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Abstract

It is notoriously difficult to achieve both correctness and scalabil-
ity for many shared-memory parallel programs. To improve cor-
rectness and scalability, researchers have developed various kinds
of parallel runtime support such as multithreaded record & replay
and software transactional memory. Existing forms of runtime sup-
port slow programs significantly in order to track an execution’s
cross-thread dependences accurately.

This paper investigates the potential for runtime support to hide
latency introduced by dependence tracking, by tracking depen-
dences in a relaxed way—meaning that not all dependences are
tracked accurately. The key challenge in relaxing dependence track-
ing is to preserve both the program’s semantics and the runtime
support’s guarantees. We present an approach called relaxed de-
pendence tracking (RT) and demonstrate its potential by building
two types of RT-based runtime support. Our evaluation shows that
RT hides much of the latency incurred by dependence tracking, al-
though RT-based runtime support incurs costs and complexity in
order to handle relaxed dependence information. By demonstrating
how to relax dependence tracking to hide latency while preserving
correctness, this work shows the potential for addressing a key cost
of dependence tracking, thus advancing knowledge in the design of
parallel runtime support.

Categories and Subject Descriptors D.1.4 [Programming Lan-
guages]: Processors—Run-time environments

Keywords Runtime support for parallelism, dependence tracking,
multithreaded record & replay, software transactional memory

1. Introduction

Software must become more parallel in order to fully utilize hard-
ware that provides more, instead of faster, cores in successive gen-
erations. However, achieving both correctness and scalability for
shared-memory parallel programs is notoriously difficult. To this
end, researchers and practitioners have developed various kinds of
parallel runtime support that check or enforce concurrency cor-
rectness properties such as atomicity, data-race freedom, and deter-
minism. For example, multithreaded record & replay enables of-
fline debugging and online replication [18, 26, 27, 36, 52, 56, 60].

∗ This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

Transactional memory enforces atomicity, avoiding several chal-
lenges associated with using fine-grained locking [13, 21, 28, 30,
31, 33, 40, 41, 47, 51, 59, 62]. However, existing runtime sup-
port is impractical: it relies on unrealistic custom hardware, adds
high overhead, or has other serious limitations. This paper focuses
on runtime support for commodity systems, often called “software
only.” Runtime support generally needs to track (i.e., detect or con-
trol) cross-thread data dependences soundly, which entails using
synchronized instrumentation to ensure that each program access
and its instrumentation execute together atomically (Section 2.1).

This paper explores the potential for reducing the run-time over-
head of tracking dependences by relaxing the requirement that
runtime support must track all dependences accurately—while
preserving the runtime support’s guarantees and adhering to the
language’s semantics. We introduce relaxed dependence track-
ing (RT), which enables a thread to continue executing past a
memory access involved in a cross-thread dependence, without
accurately tracking the dependence. Our design of RT targets de-
pendence tracking based on so-called biased reader–writer lock-
ing [11, 14, 31, 32, 46, 48, 49, 57] (Section 2.2), which avoids
the costs of reacquiring a lock for non-conflicting accesses, but
incurs latency at conflicting accesses in order to perform coor-
dination among conflicting threads (Section 2.3). The high cost
of coordination provides both a challenge and an opportunity for
RT to hide this latency, by relaxing the tracking of dependences
at accesses involved in dependences. RT’s design consists of two
elements: a relaxed coordination protocol and support for relaxed
loads and stores. We show that in order to overlap relaxed loads and
stores with relaxed coordination correctly, relaxed stores should be
deferred, and relaxed loads should be logged and handled in a
runtime-support-specific way.

In addition to designing RT, we design two kinds of runtime
support that use RT: (1) an RT-based dependence recorder and
(2) an RT-based software transactional memory (STM) system. We
implement RT and the RT-based recorder and STM in a high-
performance Java virtual machine. We evaluate and compare per-
formance on a multicore platform running benchmarked versions
of large, real-world Java applications. On average across all pro-
grams, RT reduces overhead by 49% compared with strict depen-
dence tracking (ST)—this paper’s term for an existing approach
that tracks dependences accurately. In addition to reducing average
overhead, RT benefits several high-conflict programs substantially.
For programs that incur high coordination costs, RT speeds up exe-
cution significantly, achieving on average 84% of the ideal speedup
that would be possible if all coordination costs were hidden.

RT’s potential is limited by correctness constraints requiring
waiting at some program operations; we introduce and evaluate
optimizations for overcoming this limitation, but find they have
limited benefit. The RT-based recorder outperforms an ST-based
recorder by hiding coordination costs, although the improvement
is partially offset by recording more events than the ST-based
recorder. The RT-based STM’s ability to hide coordination costs is
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limited by correctness constraints, and its benefit diminishes with
more threads. It minimally outperforms an ST-based STM, but for
reasons not directly related to hiding coordination costs.

Overall, these results demonstrate the potential for using novel
mechanisms to address a key performance bottleneck of parallel
runtime support.

2. Background and Motivation

To check or enforce concurrency correctness properties, parallel
runtime support must track cross-thread dependences (i.e., write–
read, write–write, and read–write data dependences involving two
threads). In order to track dependences, runtime support must per-
form synchronized instrumentation at essentially every program
memory access. Tracking dependences by using biased locking of-
ten provides performance advantages, except that lock ownership
transfers incur expensive coordination among threads.

2.1 Tracking Cross-Thread Dependences

Runtime support generally needs to track cross-thread depen-
dences, which means doing one of the following:

Detecting (identifying) dependences: Runtime support includes
data race detectors (e.g., [23, 24]), atomicity checkers (e.g., [6, 25]),
and dependence recorders for record & replay (e.g., [11, 36]).

Controlling (enforcing) dependences: Runtime support includes
transactional memory (e.g., [28, 62]), memory model enforcement
(e.g., [44, 50]), and deterministic execution (e.g., [5, 43]).

For data-race-free (DRF) executions, tracking dependences re-
quires instrumenting only synchronization operations, since mem-
ory models for shared-memory languages guarantee serializability
of synchronization-free regions for DRF executions [1, 2, 9, 38].

However, programs routinely have intentional and unintentional
data races [36]. Thus, runtime support must instrument every access

that might be involved in a data race.1 Furthermore, to ensure that
dependences are captured soundly, runtime support needs to ensure
that an access and its instrumentation execute together atomically,
a property we call instrumentation–access atomicity.

To preserve instrumentation–access atomicity, runtime support

often synchronizes on a lock associated with each object2 (e.g., rep-
resented with an extra word in the object’s header). The runtime
support’s instrumentation acquires the lock for reading and/or writ-
ing the object. An implementation typically relies on atomic oper-
ations and memory fences, which introduce remote cache misses
and serialize in-flight instructions (e.g., [24, 25, 35, 36, 51]).

We note that some approaches have sidestepped these chal-
lenges but incur other limitations. For example, record & replay can
avoid tracking dependences by relying on replication and specula-
tion, but its performance relies on extra available cores [56]. Some
STMs avoid acquiring a lock for every accessed object in a trans-
action, but sacrifice scalability as a result (e.g., [20]). Some analy-
ses, notably data race detection, need not preserve instrumentation–
access atomicity, but still require instrumentation atomicity, which
ends up incurring similarly high costs [24, 39].

