can-
not handle racy executions [22, 46], rely on speculation and extra
cores [31, 48], support online or offline replay but not both [2, 26,
31, 34, 42, 51], or rely on custom hardware [24, 25, 36, 39, 52].

This paper builds on prior work called Octet, which introduces
efficient monitoring of cross-thread dependences [11]. However,
that work does not describe nor provide support for replaying de-
pendences. Replaying dependences is challenging for two reasons.
First, it is not straightforward how to record and replay depen-
dences captured by Octet. Second, demonstrating and evaluating
REPLAY is challenging, particularly in a managed language virtual
machine (VM) such as a Java VM (JVM) that has many sources of
nondeterminism that affect application determinism.

Contributions. This paper makes two main contributions. First,
we design, implement, and evaluate an analysis for replaying de-
pendences recorded by prior work’s dependence recorder [11]. Sec-
ond, in order to demonstrate and evaluate replay, we modify a JVM
to support a new methodology that eliminates most of the JVM’s
nondeterminism. These contributions enable us to demonstrate a
new record & replay approach that efficiently and flexibly handles
racy programs, targets commodity systems, supports both online
and offline replay, and adds low overhead—properties that existing
techniques have struggled to provide simultaneously.

Our record & replay approach introduces two dynamic analy-
ses called RECORD and REPLAY. RECORD identifies and records
dependences by using Octet to track dependences [11]. Our new
REPLAY analysis executes the program in parallel, enforcing the



cross-thread data dependences recorded by RECORD. REPLAY
does not use Octet and is a distinctly different analysis from RE-
CORD. REPLAY necessarily elides program synchronization oper-
ations, which would otherwise conflict nondeterministically with
the recorded cross-thread data dependences.

We have implemented RECORD and REPLAY in Jikes RVM [1],
a JVM that targets research but performs competitively with com-
mercial JVMs [7]. In order to demonstrate REPLAY, we have (i)
implemented novel approaches for controlling sources of nondeter-
minism in the JVM and (ii) introduced a research methodology that
helps further limit nondeterminism. This support for determinism,
which enables us to demonstrate and evaluate REPLAY, is not im-
mediately suitable for production use; however, this limitation is
not inherent to our record & replay approach. Furthermore, while
the implementation currently supports only offline replay, the ap-
proach is suited to providing both offline and online replay.

Because REPLAY elides synchronization and enforces the same
dependences as RECORD, REPLAY is often faster than RECORD.
Overall, RECORD and REPLAY add lower overhead than reported
by prior work that provides the same features (i.e., supports online
and offline replay in commodity systems).

Section 2 motivates the challenges of multithreaded record & re-
play. Section 3 overviews our RECORD and REPLAY analyses. Sec-
tion 4 overviews the RECORD analysis that is largely based on prior
work. Section 5 introduces our new REPLAY analysis; Section 5.3
argues that REPLAY soundly replays dependences recorded by RE-
CORD. Section 6 describes JVM modifications to deal with non-
determinism and a methodology for demonstrating multithreaded
replay. Section 7 evaluates the characteristics, effectiveness, and
performance of our record & replay system. Section 8 covers prior
work related to our contributions.

2. Background and Motivation

This section motivates the challenge of recording and replaying
nondeterministic multithreaded behavior. From a performance per-
spective, record & replay is straightforward for single-threaded ex-
ecutions (or multithreaded executions on a single core): sources
of nondeterminism—such as I/O, system time, thread context
switches, and other system-level effects—are infrequent enough
that recording and replaying them adds low overhead. However, it
is considerably more challenging to make record & replay efficient
for multithreaded, shared-memory programs because many pro-
gram operations can be involved in nondeterministic interactions
between threads.

Threads interleave nondeterministically at so-called high-level
races (races on synchronization operations) and data races (races
on ordinary loads and stores). While synchronization operations
tend to be infrequent enough that they can be recorded and replayed
efficiently, many loads and stores can potentially be involved in
data races, making it expensive to capture all thread interactions.

Data races are common in real software because they are easy to
introduce, expensive to detect, and hard to eliminate (Section 8.1).
Prior approaches either ignore data races but are thus unsound [22,
46]; sidestep the challenge of catching racy interleavings but in-
cur serious limitations [2, 26, 31, 34, 42, 48, 51]; or track depen-
dences explicitly but incur high overhead or other significant lim-
itations [20, 27, 29, 30, 34, 53]; or rely on custom hardware sup-
port [24, 25, 36, 39, 43, 52] (Section 8.1).

To replay potentially racy executions faithfully, it is sufficient
to reproduce all cross-thread data dependences: data dependences
(write—read, read—write, and write—write dependences) involving
two threads. Recording all cross-thread dependences is expensive
for several reasons. (1) Every access to potentially shared memory
must be instrumented. (2) The instrumentation typically involves
tracking the last thread(s) to write and/or read each potentially

shared variable, leading to remote cache misses at mostly-read-
shared program accesses. (3) To track dependences accurately, the
instrumentation itself must use synchronization to ensure atomicity
of the instrumentation together with the program access.

Our prior work called Octet tracks cross-thread dependences ef-
ficiently by giving up on precise tracking of dependences—instead
establishing happens-before edges that together imply all cross-
thread dependences [11]—in exchange for significantly better per-
formance. Section 4 describes the RECORD analysis built on top of
Octet. However, a significant remaining challenge, which this pa-
per addresses, is how to replay the happens-before edges recorded
by RECORD. Part of the challenge is how synchronization opera-
tions, which are not tracked by RECORD, should be handled during
the replayed execution. The replayed execution must be efficient
and scalable—at least matching the performance of the recorded
execution—in order to support online replay.

A second challenge this paper addresses is the difficulty of
demonstrating and evaluating REPLAY, particularly in a language
virtual machine (VM) such as a Java VM (JVM), which intro-
duces many sources of nondeterminism that confound replaying
an execution deterministically. Section 8.3 describes prior work on
demonstrating replay and dealing with nondeterminism in JVMs.

Addressing these challenges yields a record & replay approach
that advances the state of the art, by outperforming competing
approaches (i.e., approaches that support online and offline replay
of racy programs in commodity systems).

3. Overview and Preliminaries

Our record & replay approach consists of two distinct analyses, RE-
CORD and REPLAY, described separately in Sections 4 and 5. RE-
CORD and REPLAY operate on two separate executions; these ex-
ecutions can either execute concurrently (providing online replay),
or REPLAY can execute after RECORD (providing offline replay).

RECORD identifies and records happens-before edges that each
involve a source point on one thread and a sink point on another
thread. During RECORD, each program thread T records infor-
mation in its per-thread log, T.log, to enable replaying the source
or sink of a happens-before edge. During REPLAY, each program
thread T reads from T.log in order to replay the sources and sinks
of happens-before edges.

RECORD and REPLAY need to agree on when events occur
in program execution. They maintain a dynamic program loca-
tion (DPL) for each thread to represent a dynamic program point
uniquely. We represent DPL as (1) a static site (e.g., method and
bytecode index) and (2) a per-thread counter, T.dynCtr, incre-
mented on every loop back edge, method entry, and method return.

