
Lightweight Data Race Detection for Production Runs ∗

Swarnendu Biswas
University of Texas at Austin (USA)

sbiswas@ices.utexas.edu

Man Cao
Ohio State University (USA)

caoma@cse.ohio-state.edu

Minjia Zhang
Microsoft Research (USA)

minjiaz@microsoft.com

Michael D. Bond
Ohio State University (USA)

mikebond@cse.ohio-state.edu

Benjamin P. Wood
Wellesley College (USA)

bpw@cs.wellesley.edu

Abstract

To detect data races that harm production systems, program analy-
sis must target production runs. However, sound and precise data
race detection adds too much run-time overhead for use in produc-
tion systems. Even existing approaches that provide soundness or
precision incur significant limitations.

This work addresses the need for soundness (no missed races)
and precision (no false races) by introducing novel, efficient
production-time analyses that address each need separately. (1)
Precise data race detection is useful for developers, who want to
fix bugs but loathe false positives. We introduce a precise analysis
called RaceChaser that provides low, bounded run-time overhead.
(2) Sound race detection benefits analyses and tools whose correct-
ness relies on knowledge of all potential data races. We present
a sound, efficient approach called Caper that combines static and
dynamic analysis to catch all data races in observed runs. Race-
Chaser and Caper are useful not only on their own; we introduce
a framework that combines these analyses, using Caper as a sound
filter for precise data race detection by RaceChaser.

Our evaluation shows that RaceChaser and Caper are efficient
and effective, and compare favorably with existing state-of-the-art
approaches. These results suggest that RaceChaser and Caper en-
able practical data race detection that is precise and sound, respec-
tively, ultimately leading to more reliable software systems.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids, monitors, testing
tools; D.3.4 [Programming Languages]: Processors—compilers,
debuggers, run-time environments

Keywords Data races; dynamic analysis; escape analysis; sampling

1. Introduction

In a multithreaded, shared-memory program execution, a data race
occurs when two accesses are conflicting (two threads access the
same variable with at least one write) and concurrent (not ordered
by synchronization operations) [2]. Data races often directly or

∗ This material is based upon work supported by the National Science Foun-
dation under Grants CSR-1218695, CAREER-1253703, CCF-1421612,
and XPS-1629126.

indirectly lead to concurrency bugs [42, 55]. The presence of data
races—whether accidental or intentional—can affect an execution
by crashing, hanging, or silently corrupting data [32, 36, 51]. Data
races were culprits in the Therac-25 disaster [40], the Northeastern
electricity blackout of 2003 [66], and the mismatched NASDAQ
Facebook share prices of 2012 [56]. Data races will only become
more problematic as software systems become increasingly parallel
to scale with parallel hardware.

Data races not only tend to be associated with bugs and errors,
but they lead to weak or undefined semantics for modern shared-
memory languages and systems [1, 12, 13, 45]. For example, a Java
or C++ program with ostensibly “benign” data races can behave
erroneously, as a result of compiler transformations or being ported
to a different architecture [11, 14, 62].

Detecting data races. The wide-ranging consequences of data
races make it imperative to detect as many races1 as possible. Pro-
gram analyses can detect data races, but there exists a fundamen-
tal tradeoff between soundness (no missed races) and precision
(no false race reports). Most static and some dynamic analyses
provide soundness2 but report many false races [20, 23, 27, 49,
50, 53, 54, 58, 59, 68, 69, 72], which developers find unaccept-
able [6, 46]. On the other hand, precise dynamic analyses generally
cannot detect races in executions other than the current execu-
tion [9, 15, 28, 31, 37, 46]. This tradeoff is compounded by a second
challenge: the occurrence of a data race is sensitive to thread in-
terleavings, program inputs, and execution environments—so data
races can remain undetected during in-house testing, even for ex-
tensively tested programs [66], and occur unexpectedly in produc-
tion runs [40, 56, 66].

To find data races that manifest only in production, data race
detection must target production runs. However, in practice, data
race detectors see little use in production runs, due to high run-time
overheads [46]. This paper addresses an open challenge: devising
sound and precise data race detection analyses that are efficient
enough for production systems.

Our approach. A key, motivating insight of this work is that al-
though sound and precise data race detection is too inefficient for
production, separate analyses that each provide soundness or pre-
cision are beneficial. Detecting precise (real) data races enables de-
velopers to find and fix software bugs, ultimately improving soft-
ware reliability. Detecting a sound overapproximation of data races
can help simplify and optimize dynamic analyses and runtime sys-
tems such as record & replay [39], atomicity checking [30], and
software transactional memory systems [64]. Soundness and pre-

1 In the rest of the paper, “race” always means “data race.”
2 Following prior work, we consider a dynamic analysis to be sound if it
misses no true races that exist in observed executions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CC’17, February 5–6, 2017, Austin, TX, USA
ACM. 978-1-4503-5233-8/17/02...$15.00
http://dx.doi.org/10.1145/3033019.3033020

11

cision are not only orthogonal but also complementary: the results
of sound race detection can help simplify the work of precise race
detection. Section 2 further motivates these benefits.

Mirroring this idea of separating precision and soundness, our
approach decouples data race detection as two complementary,
lightweight analyses that maintain and refine a precise underap-
proximation and a sound overapproximation of all data races over
the course of many production runs.