2.2 Tracking Dependences with Biased Locking

Prior work introduces so-called biased locking, in which each ob-
ject’s lock is “biased” toward one thread (or multiple threads in the
case of reader locks) [11, 14, 31, 32, 46, 48, 49, 57]. These “owner”
thread(s) can reacquire the lock without performing an atomic op-
eration or even a store. In order for a thread T to acquire a lock

1 Even after applying sound (no false negatives) static data race detection as
a filter, many accesses cannot be proven to be DRF [17, 23, 36, 58].
2 This paper uses the term “object” to refer to any unit of shared memory.

1 if (o. state != WrExT) {

2 slowPath(o); /∗ acquire o. state for write ∗/
3 }
4 o. f = ...; // program store to the object field o. f

5 if (o. state != WrExT &&

6 o. state != RdExT &&

7 (o. state != RdShc || T.rdShCount < c)) {
8 slowPath(o); /∗ acquire o. state for read ∗/
9 }

10 ... = o.f ; // program load to the object field o. f

Figure 1. Pseudocode for biased reader–writer locking’s instrumentation
fast path. T is the executing thread.

11 slowPath(o) {
12 state = o.state ;
13 // Handle non−conflicting state transitions :
14 if ( state == ...) { ...; return ; }
15 // Coordination for conflicting transitions :

16 while ( state == RdExInt
∗

|| state == WrExInt
∗

17 || !CAS(&o.state, state , RdExIntT )) { // or WrExIntT
18 state = o.state ; // re-read state
19 }
20 coordinate(getOwner(state));
21 o. state = RdExT; // or WrExT
22 }

23 coordinate(remoteT) {
24 response = sendCoordinationRequest(remoteT);
25 while (! response) {
26 response = status(remoteT);
27 }
28 }

Figure 2. Pseudocode for biased reader–writer locking’s slow path. T is
the executing thread.

owned by other thread(s), T must coordinate with the owner(s), so
that they do not continue to access the corresponding object racily.

This paper focuses on biased reader–writer locks, which sup-
port accesses to read-shared data more efficiently than writer locks.
We emphasize that our focus is on locks used to implement runtime
support—not on locks used by programmers in order to enforce
mutual exclusion in applications (Section 7).

Without loss of generality, this paper builds on one design of
biased reader–writer locks. The rest of this section describes this
design, which is most closely based on prior work called Oc-
tet [11]. Each object’s lock can have any of the following states:
WrExT (write-exclusive for thread T), RdExT (read-exclusive for
T), or RdShc (read-shared for all threads, subject to a counter c
that helps detect dependences from the last write soundly [11]).
Figure 1 shows the instrumentation that the compiler adds at each
program load and store; the instrumentation “acquires” a write or
read lock on the accessed object’s lock. If a thread already owns the
lock for an object, the instrumentation takes the synchronization-
free, write-free fast path. Otherwise, the instrumentation executes
the slow path, which changes the state and handles potential cross-
thread dependences, as described next.

2.3 Conflicts Require Coordination

When a thread needs to acquire a read or write lock that it does
not already own (e.g., at a read by T2 to an object whose lock is in
WrExT1 state), it must coordinate with the owner thread(s), so they
can acknowledge the ownership transfer and cease unsynchronized
accesses to the object.

Handling conflicting transitions with coordination. Suppose a
thread, called the requesting thread, reqT, wants to acquire an ob-
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(1) respT accessed an object o pre-
viously. (2) reqT wants to access
o. It changes o’s lock to RdExIntreqT

or WrExIntreqT, and enters a blocked
state, waiting for respT’s response.
(3) respT reaches a safe point.
(4) respT performs runtime-support-
specific actions and then responds.
(5) respT leaves the safe point. (6)
reqT sees the response. (7) reqT

changes o’s lock’s state to WrExreqT or
RdExreqT and proceeds to access o.

Figure 3. Coordination using an explicit request.

ject’s lock held in a conflicting state by other thread(s); each of
these other thread(s) is a responding thread, respT. If the object’s
lock is in WrExrespT or RdExrespT state, then there is one responding

thread, respT. If the object’s lock is in RdSh state, then all other
threads are responding threads, and reqT coordinates with each
responding thread separately. For simplicity of exposition, we de-
scribe the case of a single responding thread respT.

The pseudocode in Figure 2 shows the slow path.3 First, reqT
atomically changes the state of the object’s lock to an intermediate
state, RdExIntreqT or WrExIntreqT (depending on whether a read or write

lock is needed), with a CAS (line 17).4 The intermediate state sim-
plifies the protocol by allowing only one thread at a time to perform
a conflicting transition on an object’s lock. If there is another thread
that has already changed the object to an intermediate state, reqT
waits for the other thread to finish coordination (lines 17–19).

After reqT successfully changes the object’s lock state to
RdExIntreqT or WrExIntreqT, it coordinates with respT (line 20) to en-

sure that reqT’s state change does not interfere with respT’s
instrumentation–access atomicity. respT participates in coordina-
tion only when it is at a safe point: a program point that is def-
initely not in the middle of instrumentation or its corresponding
access—hence preserving instrumentation–access atomicity. Man-
aged language VMs already place safe points at periodic points in
compiled code (e.g., method entries and exits and loop back edges)
for profiling and timely yielding for parallel garbage collection.
Blocking operations such as waiting to acquire a program lock or
waiting for I/O are also safe points.

If respT is at a blocking safe point, reqT makes an implicit
request to respT (at line 24) by atomically updating respT’s status,
which respT will see when it leaves the blocking state. The helper
method sendCoordinationRequest() returns true if and only if it
performs an implicit request. Otherwise, reqT sends an explicit
request to respT: reqT sends a request to respT by adding a request
to respT’s request queue, and then must wait (lines 25–27) for
respT to reach a safe point to respond. While reqT is performing
coordination (lines 16–20, including the body of coordinate), it is
considered to be at a blocking safe point (mechanism not shown in
the pseudocode), to allow other threads to perform implicit requests
with reqT acting as a responding thread, thus avoiding deadlock.
Figure 3 illustrates how coordination works when using an explicit
request (this paper’s approach modifies only how explicit requests
work). Finally, reqT changes the state to WrEx

reqT
or RdEx

reqT
(line 21) and proceeds with its access to the field.

Coordination is expensive. As our results show (Section 6), coor-
dination can slow programs substantially, even for programs that
perform relatively few conflicting accesses (e.g., 0.1–1% of ac-

3 The pseudocode omits memory fences required by the implementation.
4 The atomic operation CAS(addr, oldVal, newVal) attempts to update addr

from oldVal to newVal, returning true on success.

cesses triggering coordination). The following table reports the av-
erage cost of coordination using explicit versus implicit requests,
compared with the cost of instrumentation that does not change the
lock’s state (Section 6.2 describes experimental methodology):

Same state Implicit request Explicit request

CPU cycles 47 360 9,200

Coordination is substantially more expensive than a same-state
check because coordination requires several memory accesses, in-
cluding atomic operations and memory fences. On average, coor-
dination using an explicit request is more than an order of magni-
tude more costly than using an implicit request, since an explicit
request incurs significant latency waiting for roundtrip communi-
cation. Our work thus focuses on optimizing coordination that uses
explicit requests.

3. Relaxed Dependence Tracking

The last section described prior work’s approach for tracking de-
pendences based on biased reader–writer locking. That approach
tracks each cross-thread dependence soundly (i.e., does not miss
any dependences), by waiting to acquire a read or write lock before
proceeding with each access. The rest of this paper refers to that
approach as strict dependence tracking (ST).