4. Recording Cross-Thread Dependences

This section presents a dynamic analysis called RECORD that
records happens-before edges that soundly imply all cross-thread
dependences in an execution. RECORD builds on an existing dy-
namic analysis from our prior work called Octet [11]. The Octet pa-
per outlines, implements, and evaluates an approach for recording
dependences identified by Octet [11], although it does not actually
present details of an analysis for recording replayable dependences.
The rest of this section overviews Octet and presents the details of
the RECORD analysis.

4.1 Tracking Cross-Thread Dependences

Octet is a dynamic analysis that establishes happens-before rela-
tionships [28] that soundly imply all cross-thread dependences,
which are data dependences (write—read, read—write, and write—
write dependences) involving two threads. Although Octet instru-
ments all accesses, it achieves low overhead by making an opti-



Code  Transition (0) G New Record
path type state Access state HB edge(s)?
WrEx RorWby T Same
Fast None RdEx Rby T Same No
RdSh, Rby T* Same
WrExp, W by T2 WrEx,
. WrEx Rby T2 RdEx
T1 T2
Conflicting RdEx, W by T2 WrEx., Yes
Slow RdSh, Wby T WrEx,
. RdEx Wby T WrEx No
T T
Upgrading gy’ Ry T2 RdSh,  Yes
Fence RdSh, Rby T* Same* Yes

Table 1. Octet’s state transitions establish happens-before edges. The last column shows which happens-before edges RECORD records.
*A read by T to an object in RdSh, state triggers a fence transition if a per-thread counter T.rdShCount < c. A fence transition updates

T.rdShCount < c.

mistic tradeoff: an access not involved in cross-thread dependences
can use cheap, unsynchronized instrumentation; but an access in-
volved in cross-thread dependence(s) requires expensive coordina-
tion among threads.

The Octet analysis identifies cross-thread dependences by track-
ing the state of each potentially shared object,! based on the last
thread(s) to write or read the object. Before each program memory
access, the analysis uses this state to determine if the access might
be involved in a cross-thread dependence. An access that does not
require a state change is definitely not involved in a cross-thread de-
pendence. Each object has one of the following states at any time:

WrEx: Write exclusive for thread T. T may read or write the
object without changing the state. Newly allocated objects start
in WrEx, state, where T is the allocating thread.

RdEx: Read exclusive for thread T. T may read but not write the
object without changing the state.

RdSh_: Read shared. Any thread T may read the object without
changing the state, subject to an up-to-date counter T.rdShCount
> c (which helps to ensure that dependences with the last write
to the object are captured soundly [11]; Section 4.2).

When a thread attempts to access an object, compiler-inserted in-
strumentation checks the object’s state and updates the state if nec-
essary to allow the access. Table 1 shows the state transition for
each possible initial state and access type. Some accesses require
no state transition (rows labeled “None”); these accesses are the
common case in practice. Other accesses trigger a state change;
these accesses may be involved in cross-thread dependences. When
a program memory access triggers a state change, it requires ei-
ther a conflicting, upgrading, or fence transition, described in Sec-
tion 4.2.

The following pseudocode shows the instrumentation that Octet
adds at each program load or store to track per-object states. The
analysis metadata o.state represents the state for the object refer-
enced by o. Octet adds the following code at each program store:

if (o.state != WrEx;) {
/* Slow path: change o.state & call RECORD hooks */
o.f = ..., // program store
and at each program load:

if (o.state != WrEx; && o.state |= RdEx; &&
I(o.state == RdSh, && T.rdShCount >= c)) {
/* Slow path: change o.state & call RECORD hooks */

! This paper uses the term “object” to refer to any unit of shared memory.
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Figure 1. Example execution illustrating state transitions.

. = o.f; // program load

As the reader can see, Octet’s instrumentation is optimized for
accesses that do not trigger a state change—these accesses take the
instrumentation “fast path.” Other accesses trigger the “slow path,”
which performs state transitions. Octet establishes happens-before
edges for these transitions, which RECORD identifies and records.
Next we describe how these transitions work.

4.2 Recording Happens-Before Edges

This section describes how Octet state transitions establish happens-
before edges, and how RECORD hooks onto these transitions to
identify and record happens-before edges in per-thread logs, using
Figure 1 as a running example.

Conflicting transitions. 1If an access to an object by a thread con-
flicts with the object’s state, the access’s instrumentation triggers
a conflicting transition (middle rows of Table 1). In Figure 1, sup-
pose thread T1 has previously written to an object o, so o’s state is
WrEx,. Before T2 performs a load from o, RECORD’s instrumen-
tation triggers a conflicting transition.

T2 cannot simply change o’s state—even if it uses synch-
ronization—since it might race with T1 continuing to perform
unsynchronized accesses to o, potentially missing cross-thread de-
pendences. To handle the conflicting transition correctly, T2 coor-
dinates with T1 to ensure that T1 does not continue accessing o. (At
a write to an object in RdSh, state, a thread coordinates separately
with every other thread.) Performing coordination establishes a
happens-before relationship that implies the dependence from T1’s
last access of o to T2’s current load of o. T1 only responds to T2’s



request when T1 is at a safe point: a point that is definitely not
between an access and its corresponding instrumentation. If T1 is
blocked (e.g., waiting for a lock or for a coordination response),
then T2 coordinates with T1 “implicitly,” ensuring progress [11].

Figure 1 shows the happens-before edge that RECORD must
capture: from a safe point on T1 to T2’s load. RECORD piggy-
backs on coordination in order to record the source and sink of
this happens-before edge. T1’s safe point records the source of
this happens-before edge by executing the following pseudocode,
which records the thread’s current DPL:

T.log.recordEvent(RESPONSE, currentSitelD, T.dynCtr);

where T is the current thread, and currentSitelD identifies the
current static program location (method and bytecode index).
T.log.recordEvent() records an event identifier (e.g., RESPONSE)
and any other arguments in T’s file-system-based log.

To record the happens-before sink in Figure 1, T2 records its
current DPL and the value of a counter T1.responses: the number
of coordination responses that T1 has responded to so far (incre-
mented by T1 at each response [11]). T2 executes the following
pseudocode:

T.log.recordEvent(REQUEST, currentSitelD, T.dynCtr,
sourceThread.responses);
// Helps with recording upgrading transitions:
if (isRead)
T.numConflReads++;

where sourceThread is the responding thread (T1 in Figure 1). The
conditional increment of the per-thread counter T.numConflReads
helps with recording upgrading transitions, described next.

Upgrading transitions. An upgrading transition expands the set
of allowable accesses compared with accesses allowed under the
old state. In Figure 1, before T3 performs a read to o in the RdEx,
state, it (atomically) upgrades o’s state to RdSh.. The value c that
is part of the new RdSh. state is the current value of a global
counter gRdShCtr that each upgrading transition to RdSh incre-
ments atomically. Threads use the counter ¢ to determine whether
they have already read an object in RdSh. state—or some other ob-
ject in another state RdSh_, where c¢’>c. This check ensures that
happens-before edges are established from the prior write to o to
each thread’s subsequent read of o.

On an upgrading transition to a RdSh state, such as the transition
from RdEx, to RdSh. in Figure 1, RECORD must record two
happens-before edges:

1. A happens-before edge from the DPL on T2 that changed
the same object to RdEx, state. This happens-before edge
is needed in order to transitively capture the cross-thread de-
pendence from the last write (by T1 in this case) to T3’s read.
Identifying this happens-before edge is difficult because the
DPL on T2 that changed the object to RdEx;, is no longer
known when T3’s upgrading transition happens. Instead, RE-
CORD records a more conservative happens-before edge: from
T2’s last transition of any object to RAdEx,.