In contrast, this section introduces our novel approach called re-
laxed dependence tracking (RT), which relaxes the instrumentation–

access atomicity guarantee provided by ST,5 allowing threads to
continue executing program code without acquiring a dependence
tracking lock. The challenge in making RT work lies in preserving
both program semantics and runtime-support-specific guarantees.

RT consists of two components: A relaxed coordination proto-
col (Section 3.1) and support for performing relaxed accesses that
overlap with coordination (Section 3.2).

3.1 The Relaxed Coordination Protocol

In RT, a requesting thread does not wait for responses after sending
requests. Thus, a requesting thread receives responses at some later
point in its execution, and a requesting thread may have outstanding
requests for multiple objects simultaneously. To support this func-
tionality, the relaxed coordination protocol differs from the strict
coordination protocol in the following ways:

• A responding thread can respond either implicitly or explicitly,
depending on whether the requesting thread is blocking or ac-
tively executing program code.

• To support explicit responses, relaxed coordination extends
strict coordination’s request queue to a request-and-response
queue that holds both requests and responses. At safe points,
threads can receive not only requests, but also responses.

Figure 4 shows how the relaxed coordination protocol works. reqT
sends an explicit request to respT and continues execution. When
respT reaches a safe point, it responds to reqT either explicitly or
implicitly. If reqT is blocked, respT responds implicitly, as shown
in Figure 4(a), by first putting reqT into a “blocked and held” state
(so that reqT does not leave the blocking state unless it is “unheld”)
and then changing the object’s lock’s state. Finally, the responding
thread removes its hold on the requesting thread. Otherwise (reqT
is not blocked), respT responds explicitly, as Figure 4(b) shows, by
adding a response to reqT’s queue. Once reqT reaches a safe point,
it changes the object’s lock’s state.

Although Figure 4 shows a single requesting thread sending
requests to respT, multiple requesting threads can send requests to

5 Although our design of RT targets coordination latency introduced by
biased reader–writer locking, it should be possible to adapt RT to other
dependence-tracking mechanisms.
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(a) Implicit response: (1) respT accessed
o at some prior time. (2) reqT wants to ac-

cess o. It changes o’s lock to RdExIntreqT or

WrExIntreqT. (3) reqT proceeds without wait-

ing to receive respT’s response. (4) re-
spT reaches a safe point (SP) and (5) sees
reqT in a blocking state, so respT puts
reqT in a “blocked and held” state. (6) re-
spT changes o’s lock’s state to WrExreqT
or RdExreqT. (7) respT removes the hold

on reqT, then leaves the safe point. (8)
reqT finishes blocking, then waits until
all holds have been removed.

(b) Explicit response: (1) re-
spT accessed o at some prior
time. (2) reqT wants to ac-
cess o. It changes o’s lock to

RdExIntreqT or WrExIntreqT. (3) reqT

proceeds without waiting to re-
ceive respT’s response. (4) re-
spT reaches a safe point (SP),
(5) sends an explicit response,
and (6) leaves the safe point. (7)
reqT reaches a safe point and
sees the response. reqT changes
o’s lock’s state to WrExreqT or
RdExreqT.

Figure 4. The relaxed coordination protocol (for explicit requests only).

respT before respT reaches a safe point. When respT reaches a safe
point, it responds to each queued request in turn.

For a conflicting transition from WrExrespT or RdExrespT to

WrExreqT or RdExreqT, reqT receives just one response. In contrast,

for a transition from RdSh to WrExreqT, reqT may need to wait for

multiple responses. The protocol maintains a counter of unreceived
responses for each object lock in this situation, which responding
and requesting threads decrement as they respond implicitly and
receive explicit responses, respectively.

Figures 5 and 6 show the pseudocode for RT’s load and store
instrumentation. RT uses the same fast path as ST (Section 2.2),
except that it skips the original program access if it takes the
slow path, delegating the access to the slow path instead. For both
loads and stores, ST initiates coordination by changing the state of
the object to WrExIntT (line 14 in Figure 5) or RdExIntT (line 17 in
Figure 6) and sending a request to the responding thread (line 15
in Figure 5 and line 18 in Figure 6). After sending the coordination
request, T continues execution immediately, subject to constraints
about accessing objects that are not yet locked in the needed state.

Since T does not wait for responses, it instead receives re-
sponses at safe points (not shown). A responding thread responds
either implicitly or explicitly, depending on whether or not the re-
questing thread is at blocking safe point. Before T receives a re-
sponse, the conflicting object o stays in the WrExIntT or RdExIntT state,
since both T and other threads might perform accesses to it. If the
access is a store, and o is in RdExIntT state, RT upgrades the state

to WrExIntT (line 10 in Figure 5), in order to track relaxed stores,

introduced shortly. If o is locked in WrExInt
∗

but not WrExIntT (i.e.,
other threads performing relaxed stores to o), the access needs to
wait until the state has changed to a non-intermediate state. If the
access is a load, as long as o is in WrExInt

∗
or RdExInt

∗
, the access can

avoid performing coordination.
We note that RT’s relaxed coordination protocol differs from the

strict coordination protocol for explicit requests only. In RT, when
coordination uses an implicit request, it follows the same steps as
strict coordination.

1 if (o. state != WrExT) {

2 writeSlowPath(o, &o.f, newValue);
3 } else {
4 o. f = newValue; // original program store
5 }

6 writeSlowPath(o, addr, newValue) {
7 state = o.state ;
8 // Handle non−conflicting state transitions :
9 if ( state == ...) { ...; ∗addr = newValue; return; }

10 if ( state == RdExIntT ) { /∗ upgrading trans. to WrExIntT ∗/ }

11 boolean relaxed = true;

12 while ( state != WrExIntT ) {

13 if ( state != WrExInt
∗

&&

14 CAS(&o.state, state , WrExIntT )) {

15 relaxed = !sendCoordinationRequest(getOwner(state));
16 break;
17 }
18 state = o.state ; // re−read state
19 }
20 if ( relaxed ) {
21 storeBufferSet (addr, newValue); // defer the store
22 } else {
23 o. state = WrExT;

24 ∗addr = newValue;
25 }
26 }

Figure 5. The fast and slow paths of RT’s instrumentation at stores.

1 if (o. state != WrExT &&

2 o. state != RdExT &&

3 (o. state != RdShc || T.rdShCount < c))
4 ... = readSlowPath(o, &o.f); {
5 } else {
6 ... = o.f ; // original program load
7 }

8 readSlowPath(o, addr) {
9 state = o.state ;

10 // Handle non−conflicting state transitions :
11 if ( state == ...) { ...; return ∗addr; }

12 if ( state == WrExIntT && storeBufferContains(addr))

13 return storeBufferGet (addr);
14 boolean relaxed = true;

15 while ( state != WrExInt
∗

&& state != RdExInt
∗
) {

16 // Coordination for conflicting transition :

17 if (CAS(&o.state, state , RdExIntT )) {

18 relaxed = !sendCoordinateRequest(getOwner(state));
19 break;
20 }
21 state = o.state ; // re-read state
22 }
23 value = ∗addr;
24 if ( relaxed )
25 logLoadedValue(addr, value) ;
26 else

27 o. state = RdExT ;

28 return value ;
29 }

Figure 6. The fast and slow paths of RT’s instrumentation at loads.

Interestingly, the relaxed coordination protocol handles requests
and responses in a largely symmetric way. Requests and responses
each involve sending a message to another thread, either implicitly
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if the receiving thread is at a blocking safe point; or else explicitly
via a queue that the receiving thread processes at its next safe point.

3.2 Handling Relaxed Accesses

A thread T performs relaxed accesses6 to objects whose locks are
not (yet) in the needed state. RT defers a relaxed store until it re-
ceives coordination response(s) for the object’s lock. As we ex-
plain, relaxed stores still conform to the language memory model
as long as they are not deferred past synchronization release op-
erations. RT performs a relaxed load by loading from an object
before receiving coordination response(s) for the object’s lock. Re-
laxed loads do not affect program correctness, but they can affect
runtime support’s guarantees.

Relaxed stores. A thread T performs a relaxed store by deferring
the store, buffering the location (address) and new value in T’s store
buffer (line 21 in Figure 5). The intuition behind deferring stores is
that another thread may be simultaneously (racily) accessing the
same location, so allowing the store to be performed could cause
a cross-thread dependence to be missed. Once T gets exclusive
ownership of the conflicting object o (by changing o’s lock’s state
to WrExT), it performs all deferred stores to o using the store buffer.

For simplicity, our current design limits relaxed stores by T to
objects locked in WrExIntT state. (We have found that supporting
relaxed stores to other lock states provides little benefit.)

Deferring program stores changes program behavior since other
threads can read out-of-date values from the affected memory loca-
tions. However, language memory models, including for Java and
C++, allow substantial reordering of operations, except across syn-
chronization operations [1, 2, 9, 38], thus permitting significant de-
ferring of stores. To conform to the memory model and preserve
program semantics, the key constraint is that stores cannot be de-
ferred past program synchronization release operations (e.g., lock
release, thread fork, and Java volatile or C++ atomic writes).

Relaxed loads. At a relaxed load by T to an object o, T first checks
whether the same location has already been buffered in T’s store
buffer (line 12 in Figure 6). (T only needs to check its store buffer
if o’s lock is in WrExIntT state.) If so, T uses the store buffer’s value
(line 13 in Figure 6) instead of loading from memory. Otherwise,
T performs the load directly from memory (line 23 in Figure 6). A
relaxed load thus does not affect program semantics: the execution
still conforms to the memory model (since performing the load
would be permitted in the original program). However, a relaxed
load could certainly impact the correctness of runtime support that
needs to detect or control cross-thread dependences. In particular,
another thread might be simultaneously (racily) writing to the same
memory location, compromising the ability of runtime support to
capture the write–read or read–write dependence.

RT thus handles each relaxed load by logging the loaded value
in a runtime-support-specific way (line 25 in Figure 6). The intu-
ition is that logging the value enables runtime support to handle
all values resulting from potentially untracked cross-thread depen-
dences. For example, our RT-based dependence recorder logs the
value in order to assist replay (Section 4), and our RT-based STM
logs the value in order to validate it later (Section 5).

3.3 Optimizations at Synchronization Release Operations

As presented so far, a thread must wait at each program synchro-
nization release operation for every outstanding deferred relaxed
store (i.e., every entry in its store buffer). This restriction limits
RT’s ability to overlap coordination with program execution; we
have found that threads routinely end a critical section (by releasing
a lock) shortly after performing a store to a shared variable. Here

6 This paper’s relaxed accesses should not be confused with mem-

ory order relaxed operations on atomic variables in C/C++ [9].

we present two optimizations for avoiding waiting at release oper-
ations. As our evaluation shows, these optimizations have perfor-
mance benefits but also drawbacks that lead to mixed performance
relative to the base RT design described so far.

Defer release operations. Instead of waiting at a release opera-
tion for outstanding deferred stores, a thread can defer the release
operation. Our design currently supports deferring lock release op-
erations. To defer a lock release, a thread continues to hold the lock
past the release operation; the thread records the lock into a per-
thread lock buffer. It releases the lock only when all responses have
been received for deferred relaxed stores that executed before the
lock release (according to bookkeeping).

This behavior naturally preserves program semantics because
a thread continues to hold a lock while it waits for responses for
relaxed stores, effectively expanding the lock’s critical section—
making other threads wait and thus increasing lock contention.
Effectively enlarging critical sections can serendipitously avoid
some erroneous behaviors, which may be desirable or undesirable,
depending on the goals and setting.

Avoid stalling at release. An alternate approach is to permit a
thread T to continue execution at a release operation—as long as
no other thread may access the object(s) that are the targets of
deferred stores. A straightforward way to provide this restriction
is to disallow all accesses by other threads to objects locked in
WrExIntT state. (Note that, in contrast, the base RT design allows
loads, but not stores, to an object in any intermediate state.)

This optimization allows threads to continue without waiting at
release operations, but it incurs other costs because a thread T2

must wait to access an object locked in WrExIntT1 state.

4. Recording Dependences

This section shows how to use RT to optimize multithreaded record
& replay, which enables deterministically replaying a recorded
execution. Record & replay enables both offline debugging [36, 56]
and system features such as replication-based fault tolerance [12,
37]. Recording dependences efficiently is the key challenge of
multithreaded record & replay. However, recording dependences
is expensive due to the high cost of tracking dependences between
all potentially shared memory accesses [35, 36].

4.1 ST-Based Dependence Recorder

Prior work builds a dependence recorder, which we call the ST-
based recorder, on top of biased reader–writer locks that use strict
dependence tracking [11]. It records all happens-before edges [34]
at transitions between WrEx, RdEx, and RdSh states. It records
each happens-before edge by recording its source and sink, each
of which is recorded as a dynamic program location (DPL), which
consists of a static program location (e.g., method and line num-
ber) and a per-thread counter incremented at every method entry,
method exit, and loop back edge. Another execution can replay
these happens-before edges deterministically by making the sink
wait for its corresponding source to be reached.

4.2 RT-Based Dependence Recorder

Our RT-based dependence recorder extends the ST-based recorder
by using relaxed, instead of strict, dependence tracking. The RT-
based recorder allows relaxed loads and stores to objects that are
not yet “owned” by the current thread. Given this behavior, how
is it possible to record dependences accurately and thus guarantee
deterministic replay?

We refer back to Figure 4 on page 4 for examples of happens-
before edges recorded by the RT-based recorder. For an implicit
response, at point #6, respT records the source of the edge. At point
#8, reqT records the edge’s sink. For an explicit response, respT
records the source at point #5, and reqT records the sink at point
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#7. Note that if the replayed execution replays these same edges,
it will not necessarily reproduce the same behavior because the
relaxed accesses at point #3 (and other relaxed accesses potentially
overlapping with coordination) are not ordered by the edge.

The key to addressing this problem is to record enough informa-
tion about loads and stores that are not well-ordered by happens-
before edges, such that they can be replayed faithfully.

Handling stores. To handle deferred stores to objects locked in
WrExIntreqT state, the RT-based recorder uses the following strategy:

reqT records an event for each deferred store, to indicate that
the store should also be deferred during replay. When stores are
performed from the store buffer at a safe point, reqT records an
event indicating that deferred stores should be performed at that
safe point. By referring to indices of entries in the store buffer,
the recorded event unambiguously indicates which stores should be
performed from the store buffer at each safe point during replay.