2. A happens-before edge from the previous upgrade of any object
to RdSh, i.e., from the upgrade to RdSh__, (not shown in the
figure). This happens-before edge is needed to transitively cap-
ture all write—read dependences captured via fence transitions
(described shortly). For example, it is necessary to capture the
happens-before edge between transitions to RdSh, and RdSh_,
in order to transitively capture the dependence from T1’s write
of o to T5’s read of o. RECORD records this edge by recording
the new value of gRdShCtr, i.e., c.

The current thread T records both of these happens-before edges
using the following pseudocode:

T.log.recordEvent(UPGRADING, currentSitelD, T.dynCtr,
sourceThread.numConflReads, c);

where c is the result of atomically incrementing gRdShCtr, and
sourceThread is the thread such that the object’s old state is
RdEx

sourceThread*®

A same-thread upgrading transition from RdEx; to WrEx; does
not require recording happens-before edges (Table 1). Any cross-
thread dependences are implied by happens-before relationships
established as part of the prior transition to RdEx [11].

Fence transitions. Next in Figure 1, T4 reads o, triggering a
fence transition because T4’s thread-local read-shared counter
T4.rdShCount < c. The fence transition establishes a happens-
before relationship with T3’s transition to RdSh. and updates
T.rdShCount to c. When T5 reads o, T5 has already read an object
p in state RdSh_, ;. so no fence transition is triggered. However,
a transitive happens-before relationship with the prior write to o
has been established transitively by (1) the happens-before edge
from o’s RdSh, transition to p’s RdSh__ ; transition, (2) the fence
transition on T6 when accessing p, and (3) program order on T5.

At a fence transitions for an object in RdSh_ state, RECORD
records the happens-before edge from (1) the last upgrade to RdSh,
to (2) the current program point. Figure 1 shows two fence transi-
tions: one establishes a happens-before edge from T3 to T4, and the
other establishes an edge from T6 to T5. A thread records a fence
transition by recording the current DPL and the value of c in the
RdSh, state:

T.log.recordEvent(FENCE, currentSitelD, T.dynCtr, c);

where c is the value in the object’s state RdSh,.

5. Replaying Cross-Thread Dependences

This section describes REPLAY, a new dynamic analysis that en-
forces happens-before edges recorded by RECORD.

REPLAY does not track Octet states. It maintains DPL and reads
from per-thread logs (Section 3). At program memory accesses and
safe points, REPLAY perturbs execution to replay the same sources
and sinks of happens-before edges as during RECORD.

Replaying happens-before edges between memory accesses is
sufficient to enforce the same thread interleavings as during a
recorded run, so the replayed execution need not perform program
synchronization operations. In fact, the replayed execution must
elide synchronization operations in order to avoid deadlock, as
Section 5.2 explains.

5.1 Replaying Recorded Happens-Before Edges

REPLAY replays the same happens-before edges that RECORD
recorded. It must replay these happens-before relationships both
soundly and precisely. Missing a relation could lead to different in-
terleavings; strengthening a relation could lead to deadlock.? Dur-
ing REPLAY, each thread reads from the same per-thread log as
during RECORD. At a high level, a thread replays the source of a
happens-before edge by incrementing some counter (depending on
the type of edge recorded) at the same DPL as during RECORD. A
thread replays the sink of a happens-before edge by waiting, at the
same DPL as during RECORD, for the appropriate counter of the
source thread to reach the recorded value.

2 Note that RECORD is imprecise: it may record spurious happens-before
edges that do not represent real dependences in the program. Neverthe-
less, these edges represent a valid execution of the program, so as long
as REPLAY faithfully reproduces them, it will produce the correct result.
“Strengthening” in this context means introducing additional ordering con-
straints beyond what RECORD identifies.



Fast-path instrumentation. For accesses that do not trigger a
transition, RECORD records nothing. REPLAY optimizes for this
case by performing the following “fast-path” instrumentation at
each program memory access and safe point:

if (T.log.nextDynCtr == T.dynCtr &&
T.log. nextSitelD == currentSitelD) {
// Slow path: replay happens-before edge(s)
switch (T.log.nextEventType) {

}

. = o.f; // program memory access

This check succeeds only if the current DPL matches the DPL
of the next recorded event. If so, the instrumentation executes the
“slow path,” which replays happens-before edge(s) from one of the
following cases.

Conflicting transitions. Replaying a conflicting transition in-
volves replaying both the source and sink of the established
happens-before edge. Referring back to Figure 1 as an example,
REPLAY replays the happens-before edge from T1’s safe point to
T2’s load. REPLAY uses the following slow-path instrumentation
to replay the source of the happens-before edge:

case RESPONSE:
memory_fence;
T.responses++;
T.log.readNextEntry();
break;

The memory fence helps ensure visibility from the source to the
sink of the happens-before edge. The readNextEntry() operation
reads the next event from the log and updates the variables T.log.-
nextDynCtr, T.log.nextSitelD, T.log.nextEventType, and other event
data (depending on the event type).

To replay the sink of the happens-before edge, slow-path in-
strumentation performs the following instrumentation, which waits
for the source thread’s responses counter to “catch up” with the
recorded value:

case REQUEST:
S = T.log.nextSourceThread;
while (S.responses < T.log.nextExpectedResponses) {
memory_fence;

}

if (isRead) // Assist replay of
T.numConflReads++; // upgrading transitions

memory_fence;

T.log.readNextEntry();

break;

where T.log.nextSourceThread is the recorded responding thread,
and T.log.nextExpectedResponses is the recorded value of S.respons-
es. As part of replaying a transition to RdEx, T increments the
counter T.numConflReads, just as RECORD does, in order to help
replay upgrading transitions.

We note that in the above and following instrumentation, when-
ever REPLAY waits busily in a while loop, it minimizes the cost of
busy waiting by switching to non-busy waiting, e.g., waiting on a
monitor, after a threshold amount of time has elapsed (not shown
in the pseudocode).

Upgrading transitions. To replay an upgrading transition, a
thread must replay two recorded happens-before edges: one from
the last reader thread, and one that globally orders gRdShCtr incre-
ments. The following pseudocode shows how the instrumentation
slow path replays these happens-before edges:

case UPGRADING:
S = T.log.nextSourceThread;
while (S.numConflReads < T.log.nextNumConfIReads) {
memory_fence;

}
while (gRdShCtr < T.log.nextRdShCtr — 1) {
memory_fence;

}

gRdShCtr = T.log.nextRdShCtr;
memory_fence;
T.log.readNextEntry();

break;

where T.log.nextNumConflReads is the recorded value of S.num-
ConflReads, and T.log.nextRdShCtr is the recorded value of gRd-
ShCtr.

The current thread T first replays the happens-before edge from
the last reader thread, by waiting for it to reach the same point it
reached during RECORD. In Figure 1, T3 replays the edge from
T2 by waiting for T2 to perform the same number of conflicting
transitions involving a read (i.e., transitions to RdEx;,), which
guarantees that T3’s access transitively happens after the last write
(by T1).

Next, T waits for all prior gRdShCtr increments to occur, since
gRdShCtr increments are globally ordered. T waits until gRd-
ShCtr equals T.log.nextRdShCtr - 1; then it increments gRdShCtr
to T.log.nextRdShCtr.

Fence transitions. To replay a fence transition on an object in
RdSh, state, a thread needs to replay the happens-before edge from
the prior transition to RdSh.. Thread T’s instrumentation slow path
uses the following pseudocode to wait for gRdShCtr to reach the
expected value:

case FENCE:
while (gRdShCtr < T.log.nextRdShCtr) {
memory_fence;

}

memory_fence;
T.log.readNextEntry();
break;

where T.log.nextRdShCtr is the recorded value c¢ (from RdSh.). In
Figure 1, T4 replays a fence transition by waiting for the global
counter gRdShCtr to reach c. Similarly, T5 replays a fence transition
by waiting for gRdShCtr to reach c+1.

5.2 Eliding Program Synchronization Operations

Unlike most other record & replay systems, our RECORD and RE-
PLAY analyses do not record and replay the order of synchroniza-
tion operations such as lock acquire and release, monitor wait and
notify, and thread fork and join. By replaying all recorded cross-
thread data dependences, REPLAY preserves the same behavior
as the recorded execution. (We note that programs use synchro-
nization in order to limit shared-memory interleavings and provide
properties such as atomicity, ordering, and visibility. By replay-
ing data dependences faithfully, REPLAY naturally preserves these
properties.)

Not only can REPLAY avoid replaying synchronization opera-
tions, but it can elide synchronization operations. That is, during
REPLAY, REPLAY can compile synchronization operations as no-
ops. In fact, REPLAY must elide synchronization operations in or-
der to avoid deadlock. Consider the example in Figure 2. Suppose
during RECORD, T1 acquires m’s lock first, so T1’s store to o.f oc-
curs before T2’s load, and RECORD records a happens-before edge
from a safe point after T1’s critical section to T2’s load. If REPLAY
allowed synchronization operations to execute (without recording
and replaying synchronization operations), then T2 could acquire



// TI: /) T2:

synchronized (m) { synchronized (m) {
of = = o.f;

o )

Figure 2. An example cross-thread data dependence.

m’s lock first, making it impossible to replay the write-read depen-
dence on o. In that case, REPLAY would deadlock: T2’s load would
wait on T1’s store, while T1 would wait to acquire m.

In contrast, prior work typically records and replays synchro-
nization operations (Section 8). RECORD and REPLAY could re-
cord and replay the order of synchronization operations in addition
to cross-thread data dependences—incurring additional, unneces-
sary overhead.

Interestingly, by eliding synchronization operations, the re-
played execution can achieve better scalability than a normal ex-
ecution that includes synchronization. For example, two critical
sections that acquire the same lock but do not have a data depen-
dence between them, can execute in parallel in the replayed execu-
tion. Thus, the replayed execution often outperforms the recorded
execution, and it sometimes even outperforms baseline (uninstru-
mented) execution (Section 7.3).

5.3 Soundness of REPLAY

The correctness of record & replay relies on the observation that
value determinism (all reads performed by a replayed execution
produce the same results as the original recorded execution) is
achieved if all dependences in the recorded run are mimicked in
the replayed run.

To preserve all dependences between a recorded execution and
its replay, it suffices to preserve only cross-thread dependences.
Other dependences, which occur entirely on a single thread, will
be enforced by the reordering restrictions of the compiler and
hardware.

Prior work shows that Octet creates happens-before relation-

ships between all cross-thread dependences in the recorded run [11].

The information logged by RECORD during a recorded run is suf-
ficient to allow REPLAY to deterministically replay the recorded
execution:

Theorem 1. Given logs produced by RECORD during an execu-
tion, REPLAY deterministically replays that execution, preserving
all dependences.

Proof. We proceed by showing that every cross-thread dependence
in the recorded execution (hereafter referred to as rec) is respected
by the replayed execution (referred to as rep). We need only ac-
count for cross-thread dependences that are not transitively implied
by other dependences. We consider each type of dependence in
turn.

wx — wy In rec, this dependence is captured by RECORD as
a transition from WrEx, to WrEx,,, with Y as the requesting
thread and X as the responding thread. X’s log notes its DPL
when X increments its response counter, while Y’s log notes
the expected value of X’s response counter after the increment,
rcg. As X runs rep, it maintains a response counter, 7c. When
X reaches the dynamic program point where the coordination
occurred, it increments rc by 1. When Y reaches the point
where it made the request, it compares rcg to rc. If re > res,
B can be sure that A has already performed its write, and hence
B’s write will happen later, preserving the dependence.

rx — wy In rec, prior to performing wy, Y will find obj in either
RdEx, or RdSh, state. In either case, RECORD initiates coordi-
nation between X and Y. This scenario is therefore analogous
to that of the previous case, and wy will occur after rx in rep,
preserving the dependence.

wx — ry There are three possible types of RECORD state tran-
sitions in rec that might arise due to this dependence. (i)
WrEx, — RdEx,, requires coordination, and would be enforced
as in the previous cases. (ii) If WrEx, — RdEx, — RdSh., Y
reads obj after some third thread put it into RdEx, . In this case,
REPLAY uses a similar mechanism as above to ensure that Z has
moved past the point where it put obj into RdEx,, but using the
Z.numConflReads counter instead of the response counter. Note
that REPLAY will also cause Y to wait until any prior transitions
to RdSh are complete (i.e., transitions to RdSh_, where ¢’ < ¢).
(iii) ry could happen when obj was already in RdSh state. In
this case, we note that updates to gRdShCtr are replayed at the
correct times, and that during rec, Y would record c in its log
before performing ry . Before performing ry in rep, Y ensures
that gRdShCtr is at least the recorded value. This ensures that
all RAEx — RdSh transitions that happened before ry in rec
have happened in rep, again preserving the dependence.

All other dependences in the program are transitively implied by
some combination of these cross-thread dependences and intra-
thread dependences, which are maintained by the reordering rules
of the compiler and hardware. Hence, all dependences in rec are
preserved in rep, providing value determinism. O

6. Deterministic Execution

The prior sections described how to record and replay an ex-
ecution’s cross-thread data dependences. However, cross-thread
data dependences are not the only source of nondeterminism—
particularly for a managed language virtual machine (VM) such as
a Java VM (JVM). Language VMs incur significant nondetermin-
ism from features such as dynamic class loading, dynamic opti-
mization, and automatic memory management.

To demonstrate our REPLAY analysis, our goal is to provide
application-level determinism: the RECORD and REPLAY runs
should appear identical from the application’s perspective, i.e., the
two runs should perform the same loads from memory and get the
same values, and the two runs should produce the same output (i.e.,
perform the same system calls).?> Application-level determinism is
sufficient to handle the existing use cases for online and offline
record & replay: reproducing executions at a later time, for de-
bugging or understanding purposes; and running multiple identical
copies of processes simultaneous, for fault tolerance or distributed
dynamic analysis (Section 1).

To provide application-level determinism, the JVM internally
does not need to execute deterministically. However, some nonde-
terministic behaviors of the JVM affect application behavior that
would otherwise be deterministic. To provide application-level de-
terminism, the JVM must control these sources of nondeterminism.
‘We modify the JVM to handle sources of nondeterminism, either by
recording and replaying them or by making them inherently deter-
ministic.