Handling loads. When a requesting thread reqT loads a value from
an object whose lock is in an intermediate state, the responding
thread may be simultaneously writing the object. Thus, it does not
seem possible to record a happens-before edge that will yield the
same value for the load. Instead, reqT records the value returned
by the load (at point #3 in both Figure 4(a) and Figure 4(b)). A
replayed execution can reuse this value to ensure determinism.

During the recorded execution, subsequent loads to the same
memory location record the (possibly updated) loaded value.
Whenever reqT handles a load by getting the value from its store
buffer (Section 3.2), it still records the value in its log, so a re-
played execution can load the correct value without needing to
know which loads should read from the store buffer.

Value determinism. Our RT-based recorder provides value deter-
minism, i.e., each load reads the same value during replay as dur-
ing record. If a load was relaxed during record, it will load from
the log during replay. Notably, this value will match the value of
the variable in memory (i.e., the value that would normally have
been loaded from memory) unless there is a data race. Other ef-
ficient record & replay techniques, such as DoublePlay [56] and
Respec [37], provide output determinism, which is weaker than
value determinism but is still useful for both offline replay (e.g.,
replaying buggy executions) and online replay (e.g., replicating a
multithreaded process).

5. Software Transactional Memory

This section describes how we extend an existing software transac-
tional memory (STM) system to use RT. In essence, our RT-based
STM combines lazy and eager concurrency control in a novel way:
it uses eager mechanisms for most accesses and lazy mechanisms
for accesses that would otherwise incur latency.

5.1 ST-Based STM

Prior work introduces an STM that uses biased reader–writer locks
that employ strict dependence tracking [62]. We call this STM the
ST-based STM. The ST-based STM employs biased reader–writer
locks to provide eager concurrency control: it detects and resolves
conflicts before performing each memory access. Conflict detection
and resolution piggyback on coordination.

Here we focus on how the STM piggybacks on coordination that
uses an explicit request. In that case, the responding thread detects
and resolves conflicts between the responding thread’s transaction
and the requesting thread’s transaction or non-transactional access.

5.2 RT-Based STM

Extending the ST-based STM to use RT presents challenges. Un-
less handled properly, the STM could be unable to detect and re-
solve transactional conflicts for relaxed loads and stores. Figure 7

Figure 7. Allowing unhandled relaxed accesses in transactions would lead
to serializability violations. The values in parentheses after each executed
store and load are the values written and read, respectively.

shows an example of a problematic execution. Thread T2 performs
two relaxed loads from o.f in a transaction, since o’s lock is in
WrExT1 state. T1 performs conflict detection when it responds to
T2, but by then T1 has started another transaction that has not ac-
cessed o, so T1 accurately reports no transactional conflict. How-
ever, the result is unserializable because T2’s loads see different
values. Another problematic issue (not shown) is that performing
relaxed transactional stores directly could lead to unserializable re-
sults due to another thread loading the value simultaneously.

Our RT-based STM addresses these issues as follows. In the RT-
based STM, each relaxed, transactional load logs its loaded value,
and validates the value later. (In Figure 7, T2’s transaction would
fail the read validation before commit and abort.) Each relaxed,
transactional store is deferred, to provide opacity of intermediate
updates before the transaction commits. Before a transaction com-
mits, it waits for coordination responses so it can validate all re-
laxed loads and perform all deferred stores.

Relaxed loads. A requesting thread reqT performs a relaxed load
when it reads from an object o locked in the WrExIntreqT or RdExIntreqT

state. reqT first checks its store buffer for the value (only if the ob-
ject’s state is WrExIntreqT). If not found, reqT performs the load—but

responding thread(s) may be simultaneously writing to o, poten-
tially violating serializability. reqT thus logs the loaded location
and value in a read validation log.

When reqT receives the response for o, it validates all entries in
the read validation log against o’s current value(s), as the following
pseudocode shows:

foreach (addr, value) in readValidationLog
if (∗addr != value) abortTxn();

For every field or array element of o in the read validation log, the
current value must match the log’s value. This logic makes sense as
follows. The responding thread responded at some safe point where
it performed conflict detection (and potentially conflict resolution).
Validating the loaded value ensures that the values that were read
previously for o are the same as if the values had all been read at the
responding thread’s responding safe point. If validation fails, reqT
must abort its current transaction. (If respT responds implicitly, it
performs the above work on behalf of reqT.)

Relaxed stores. A requesting thread reqT defers a relaxed store
by buffering its location (address) and value in the store buffer,
which is analogous to the redo log used by STMs that use lazy
versioning [29]. After reqT receives all responses for o, it performs
the store(s) for o from the store buffer—and also logs the store(s) in
the undo log. (If respT responds implicitly, it performs all of these
actions on behalf of reqT.)

Commit and abort. Before a transaction commits or aborts, it waits
for all outstanding responses, in order to validate loads and perform
deferred stores. Unlike our general RT design, our RT-based STM
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does not support loads by T to objects locked in intermediate states
other than WrExIntT and RdExIntT ; supporting loads from other states
would require a mechanism for eventually changing the lock’s state
to WrExT, RdExT, or RdSh in order to validate reads before commit.

Guaranteeing progress. The ST-based STM guarantees progress
by detecting all conflicts eagerly and then aborting the younger
transaction [54, 62]. However, the RT-based STM cannot guarantee
progress, since any transaction that fails read validation must abort.
Other mixed-mode STMs have similarly lacked progress guaran-
tees [30, 47]. Standard techniques such as exponential backoff can
help to alleviate livelock. For the RT-based STM, a simple (unim-
plemented) solution exists: if a transaction repeatedly fails read val-
idation, it falls back to use strict dependence tracking, guaranteeing
it will commit (at least once it becomes oldest).

Correctness. At a high level, the RT-based STM provides serializ-
ability by guaranteeing that all of a committing transaction’s oper-
ations appear as though they happened instantaneously at commit
time. For conflicting accesses handled by ST, eager conflict de-
tection and resolution guarantee that conflicting accesses between
the committing transaction’s accesses and commit time will be de-
tected and resolved. (The RT-based STM uses the same mechanism
for relaxed stores, but defers making the store visible until relaxed
coordination has finished.) For relaxed loads, commit-time value
validation ensures that each value from a relaxed load is consistent
with the commit-time value of the memory location.

Semantics. Lazy read validation can lead to so-called zombie
transactions whose behavior is impossible in any serializable ex-
ecution [29]. In managed languages such as Java, zombies are
not a serious problem because memory and type safety are pre-
served [19, 40]. Targeting a native language such as C++ would
require additional support to provide sandboxing of zombie trans-
actions [19]. Another issue is that zombie transactions can get stuck
in infinite loops that are impossible in any serializable execution.
The RT-based STM cannot experience this issue because it vali-
dates relaxed loads within a bounded amount of time.

Comparison with prior work. Most STMs employ either entirely
lazy or entirely eager concurrency control (e.g., [20, 22, 54, 62]).
Some STMs combine lazy and eager mechanisms, by using eager
concurrency control for writes and lazy validation for reads [30,
47]. The RT-based STM combines eager and lazy concurrency
control in a novel way, using eager and lazy concurrency control
for non-conflicting and conflicting accesses, respectively.

6. Evaluation

This section first evaluates the performance and run-time character-
istics of relaxed dependence tracking (RT) without runtime support,
compared with strict dependence tracking (ST). It then evaluates
the two case studies of runtime support built upon RT, compared
with ST-based approaches.