To deal with two particularly challenging sources of nondeter-
minism—dynamic compilation and class loading—we introduce
a methodology called fork-and-recompile. We call the fork-and-
recompile methodology a “research methodology” because it is
not suitable for production environments. With substantially more

3 Note that because Java does not make object addresses available to the ap-
plication, application-level determinism does not require layout determin-
ism. However, it does require deterministic hash codes (Section 6.3).



engineering effort, we believe a JVM could be modified to control
sources of nondeterminism without requiring this methodology,
making it practical for production settings (Section 6.6).

The nondeterminism problems that this section addresses, and
the solutions that we introduce, are largely specific to managed
language VMs. Furthermore, some sources of nondeterminism are
likely to be relevant only to metacircular VMs (VMs written in
the same language that they implement) [32] such as Jikes RVM.
This section’s issues are not however limited to our RECORD and
REPLAY analyses, nor to their approach for representing dynamic
program location. Any system providing deterministic replay or
deterministic execution needs to deal with the VM- and system-
level sources of nondeterminism that this section tackles.

Since our efforts to provide application-level determinism are
largely at the implementation level, we first overview the imple-
mentations of RECORD and REPLAY. Subsequent subsections de-
scribe challenges and corresponding solutions for handling nonde-
terminism.

6.1 RECORD and REPLAY Implementation Overview

‘We have implemented RECORD and REPLAY in Jikes RVM, a high-
performance JVM [1]. Although Jikes RVM targets research, its
performance is competitive with commercial JVMs [7]. The RE-
CORD implementation builds on the publicly available Octet im-
plementation [11]. Our implementations of RECORD and REPLAY
are publicly available on the Jikes RVM Research Archive.*

Instrumentation. RECORD and REPLAY modify Jikes RVM'’s
dynamic compilers to instrument all application and Java library
code. However, Jikes RVM is itself written in Java, so the JVM
and the application call into the same Java libraries. RECORD and
REPLAY need to instrument libraries called from the application,
but not libraries called from the JVM. To accomplish this, we
have modified the dynamic compilers to produce two versions of
each library method: one for application context and one for JVM
context.

Maintaining DPL. During RECORD and REPLAY, each thread
T maintains its current DPL by incrementing T.dynCtr at every
method entry, method return, and loop back edge. During RECORD,
at every program point in the application that is a potential safe
point—meaning it might call into the VM and record a happens-
before source—instrumentation stores the current static site in a
per-thread variable. Combining this static site with T.dynCtr allows
RECORD to compute an application DPL even though the coordi-
nation response can occur within nested calls to the VM. REPLAY
executes instrumentation at every safe point that checks whether
the current DPL matches the next event in the current thread’s log.

Eliding synchronization operations. REPLAY modifies the dy-
namic compilers to ignore lock acquire and release operations (cor-
responding to synchronized blocks in the original Java code). RE-
PLAY modifies the VM’s implementations of Object.wait(), Ob-
ject.notify(), and Object.notifyAll() so that they have no effect if
the object’s lock is not held.

Instrumenting special accesses. The application performs some
memory accesses by calling into the VM to perform the accesses.
Examples are System.arraycopy() and Object.clone(), which call
into the VM; I/0O routines that read or write buffers; and calls from
native code that access the Java heap. We have identified these cases
and added explicit instrumentation so that RECORD and REPLAY
perform appropriate checks before these memory accesses.

4 http://www.jikesrvm.org/Resources/ResearchArchive/

6.2 Dynamic Compilation and Class Loading

Challenges of dynamic compilation. A compiled method may be
recompiled multiple times at different optimization levels. Method
inlining leads to different control flow, affecting the frequency of
T.dynCtr increments—and thus computing DPL nondeterministi-
cally. Optimizations may eliminate redundant loads and stores non-
deterministically.

Optimization decisions depend on timer-based sampling, and
optimized compilation is by default performed concurrently with
program execution [3], so optimization and execution of optimized
code are inherently nondeterministic from run to run. A produc-
tion implementation could, in theory, record and replay optimiza-
tion decisions. Jikes RVM does not provide such support. (We note
that Jikes RVM does support a methodology called replay compi-
lation that records some compilation decisions and profile infor-
mation, called “advice,” to make compilation decisions somewhat
deterministic in a run that uses the advice [23]. However, compiled
code is not deterministic between runs that generate and use the
advice. We thus do not use replay compilation.)

Challenges of dynamic class loading and initialization. When
a class is first accessed, the accessing thread triggers class load-
ing and initialization of the class. Which thread is first is nondeter-
ministic; application-level replay of cross-thread dependences does
not make class loading and initialization deterministic automati-
cally. Initializing a class involves calling the class’s static initializer
(static variable initialization and static {. .. } code blocks), which is
application code that must be executed by the same thread during
RECORD and REPLAY in order to provide determinism. Although
triggering of class initializers can, in theory, be recorded and re-
played, a more difficult problem is making custom class loaders
(class loaders that call code provided by the application) deter-
ministic. When a metacircular VM performs custom class loading,
the activities of the application and VM are tightly coupled, and
accounting for this coupling is difficult: application-context code
elides synchronization operations, but VM-context code perform
synchronization operations, leading to deadlocks that we have been
unable to avoid without compromising determinism.

Solutions. A production-quality implementation could address
the challenges of nondeterministic dynamic compilation, class ini-
tialization, and custom class loading by carefully recording and
replaying these behaviors. Instead, we introduce a methodology
called fork-and-recompile to sidestep these challenges and demon-
strate the correctness and performance of RECORD and REPLAY.

When using fork-and-recompile methodology, the JVM exe-
cutes two iterations of the program. The sole purpose of the first,
“warmup” iteration of the program is to compile all the code, and
load and initialize all classes. While these behaviors are nondeter-
ministic, both RECORD and REPLAY runs will start from the same
state after the warmup iteration finishes.

After the warmup iteration finishes, the JVM forks its process
using the fork system call. Since fork on Linux works correctly
only if the process has a single thread, our implementation first
forces all threads—any remaining application threads, as well as
JVM threads that perform compilation, GC, and profiling—except
the main thread to terminate. After fork returns, we designate the
child process as the RECORD process and the parent process as
the REPLAY process. The REPLAY process waits for the RECORD
process to complete. After the RECORD process completes, the
REPLAY process proceeds. With additional engineering effort, it
should be possible to run RECORD and REPLAY simultaneously,
with REPLAY reading directly from RECORD’s logs, demonstrating
online replay.

The RECORD and REPLAY processes each first recompile all
application-context methods with RECORD or REPLAY instrumen-



tation, respectively. They recompile each method using the same
optimizations from the warmup iteration, providing a realistic mix
of optimized and unoptimized code for evaluating performance.
The RECORD and REPLAY processes thus start from the same state
in terms of dynamic compilation and loaded and initialized classes.

6.3 Nondeterminism Caused by Garbage Collection

Challenges. Jikes RVM’s default high-performance garbage col-
lector (GC) is stop-the-world, parallel, and generational [9]. When
a thread’s allocation triggers GC, all threads stop at GC-safe points
(periodic program points where GC can happen safely). Then mul-
tiple GC threads perform either a nursery collection (which collects
only recently allocated objects) or a full-heap collection. When GC
is triggered is nondeterministic, even if the application executes de-
terministically, because the JVM allocates objects into the same
heap. Furthermore, stopping each thread at a GC-safe point is in-
herently racy and nondeterministic.

In theory, triggering GC nondeterministically might not affect
application-level determinism, but in practice, it presents several
challenges. Nondeterministic GC leads to different behaviors for
weak references and finalizers, whose behavior depends on when
dead objects are collected. Furthermore, low-level I/O routines in
Jikes RVM behave differently depending on whether buffer arrays,
provided as parameters, are in moving or non-moving spaces (since
the routines must operate on unmovable buffer objects).

Not only is nondeterministic triggering of GC problematic, but
so is the the operation of GC itself, which moves objects nondeter-
ministically during collection, leading to nondeterministic object
addresses. Furthermore, the addresses of newly allocated objects
are nondeterministic due to VM allocation nondeterminism and
GC nondeterminism. In theory, object addresses should not affect
application-level behavior since object addresses are not visible to
the application. However, in Jikes RVM and other JVMs, the de-
fault implementation of Object.hashCode() (i.e., the “identity” hash
code) returns a value based on the object’s address.’ Nondetermin-
istic hash code values can preclude application determinism; for ex-
ample, they affect layout and iteration order in a hash table whose
key objects use the identity hash code.

Solutions. To avoid conflicting with other replayed happens-
before edges and to avoid nondeterministic behavior of weak ref-
erences, finalizers, and I/O routines, the implementation records
and replays GC points. During RECORD, each thread that triggers
or joins a collection, records the event in its log: the DPL and
whether the collection was nursery or full-heap. During REPLAY,
threads perform GC at the recorded DPLs; they cannot trigger GC
otherwise.

To support application-level determinism, we allow object ad-
dresses to be nondeterministic but make hash codes deterministic.
RECORD and REPLAY instrument each object allocation so it sets
a dedicated header word to a deterministic encoding of the current
thread T and dynamic counter T.dynCtr. The identity hash code
operation Object.hashCode() reads from and returns this value.

Replaying GC points deterministically could, in theory, lead
to deterministic finalizer behavior. However, parallel GC identi-
fies finalizable objects in a nondeterministic order, so the finalizer
thread calls the objects’ finalize() methods in nondeterministic or-
der. While the implementation could potentially enforce a deter-
ministic order to calling the finalizers, for simplicity our implemen-
tation currently disables finalizers. This choice, while not appropri-
ate for a production implementation, does not necessarily violate

SIf GC moves an object whose Object.hashCode() method has been
called, GC annotates the moved object with its old address, so that Ob-
ject.hashCode() continues to return the same value.

semantics, since the JVM specification does not mandate timely or
eventual calling of finalizers [33].

6.4 Other Nondeterministic System Behavior

Challenges. Querying the current system time is inherently non-
deterministic and can affect application behavior nondeterministi-
cally. Nondeterministic I/O is similarly problematic, e.g., for inter-
active applications or network 1/O.

Solutions. Recording and replaying the value of system time
could be expensive if the application queries it often. Instead, our
implementation simulates deterministic time by keeping track of
a counter that represents “logical time.” It increments logical time
whenever time is queried. Although time is conceptually a global
value, for simplicity our implementation uses per-thread counters.
This approach will not work well if a thread compares a time value
from another thread or if time values need to correspond better to
actual time values. However, it works well enough for the programs
we evaluate.

Our implementation and experiments avoid most challenges of
nondeterministic I/O. We evaluate benchmarked programs that read
and write the file system deterministically, without reading from
nondeterministic I/O sources such as the console or network. The
implementation provides RECORD and REPLAY with the same ini-
tial directory structure by backing up the current directory’s con-
tents before RECORD starts, and restoring the same before REPLAY
starts. A production implementation would need to record and re-
play nondeterministic I/O sources and other system behavior such
as the side effects of system calls. In contrast, our goal is to pro-
vide the minimum system- and JVM-level determinism needed to
achieve application-level determinism for our evaluated programs,
in order to demonstrate and evaluate RECORD and REPLAY.

6.5 Verifying Determinism

Even if an execution replays successfully, how do we know that its
application-level behavior is the same as during the recorded ex-
ecution? We define “same behavior” as meaning that the program
performed the same loads from memory and got the same values.
The RECORD and REPLAY implementations support value logging
configurations that record (during RECORD) and check (during RE-
PLAY) the value of every program load and store—or a hash of the
last k£ values—ensuring that REPLAY’s enforcement of happens-
before edges is sufficient to produce value determinism.

The program should also perform the same system calls, e.g.,
output to the console. To ensure system call determinism, we rely
on each benchmark’s harness, which validates the contents of the
console output and output files.

6.6 Discussion: Making Determinism Practical

With significantly more effort, it should be possible to provide
determinism using standard “adaptive” methodology. A key chal-
lenge for our implementation is that Jikes RVM itself is written
in Java and shares many components with the application, includ-
ing the heap, the adaptive optimization subsystem, and the libraries.
Cleanly separating the JVM and application would make it substan-
tially easier and cheaper to provide application-level determinism.
For example, application object addresses could be made determin-
istic, automatically providing deterministic hash codes. Compila-
tion and class loading decisions could be recorded and replayed in
a way that would not interact poorly with the JVM.

7. Evaluation

This section evaluates the effectiveness and efficiency of RECORD
and REPLAY using our JVM determinism modifications and fork-
and-recompile methodology.



Threads Transitions triggered by memory accesses Log

All  Live | None Conflicting ~ Upgrading* Fence | MB/s

hsqldb6 402 102 | 6.9x108 9.1x10° 1.3x10°  6.3x10% 0.7
lusearch6 65 65 | 2.7x10 4.8x103 1.9x10%  2.5x10% | <0.1
xalan6 9 9 | 1.1x1010 1.8x107 23x10%  43x103 7.7
avrora9 27 27 | 5.8x10° 5.9x106 8.9x10°  4.4x10° 2.5
jython9 3 3 | 7.3x10° 5.1x10! 0 0| <0.1
luindex9 2 2 | 3.7x108 4.6x102 52x100  1.0x10° | <0.1
lusearch9 64 64 | 2.6x10° 3.7x103 79x10%  6.8x10% | <0.1
pmd9 5 5| 7.2x108 5.4x10% 6.8x103  2.0x10% 0.1
sunflow9 | 128 64 | 1.7x1010 7.2x103 52x103  2.1x10% 0.1
xalan9 32 32 | 1.1x1010 2.0x107 14x10%  6.0x10% 9.7
pjbb2000 37 9 | 2.1x10° 1.2x108 3.1x10°  3.1x103 1.1
pjbb2005 9 9 | 7.8x10° 4.6x107 6.4x105  1.5x107 438

Table 2. Characteristics of recorded and replayed executions, based on a statistics-gathering configuration of RECORD. *Upgrading
transitions exclude RdEx—WrExy transitions since RECORD does not record happens-before edges for them (Table 1).