6.1 Implementation

We have implemented RT and the RT-based recorder and STM in
Jikes RVM, a Java virtual machine (JVM) [3, 4] that performs com-
petitively with commercial JVMs [7]. We have made our imple-
mentations publicly available on the Jikes RVM Research Archive.

Our RT implementation builds on the publicly available ST
implementation called Octet [11]. Our RT-based recorder builds
on the publicly available ST-based recorder [10, 11]. Our RT-
based STM builds on the publicly available ST-based STM called
LarkTM [62]. Our implementations reuse features of the ST-based
implementations as much as possible.

6.2 Methodology

Benchmarks. The experiments execute the following benchmarks:

• Benchmarked versions of large, real programs: the DaCapo
benchmarks, versions 2006-10-MR2 and 9.12-bach (2009) [8],
excluding single-threaded programs and programs that Jikes
RVM cannot execute

• Business logic benchmarks: fixed-workload versions of SPEC-
jbb2000 and SPECjbb20057

• Medium-sized benchmarks that stress various multithreaded
execution scenarios: the Java Grande benchmarks (excluding
microbenchmarks) [53]

• Transactional benchmarks: the STAMP benchmarks [16],
ported to Java providing six working programs [21, 33, 62]

Experimental setup. For each implementation, we build a high-
performance configuration of Jikes RVM. Each performance result
is the median of 25 trials. We also show the mean, as the center of
95% confidence intervals.

Platform. Experiments execute on a machine with 4 Intel Xeon
E5-4620 8-core processors (32 cores total) running Linux 2.6.32.

6.3 Evaluating Relaxed Dependence Tracking

This section evaluates RT and compares it with ST, by executing
instrumentation that tracks dependences but provides no runtime
support on top of it.

Measuring the problem. We first measure the cost of ST, as well
as the maximum benefit that can be obtained from optimizations.
Figure 8 shows runtime overhead of three configurations over an
unmodified JVM. Each configuration instruments accesses to track
dependences using biased reader–writer locks. The first configu-
ration, ST, uses strict tracking (as described in Section 2.3) and
adds 139% overhead on average. This overhead varies consider-
ably across the evaluated programs; the overhead for each program
is closely linked to the fraction of accesses that trigger coordination
using explicit requests (as shown later in this section), which is the
main cost of tracking dependences.

Ideal is an unsound configuration that eliminates most of the
cost of strict coordination. In this configuration, after a thread sends
an explicit request, it continues execution without waiting for any
response. Responding threads in turn ignore requests. This config-
uration attempts to estimate an upper bound on the performance
that RT might be able to provide. On average, Ideal adds 82%
overhead—a little more than half of the overhead added by the
sound configuration. The remaining costs are due to fast-path in-
strumentation at every access, as well as other transitions, includ-
ing conflicting transitions that trigger coordination using implicit
requests. In addition, although requesting threads do not wait for
responses and responding threads ignore requests, Ideal incurs re-
mote cache misses by sending explicit requests.

RT’s effectiveness at hiding coordination costs. Figure 8’s last
configuration, RT (no stall at unlock), uses relaxed dependence
tracking with the second optimization from Section 3.3. Its over-
head over baseline execution is 90%, a significant reduction (49%
relative to baseline execution time) from ST’s 139% overhead. Fur-
thermore, RT achieves much of the maximum possible benefit, ap-
proaching Ideal’s 82% overhead.

We note that for sparse, RT significantly outperforms the Ideal
configuration. This counterintuitive result is due to the fact that
the Ideal configuration estimates the cost of coordination without
latency, but it does not account for potential other improvements
that RT might provide. As we show later in this section, RT can
reduce the number of conflicting transitions (compared with ST);

7 http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.edu.au/

~steveb/research/research-infrastructure/pjbb2005
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Figure 8. Run-time overhead added to an unmodified JVM by capturing dependences using (1) ST, compared with (2) an ideal, unsound configuration that
eliminates coordination latency and (3) RT.
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Figure 9. Speedup of RT relative to ST. Ideal is an unsound configuration that provides an upper bound on RT’s performance.

RT reduces sparse’s conflicting transitions substantially, leading to
significantly lower overhead than for Ideal.

Figure 9 is a speedup graph (higher is better) that shows the
same configurations as Figure 8 plus two additional RT configura-
tions. The RT configurations, which are all sound, are as follows:

RT (stall at unlock): The default design from Section 3. Threads
wait at synchronization release operations for all outstanding
relaxed stores.

RT (defer unlock): The first optimization described in Section 3.3.
At a lock release, a thread defers the lock release if there are
outstanding relaxed stores.

RT (no stall at unlock): The second optimization described in
Section 3.3 (and also shown in Figure 8). At a lock release,
a thread continues execution even if there are outstanding re-
laxed stores. However, no thread except T can read from an
object locked in WrExIntT state.

The three RT configurations each provide an average speedup of
1.16–1.26X over ST. These speedups are not far from the average
speedups achieved by Ideal (1.31X), suggesting that RT is getting
most of the maximum possible benefit from hiding the cost of
coordination due to explicit requests.

While the RT configurations outperform ST and get close to
Ideal’s performance on average, RT does not help much with the
gap between ST and Ideal in several cases (hsqldb6, xalan6, avrora9,
xalan9, grand sor, and montecarlo). As we show later, RT changes
the balance of explicit versus implicit coordination requests (rela-
tive to ST), by causing threads to spend more time executing code
instead of blocking at safe points. This change cancels out RT’s
potential performance benefits in several cases, and it represents a
challenge for future work. Another significant source of RT over-
head is bookkeeping costs: its queue representation leads to more

costs than for ST, and keeping track of relaxed events and accesses
requires performing additional work.

The RT (defer unlock) configuration does not improve perfor-
mance on average (nor significantly for any individual program)
compared with the RT (stall at unlock). Although deferring lock
release operations has the potential to hide coordination latency,
it incurs two additional costs. First, deferring releases incurs addi-
tional bookkeeping costs. Second, deferring releases often changes
the balance between explicit and implicit requests triggered for
coordination, since threads are more likely to be executing code
rather than blocked at release operation waiting for coordination
responses. These factors are enough to outweigh any potential ben-
efit provided by deferring unlocks.

Similarly, the RT (no stall at unlock) configuration helps hide
latency, but it introduces another source of latency: a thread (except
for T) must wait to read an object locked in WrExIntT state. On
average, these factors cancel each other, so RT (no stall at unlock)
provides almost no average benefit over RT (stall at unlock).

Run-time characteristics. Next we focus on understanding factors
contributing to the performance difference between RT and ST.
Table 1 reports runtime statistics for tracking dependences with RT
and ST. The table uses the RT configuration RT (no stall at unlock).