7.1 Methodology

Benchmarks. Our experiments execute benchmarked versions of
large, real-world applications:

e the DaCapo benchmarks [8], versions 2006-10-MR2 and bach-
9.12 (distinguished with suffixes 6 and 9), excluding bench-
marks that are single-threaded or that (unmodified) Jikes RVM
cannot execute correctly

e fixed-workload versions of SPECjbb2000 and SPECjbb2005°

We exclude eclipse6 from most experiments because (1) it fails
with the fork-and-recompile methodology (we are unable to restart
eclipse6’s worker threads correctly), and (2) runtime support for
determinism causes eclipse6 to execute incorrectly.

Experimental setup. To account for run-to-run variability (due
to dynamic optimization guided by timer-based sampling) and any
machine noise, each performance result is the median of 15 trials.
We also show the mean, as the center of 95% confidence intervals.
We build and use a high-performance configuration of Jikes RVM
that adaptively optimizes the application as it runs. We let Jikes
RVM’s default high-performance garbage collector adjust the heap
size automatically.

Platform. The experiments execute on an AMD Opteron 6272
system with eight 2 GHz 8-core processors (64 cores total), running
64-bit RedHat Enterprise Linux 6.5, kernel 2.6.32.

We execute xalan9 using only 32 cores since it shows anomalous
performance using 64 cores: for xalan9 on 64 cores, all RECORD
and REPLAY configurations outperform the baseline (unmodified
JVM). Other researchers have observed that such anomalies are an
artifact of Linux thread scheduling decisions [6].

7.2 RECORD & REPLAY Characteristics

Table 2 shows statistics for recorded and replayed executions. Of 12
evaluated programs, 9 have at least 8 simultaneously live threads,
and 5 programs have at least 32 live threads. The next four columns
show that most accesses do not trigger a state transition, thus
requiring no logging. Programs with a higher rate of accesses that
trigger state transitions, incur higher costs (Section 7.3). The last
column of the table shows that programs with a higher rate of state
transitions lead to a higher rate of logging events, although the rate
does not exceed 10 megabytes per second.

The first column of Table 3 reports how frequently REPLAY
successfully provides deterministic replay. Each percentage is the

S http://www.spec.org/jbb200{0, 5},
~steveb/research/research-infrastructure/pjbb2005

http://users.cecs.anu.edu.au/

REPLAY default  Ignore HB edges  Keep sync.
hsqldb6 100% 0% 0%
lusearch6 100% 0% 0%
xalan6 100% 0% 0%
avrora9 100% 0% 0%
jython9 100% 0% 80%
luindex9 100% 0% 0%
lusearch9 100% 0% 0%
pmd9 100% 0% 0%
sunflow9 100% 0% 0%
xalan9 60% 0% 0%
pjbb2000 100% 0% 0%
pjbb2005 100% 0% 0%

Table 3. Percentage of five executions replayed successfully, for
various REPLAY configurations.

number of successfully replayed trials, out of five trials, using the
fork-and-recompile methodology. We enable value logging in order
to ensure that successfully replayed runs execute deterministically
(i.e., load the same value at each load). For most programs, the
default REPLAY configuration consistently replays recorded exe-
cutions successfully. For xalan9, REPLAY sometimes fails. These
failures are due to limitations of our implementation: sources of
nondeterminism that we have been unable to identify and address.
(REPLAY occasionally fails for a few other programs. We ran addi-
tional trials to verify that with high confidence, the expected num-
ber of successful trials, out of five, is closer to five than four.)

How do we know REPLAY is actually doing anything impor-
tant? That is, is it actually necessary to record and replay cross-
thread dependences in order to replay these programs determin-
istically? The Ignore HB edges configuration ignores recorded
happens-before edges during replay, but enables value logging. All
executions fail, either with value logging errors or other program
errors. The Keep sync. configuration performs synchronization dur-
ing replay, instead of eliding synchronization. All programs except
jython9, which has little multithreaded behavior, deadlock consis-
tently because they have conflicting critical sections that interleave
nondeterministically, similar to Figure 2. These configurations’
failures demonstrate that replaying these programs deterministi-
cally does not happen serendipitously. Instead, deterministic replay
requires recording and replaying cross-thread dependences accu-
rately, and eliding synchronization operations during REPLAY.

7.3 Performance

This section first evaluates RECORD by executing the JVM using
the default “adaptive” methodology in which the JVM recompiles
and optimizes methods at run time using online, sampling-based
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Figure 3. Performance of RECORD and two partial RECORD con-
figurations using default adaptive methodology. The graph ex-
cludes RECORD performance for eclipse6 because Jikes RVM with
our determinism modifications fails to execute eclipse6 correctly
(Section 7.1).
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Figure 4. RECORD and REPLAY performance using fork-and-
recompile methodology.

profiling. It then evaluates RECORD and REPLAY using our fork-
and-recompile methodology.

Adaptive methodology. Figure 3 shows the overhead that RE-
CORD adds to programs when using adaptive methodology. Each
bar is the run-time overhead over unmodified Jikes RVM. The first
bar is the overhead of using Octet to track cross-thread depen-
dences [11]. Octet adds 26% overhead on average. Programs with
a higher rate of state transitions—especially conflicting transitions
(Table 2)—incur more overhead. The program with the highest
overhead, pjbb2005, also has the highest rate of conflicting tran-
sitions. High-conflict programs are a general concern for the RE-
CORD analysis and other analyses built on top of optimistic track-
ing of dependences. Addressing this issue is beyond the scope of
this paper, but we note that our recent work develops a hybrid
of optimistic and pessimistic tracking that adaptively applies pes-
simistic tracking to high-conflict objects, reducing overhead sub-
stantially for high-conflict programs without significantly impact-
ing low-conflict programs [14].

Record nondet includes the additional costs to record happens-
before edges identified by Octet. These costs include writing
happens-before sources and sinks to per-thread logs on disk, incre-
menting T.dynCtr to maintain DPL, and setting the last application
site ID at every potential safe point that might call into the JVM.
This nondeterministic RECORD configuration adds an additional
17% overhead (relative to baseline execution) over Octet, and 43%
overall.

Finally, Record is the full default RECORD configuration. It
adds support for making some JVM features deterministic, such
as making GC, hash codes, and system time deterministic. These

features have their costs, e.g., deterministic hash codes must be ini-
tialized at allocation time, but together they add modest overhead:
6% (relative to baseline execution) on average over nondeterminis-
tic RECORD. Overall, RECORD slows program execution by 49%
on average.

These RECORD results serve as a comparison against the fol-
lowing results, which use the nonstandard fork-and-recompile
methodology but support both RECORD and REPLAY.

Fork-and-recompile methodology. Figure 4 shows the overhead
RECORD and REPLAY add over baseline (unmodified JVM) exe-
cution. All configurations, including the baseline, use the fork-and-
recompile methodology described in Section 6.2.

Record is the default recording configuration; it is the same as
the Record configuration from Figure 3. With fork-and-recompile
methodology, RECORD adds 44% overhead on average, which is
comparable to the 49% overhead using adaptive methodology (Fig-
ure 3). For some programs, the overhead of RECORD is substan-
tially different between the two methodologies. We find that dif-
ferences are due to the fact that adaptive execution includes com-
pilation time and spends time executing unoptimized code before
optimizing it, whereas fork-and-recompile methodology does not.
Shorter-running programs experience this effect more acutely than
longer-running programs.

Replay is the full default REPLAY analysis: it replays cross-
thread dependences, tracks DPL by updating T.dynCtr, and in-
cludes the determinism changes used by RECORD. We exclude
xalan9 because it almost never replays successfully without value
logging, although it often replays successfully with value logging
(Table 3), since its nondeterministic failures are timing sensitive.

Interestingly, REPLAY often outperforms RECORD. REPLAY
can provide lower overhead than RECORD because it is cheaper to
replay known dependences than to record unknown dependences.
In particular, RECORD requires that threads coordinate for a con-
flicting transition, but replaying a conflicting transition’s happens-
before edge requires no synchronization except memory fences.

REPLAY not only often does less work than RECORD, but RE-
PLAY also enables more parallelism than both RECORD and base-
line execution. By eliding program synchronization, REPLAY al-
lows code protected by critical sections and other synchronization
to overlap. For example, in Figure 2 (page 6), both threads can en-
ter their critical sections at the same time. The benchmark pjbb2005
uses coarse-grained synchronization that is more conservative than
the actual cross-thread data dependences. By eliding synchroniza-
tion and replaying only the cross-thread data dependences, REPLAY
outperforms baseline (unmodified JVM) execution.

On average, REPLAY’s run-time overhead is 29%. The over-
heads of RECORD and REPLAY compare favorably with the re-
ported overheads for other approaches that provide both online and
offline replay for racy executions on commodity systems [30, 48].
The highest-performing techniques that satisfy these criteria are
DoublePlay and Chimera [30, 48]; DoublePlay’s overhead is over
100% (unless twice as many cores are used), and Chimera’s over-
head for CPU-bound programs is 86% (Section 8.1).

8. Related Work

This section covers existing record & replay approaches, alterna-
tives to record & replay, and work that handles nondeterminism in
language VMs.

8.1 Record & Replay

Ignoring data races. RecPlay and JaRec record only high-level
races (races between synchronization operations), by recording de-
pendences among synchronization operations such as lock acquire—



release and monitor wait—notify [22, 46]. However, these ap-
proaches are unsound for executions with data races.

Is it practical to detect or eliminate all data races? Data races
are difficult to eliminate; programmers accidentally or intention-
ally introduce data races when trying to minimize synchronization
costs. Detecting or eliminating data races is a well-studied prob-
lem (e.g., [12, 21, 37]). Even with recent advances, dynamic ap-
proaches slow programs by about an order of magnitude [21]. Static
analysis can identify definitely data-race-free (DRF) accesses, but
sound static analysis reports many false positives for large pro-
grams (e.g., [37, 38, 50]). Dynamic analysis can avoid instrument-
ing these definitely DRF accesses, but instrumenting the remaining
accesses still slows programs substantially [15, 30, 49].

Avoiding explicit tracking of racy accesses. Several approaches
avoid explicitly detecting and recording the dependences between
racy accesses. Respec supports online replay by recording synchro-
nization operations and speculating that most data races do not lead
to external effects, but cannot provide offline replay without addi-
tional support such as probabilistic search [31]. DoublePlay sup-
ports both online and offline replay [48], but needs twice the num-
ber of cores to achieve low overhead. Without extra cores, Double-
Play adds 100% overhead.

Other approaches offer probabilistic offline replay based on
reproducing executions from limited recorded information, but do
not support online replay [2, 26, 34, 42, 51].

Tracking racy interleavings. Our approach records and replays
cross-thread data dependences explicitly. Prior work has also
tracked cross-thread data dependences, with various limitations.

Instant Replay and ORDER track dependences in racy execu-
tions by instrumenting all memory accesses, slowing executions
by about an order of magnitude [29, 53]. SMP-ReVirt and Scribe
use memory page protection to trigger hardware traps at poten-
tially conflicting accesses [20, 27]. Detecting sharing at page gran-
ularity with the expense of page faults is unlikely to scale well to
applications with significant true or false sharing. The Scribe au-
thors report low overheads for applications such as web servers
and web browsers that may not incur much shared-memory com-
munication [27]; it would be revealing to see how Scribe per-
forms on shared-memory-intensive applications such as PARSEC
and SPLASH-2. (Admittedly, our evaluation, which targets the Java
platform, also does not evaluate on PARSEC or SPLASH-2, which
are C/C++ programs.)

Chimera uses whole-program static data race detection to elim-
inate instrumentation at definitely data-race-free accesses [30].
However, the remaining instrumentation still slows programs by
more than an order of magnitude. Chimera reduces costs further
by converting fine-grained synchronization to coarse-grained syn-
chronization. However, this lock coarsening relies on profiling to
identify low-conflict regions suitable for the optimization. Chimera
slows programs by 86% on average for CPU-intensive benchmarks.
Our approach is complementary to Chimera’s and could potentially
be combined with it.

Light reduces run-time overhead by recording only cross-thread
write—read dependences [34]. As a result, Light requires offline
constraint solving to replay an execution, so it supports only offline
replay [34].

Prihofer et al. present an approach for recording and replaying
hard real-time programs [44]. The approach records an execution
by observing the order of inter-thread data dependences. It replays
an execution offline by reconstructing the order of real-time tasks
from the data dependences.

Custom hardware support can achieve low-overhead record &
replay by piggybacking on cache coherence protocols [24, 25, 36,

39, 43, 52]. However, manufacturers have been reluctant to add
complexity to already-complex coherence protocols.

8.2 Deterministic Execution

Run-time determinism. An alternative to record & replay is ex-
ecuting multithreaded programs deterministically [5, 18, 19, 35,
41]. Runtime determinism approaches face challenges similar to
those for record & replay. They either do not handle racy pro-
grams [41], add high overhead [5, 18], or require custom hard-
ware [19]. Dthreads provides determinism by mapping threads
to processes in order to provide separate address spaces for each
thread, which it merges at each synchronization point [35]. Its ap-
proach will not scale well to programs that use a lot of fine-grained
synchronization or cross-thread sharing of pages.

Language determinism. New languages can provide determin-
ism at the language level [10, 45]. Determinator provides deter-
minism with support from the programming model and operating
system [4]. Using these approaches requires rewriting programs.

8.3 Making JVMs Deterministic

Prior work has made JVMs deterministic through a combination of
controlling and recording nondeterministic behavior [16, 22, 53].
These approaches either modify JVMs written in C/C++ [16, 53]
or use dynamic bytecode rewriting [22]. Our implementation faces
a unique challenge: it targets a JVM written in Java that shares
components with the application.

Rather than producing a production-ready approach, our goal
is to evaluate the RECORD and REPLAY analyses, so we introduce
a methodology and JVM modifications that control most sources
of JVM nondeterminism. Prior work called Ditto also modifies
Jikes RVM, but its support for deterministic replay appears to
be quite limited: it can replay microbenchmarks only, not real
programs [47].

9. Conclusion

Our RECORD and REPLAY analyses demonstrate how to record and
replay cross-thread dependences efficiently. To evaluate REPLAY,
we have modified a JVM and introduced a methodology to support
application-level determinism. Our evaluation shows that RECORD
and REPLAY outperform competing approaches that target com-
modity systems, suggesting that this work represents an advance in
the state of the art for achieving practical multithreaded record &
replay in production systems.

A limitation of this paper’s solution to JVM nondeterminism is
that the fork-and-recompile methodology is not well suited to most
production settings. Future work could modify a JVM in order to
limit and control sources of nondeterminism, in order to provide
efficient multithreaded record & replay in production settings.
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