For each type of coordination, Lock state transitions counts
how many accesses execute instrumentation that requires either
no lock state change (Same state) or a Conflicting transition that
triggers coordination. An interesting point is that RT sometimes
reduces how many conflicting transitions occur, relative to ST.
This phenomenon occurs because of cases in which an object is
heavily contended, and two or more threads repeatedly transfer
its ownership in quick succession. When using ST, a thread must
wait for coordination at each access, enabling another thread to
make progress and trigger coordination for the next access to the
object, leading to many conflicting transitions. In contrast, when
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Strict dependence tracking Relaxed dependence tracking

Lock state transitions Coord. requests Lock state transitions Coord. requests Coord. responses Relaxed accesses

Same state Conflicting Explicit Implicit Same state Conflicting Explicit Implicit Explicit Implicit Read Write

eclipse6 1.2×1010 1.4×105 (0.0011%) 1.6×104 2.9×105 1.2×1010 1.4×105 (0.0011%) 1.1×104 2.6×105 9.6×103 1.4×103 1.4×104 4.8×103

hsqldb6 6.2×108 9.0×105 (0.14%) 3.5×104 3.8×106 6.2×108 9.0×105 (0.14%) 3.4×104 4.4×106 3.1×104 3.5×103 4.7×104 3.8×104

lusearch6 2.4×109 4.4×103 (0.00018%) 2.3×103 4.5×103 2.4×109 4.4×103 (0.00018%) 2.3×103 4.6×103 8.8×102 1.4×103 2.2×103 2.1×103

xalan6 1.1×1010 1.9×107 (0.17%) 1.3×107 5.9×106 1.1×1010 1.9×107 (0.17%) 1.4×107 5.2×106 1.3×107 6.3×105 1.6×107 1.8×107

avrora9 6.1×109 5.9×106 (0.097%) 4.1×106 1.8×107 6.1×109 5.7×106 (0.093%) 2.8×106 1.4×107 2.2×106 5.5×105 2.1×106 1.9×106

jython9 5.1×109 6.6×101 (0.0000013%) 1.8×101 1.5×100 5.1×109 6.2×101 (0.0000012%) 1.5×101 4.5×100 1.3×101 2.0×100 2.3×101 0

luindex9 3.5×108 3.7×102 (0.00011%) 1.5×101 3.3×102 3.5×108 3.7×102 (0.00011%) 1.2×101 3.3×102 9.5×100 3.0×100 1.9×101 2.5×100

lusearch9 2.4×109 2.9×103 (0.00012%) 4.6×103 4.4×103 2.4×109 2.9×103 (0.00012%) 5.0×103 3.3×103 1.3×103 3.7×103 6.4×103 4.1×102

sunflow9 1.7×1010 1.4×104 (0.000078%) 1.5×104 7.6×103 1.7×1010 9.3×103 (0.000054%) 9.6×103 8.7×103 3.3×103 6.3×103 2.4×105 8.4×103

xalan9 1.0×1010 1.8×107 (0.18%) 9.7×106 8.7×106 1.0×1010 2.0×107 (0.20%) 1.3×107 7.1×106 1.3×107 6.4×105 2.0×107 2.1×107

pmd9 5.7×108 4.4×104 (0.0077%) 3.1×104 5.3×104 5.7×108 4.3×104 (0.0075%) 2.7×104 4.9×104 2.0×104 6.9×103 2.5×104 3.4×104

pjbb2000 1.7×109 9.5×105 (0.055%) 6.2×104 9.0×105 1.7×109 9.5×105 (0.055%) 6.1×104 9.0×105 5.7×104 3.5×103 2.3×105 9.7×104

pjbb2005 6.6×109 4.6×107 (0.69%) 3.2×107 5.7×107 6.5×109 4.1×107 (0.61%) 2.5×107 6.2×107 1.9×107 5.5×106 1.2×107 1.6×107

lufact 8.0×109 6.0×105 (0.0075%) 5.3×106 1.4×106 8.4×109 5.2×105 (0.0061%) 8.5×105 8.4×105 3.3×105 5.3×105 1.2×107 3.1×105

series 4.0×106 2.0×106 (33%) 2.0×106 3.0×104 4.0×106 2.0×106 (33%) 1.4×106 6.2×105 1.2×106 1.4×105 1.2×102 1.4×106

sparse 6.7×109 2.4×108 (3.4%) 3.8×108 8.3×107 6.0×109 4.5×107 (0.74%) 3.1×107 1.8×107 2.8×107 3.3×106 5.0×108 4.9×108

grande sor 3.7×109 3.9×104 (0.0011%) 4.2×105 1.2×105 3.6×109 3.9×104 (0.0011%) 3.7×105 1.3×105 4.2×104 3.3×105 8.8×104 2.8×104

moldyn 4.0×1010 9.7×107 (0.25%) 1.7×108 8.0×107 3.3×1010 8.5×107 (0.26%) 7.8×107 5.3×107 4.9×107 2.9×107 6.6×107 5.3×107

montecarlo 2.4×109 5.2×105 (0.022%) 3.2×105 2.0×105 2.4×109 4.3×105 (0.018%) 2.7×105 1.5×105 2.5×105 2.2×104 2.2×105 3.1×105

crypt 5.2×108 3.9×107 (7.0%) 3.9×107 3.2×105 5.2×108 7.4×106 (1.4%) 4.8×106 2.6×106 4.8×106 1.1×104 2.2×103 3.7×107

raytracer 3.3×1010 1.1×104 (0.000032%) 7.1×103 5.2×103 3.3×1010 1.1×104 (0.000032%) 5.6×103 6.4×103 4.4×103 1.2×103 1.6×105 1.6×103

Table 1. Run-time characteristics of strict and relaxed dependence tracking.

using RT—particularly when executing past release operations as
permitted by the RT no stall at unlock configuration—a thread is
more likely to perform consecutive relaxed accesses to a contended
object, leading to fewer conflicting transitions, compared with ST.
This effect is directly responsible for RT outperforming the Ideal
configuration for sparse.

The Coord. requests columns count explicit and implicit re-
quests, which can sum to more than Conflicting transitions because
RdSh-to-WrEx transitions involve multiple requests. Programs with
more explicit requests generally have higher coordination overhead
and can benefit more from RT.

The Coord. responses columns tally RT responses. Each sum
equals the number of explicit requests, since there is one response
for every explicit request. Since explicit responses do not incur
latency, the ratio of explicit to implicit responses does not affect
performance significantly.

The last two columns count relaxed accesses. While some of
these accesses immediately follow coordination requests, others are
repeat accesses to the same memory location or loads from objects
for which some other thread has initiated coordination. Due to
these cases, relaxed accesses can outnumber conflicting transitions.
On the other hand, conflicting transitions can outnumber relaxed
accesses, since an implicit request does not lead to a relaxed access.

6.4 Performance of Runtime Support

This section evaluates whether RT can benefit runtime support
that detects cross-thread dependences (dependence recorder) and
controls cross-thread dependences (STM).

Dependence recorder. Figure 10 shows the performance of the ST-
and RT-based recorders. Not surprisingly, the performance story
for the recorders is similar to the story for tracking dependences
alone. On average, the RT recorder is 1.23X faster than the ST-
based recorder, and four benchmarks show large improvements.

We note that although RT can hide coordination latency, the
RT-based recorder still needs to record each happens-before edge.
Some relaxed loads can avoid conflicting transitions and coordi-
nation entirely, but the recorder must log each of the loaded val-
ues. The RT-based recorder thus often logs more than the ST-based
recorder. Notably, the RT-based recorder’s log size is about 2X the
ST-based recorder’s for lusearch6, xalan6, and xalan9; and about 6X
for grande sor. For all other programs, the RT-based recorder logs
less than 50% more than the ST-based recorder.
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Figure 10. Run-time speedup of the RT-based dependence recorder over
the ST-based dependence recorder.

Software transactional memory. Next we compare the ST- and
RT-based STMs using the transactional STAMP benchmarks. Fig-
ure 11 shows the execution time of the ST- and RT-based STMs.
We first note that both STMs typically scale poorly after 8 threads;
prior work has also found that STAMP has limited scalability [63].
Furthermore, our platform has 8 cores per socket, leading to greater
inter-thread communication for >8 threads.

For genome and vacation, RT reduces overhead for 2–8 appli-
cation threads, but the benefit decreases with more threads. For
genome, the ratio of implicit to explicit requests increases substan-
tially with more threads (statistics not shown), leading to fewer
opportunities for RT to improve performance. For vacation, the
implicit-to-explicit ratio stays fairly constant across thread counts,
but RT’s benefit diminishes because accesses per thread decrease as
threads increase, leading to less latency per thread for RT to reduce.

Fewer than 0.01% of labyrinth3d’s accesses trigger coordina-
tion, so it cannot benefit noticeably from RT.

For kmeans, intruder, and ssca2, RT provides sustained or in-
creasing benefit over ST for 8 to 32 threads. For these programs,
the RT-based STM achieves a significantly lower rate of aborting
transactions than the ST-based STM. The RT-based STM validates
relaxed loads at object field and array element granularity, as op-
posed to the ST-based STM’s loads, which use reader locks and
read sets at object granularity, leading to more transactional con-
flicts due to false sharing—an interesting side effect of supporting
relaxed loads. However, direct benefits from RT are limited because
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Figure 11. Performance of the ST- and RT-based STMs.

many transactions are short, and the RT-based STM must wait at
transaction end for all outstanding relaxed accesses (Section 5.2).

In summary, RT reduces the cost of tracking dependences sig-
nificantly, particularly for programs with high coordination costs,
recovering much of the maximum possible performance achiev-
able by eliminating coordination latency entirely. RT’s benefit is
limited by correctness constraints (e.g., limitations on deferring
stores past synchronization) and indirect effects (e.g., increases
to the explicit-to-implicit request ratio when using RT compared
with ST). Although the RT-based recorder and STM suffer draw-
backs (increased log size and transactional correctness constraints,
respectively) that limit the improvement somewhat, these results
demonstrate the potential of RT to improve the performance of
dependence-tracking-based runtime support.

7. Related Work

This compares relaxed dependence tracking to other approaches not
already covered in Section 2 and the end of Section 5.2.

Targeting synchronization costs. Prior work has targeted the costs
of using biased locking to provide instrumentation–access atomic-
ity for dependence tracking. Cao et al. hybridize biased and unbi-
ased locking [15]. Von Praun and Gross use a model that switches
to an unbiased state for shared objects [57], but unbiased states re-
quire atomic operations, leading to high overhead [11].

Neamtiu and Hicks introduce “relaxed synchronization” to al-
low threads to keep executing while waiting to join a global syn-
chronization barrier (for dynamic software update) [42]. Their
work does not track dependences. We note that RT not only relaxes
synchronization, but it relaxes dependence tracking guarantees.

Biased program locks. This paper focuses on one context for bi-
ased locking: providing instrumentation–access atomicity for cap-

turing cross-thread dependences. Other work has used biased lock-
ing for program locks [32, 46, 55]. Biased program locks typically
mitigate coordination costs by switching a conflicting lock to an
unbiased state after the first conflict.

Hardware support. Intel’s recent Transactional Extensions (TSX)
provide limited, best-effort hardware support for speculative atom-
icity [61]. TSX could potentially help solve the same problem as
software-based reader–writer locks. However, recent work suggests
that TSX struggles to outperform even atomic-operation-based syn-
chronization if transactions are short [39, 45, 61]. In contrast, bi-
ased reader–writer locks avoid atomic operations. An empirical
comparison is beyond this paper’s scope.

8. Conclusion

Runtime support based on biased reader–writer locking can achieve
significantly lower overhead than traditional locks, but conflicting
accesses require threads to coordinate with each other. Relaxed de-
pendence tracking (RT) seeks to relax the requirement of track-
ing all dependences soundly, by allowing coordination latency to
overlap with useful program work. RT’s novel approach provides
modest benefit overall since (1) many programs incur low coordi-
nation costs to begin with; (2) RT cannot hide all costs, particularly
the cost of remote cache misses; and (3) correctness requirements
limit relaxation at program synchronization release operations and
transaction commits. This work contributes to the design of paral-
lel runtime support, by showing that opportunities exist to exploit
the flexibility of program semantics and the mechanics of sound
runtime support.
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[22] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching Transac-
tional Memory. In PLDI, pages 155–165, 2009.

[23] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255, 2007.

[24] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121–133, 2009.

[25] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and
Complete Dynamic Atomicity Checker for Multithreaded Programs.
In PLDI, pages 293–303, 2008.

[26] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java
Performance Evaluation. In OOPSLA, pages 57–76, 2007.

[27] A. Georges, M. Christiaens, M. Ronsse, and K. De Bosschere. JaRec:
A Portable Record/Replay Environment for Multi-threaded Java Ap-
plications. SPE, 34(6):523–547, 2004.

[28] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. In OOPSLA, pages 388–402, 2003.

[29] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[30] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In PLDI, pages 14–25, 2006.

[31] B. Hindman and D. Grossman. Atomicity via Source-to-Source Trans-
lation. In MSPC, pages 82–91, 2006.

[32] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java
Locks Can Mostly Do Without Atomic Operations. In OOPSLA, pages
130–141, 2002.

[33] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive Software
Transactional Memory in Java. Transactions on HiPEAC, 5(2), 2010.

[34] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558–565, 1978.

[35] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE TOC, 36:471–482, 1987.

[36] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463–474, 2012.

[37] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: Efficient Online Multiprocessor Replay via
Speculation and External Determinism. In ASPLOS, pages 77–90,
2010.

[38] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[39] H. S. Matar, I. Kuru, S. Tasiran, and R. Dementiev. Accelerating Pre-
cise Race Detection Using Commercially-Available Hardware Trans-
actional Memory Support. In WoDet, 2014.

[40] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In SPAA, pages 314–325, 2008.

[41] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Single Global Lock Semantics in a
Weakly Atomic STM. In TRANSACT, 2008.

[42] I. Neamtiu and M. Hicks. Safe and Timely Updates to Multi-threaded
Programs. In PLDI, pages 13–24, 2009.

[43] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient De-
terministic Multithreading in Software. In ASPLOS, pages 97–108,
2009.

[44] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region
serializability for all. In HotPar, 2013.

[45] C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s Restricted
Transactional Memory for CPAs. In CPA, pages 271–292, 2013.

[46] K. Russell and D. Detlefs. Eliminating Synchronization-Related
Atomic Operations with Biased Locking and Bulk Rebiasing. In OOP-
SLA, pages 263–272, 2006.

[47] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Transac-
tional Memory System for a Multi-Core Runtime. In PPoPP, pages
187–197, 2006.

[48] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A
Low Overhead, Software-Only Approach for Supporting Fine-Grain
Shared Memory. In ASPLOS, pages 174–185, 1996.

[49] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus,
and D. A. Wood. Fine-Grain Access Control for Distributed Shared
Memory. In ASPLOS, pages 297–306, 1994.

[50] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.
Hybrid Static–Dynamic Analysis for Statically Bounded Region Seri-
alizability. In ASPLOS, pages 561–575, 2015.

[51] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
Isolation and Ordering in STM. In PLDI, pages 78–88, 2007.

[52] J. M. Silva, J. Simão, and L. Veiga. Ditto – Deterministic Execution
Replayability-as-a-Service for Java VM on Multiprocessors. In Mid-
dleware, pages 405–424, 2013.

[53] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande
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