To get a precise underapproximation (i.e., can miss data races),
we introduce a novel dynamic analysis called RaceChaser (Sec-
tion 4). Each run of RaceChaser takes one potential data race as
input, and tries to detect whether the potential race occurs in the
run. RaceChaser provides low, bounded run-time overhead, and it
does not rely on any hardware support. RaceChaser is the first ap-
proach to adapt collision analysis to the paradigm of detecting one
potential race per run. Our results suggest that RaceChaser outper-
forms the closest related work, which adds unbounded, unscalable
run-time overhead [37] (Sections 2.1 and 8.2.1).

For a sound overapproximation of data races from observed
runs, we introduce a novel approach called Caper (Section 5).
Caper captures the set of all potentially racing pairs of accesses
to escaped memory locations. Each production run under Caper
targets only potential races identified by a sound (no missed races)
static analysis, but not yet observed in prior runs. Caper provides
soundness over observed runs, notably better precision than static
analysis, and low performance overhead (Section 8.3). This balance
provides a better precision–performance tradeoff than prior work
(Sections 2 and 9).

In addition to the individual benefits of the two analyses, they
can be integrated in a data race detection framework such that the
precise RaceChaser analysis uses the potential data races identified
by the sound Caper analysis (Section 6).

We have implemented RaceChaser and Caper in a high-perfor-
mance Java virtual machine [3] (Section 7). Our evaluation com-
pares RaceChaser and Caper empirically with closely related work
(Section 8). Overall, RaceChaser provides better performance
(lower, scalable, bounded overhead) and the same race coverage
as prior work. Caper is significantly more precise than static analy-
sis, and adds low enough overhead for production runs, unlike other
known approaches that are dynamically sound (no missed races in
observed executions). These results suggest that RaceChaser and
Caper can be employed continuously in production settings.

This work advances the state of the art by demonstrating two
analyses, which can be used on their own or in cooperation, that
each provides a better performance–accuracy tradeoff than existing
approaches. By using our analyses in production systems, this work
has the potential to detect hard-to-catch data races and ultimately
lead to more robust software systems.

2. Background and Motivation

Data race detection that is either precise or sound has distinct
benefits. However, prior approaches that are precise or sound have
serious drawbacks for use in production.

2.1 Detecting Real Data Races Only

Most state-of-the-art data race detectors track the happens-before
relation [38] to detect conflicting accesses that are unordered by
happens-before [26, 57]. However, happens-before analysis adds
substantial run-time overhead at each variable access and synchro-
nization operation (e.g., >8× slowdown [31]).

To target production environments, where the key constraint is
run-time overhead, sampling-based race detection analysis trades
coverage for lower overhead [15, 17, 28, 37, 46]. However, sam-
pling approaches suffer from run-time overhead that is still high,
unscalable, and unbounded. LiteRace and Pacer sample race detec-
tion analysis but instrument all program accesses, adding high base-
line overhead even when the sampling rate is miniscule [15, 46].

RaceMob applies sampling by limiting its analysis to a single pair
of static accesses per execution, limiting its instrumentation over-
head [37]—but nonetheless it incurs high, unscalable, unbounded
overhead, as we show empirically in Section 8.2.1.

While most sampling-based approaches track the happens-
before relation, DataCollider exposes and detects simultaneous,
conflicting accesses—a sufficient condition for a data race [28].
Our paper refers to this kind of analysis as collision analysis. (Prior
work has also employed collision analysis in a non-sampling con-
text [60].) To expose and detect simultaneous, conflicting accesses,
DataCollider periodically pauses a thread’s execution at a poten-
tially racy access; in the meantime, other threads detect conflicting
accesses to the same variable. DataCollider avoids heavyweight in-
strumentation by using hardware debug registers to monitor mem-
ory locations [28]. However, debug registers are hardware specific
and thus unportable; architectures often have only a few debug
registers, limiting the number of memory locations that can be
monitored simultaneously. The overhead of setting debug watch-
points with inter-processor interrupts increases with the number of
cores, so DataCollider may not scale well to many cores [67]. Fur-
thermore, although developers or users can adjust DataCollider’s
run-time overhead by adjusting the sampling rate, it does not guar-
antee bounded run-time overhead.

CRSampler infers data races by detecting conflicts between con-
currently executing regions [17], similar to existing region conflict
analyses, particularly Valor [9] (Section 9). Like DataCollider, CR-
Sampler performs efficient sampling by using hardware debug reg-
isters.

In summary, existing precise data race detection analyses are
ill suited to production settings. This work asks the question: what
is the best use of the production setting for detecting data races
precisely? In particular, is it possible to design a precise, portable
analysis that adds low, bounded overhead?

2.2 Detecting All Data Races in Observed Executions

While sampling-based approaches are precise, they are inherently
unsound, missing data races that occur in production runs. This sit-
uation is unacceptable for analyses and systems whose correctness
relies on soundly knowing all data races, such as record & replay
systems [39], atomicity violation detectors [8, 30], and software
transactional memory [64]. For example, Chimera provides sound
multithreaded record & replay by conservatively tracking order-
ing between all potential data races, as identified by sound static
analysis [39]. Although whole-program static analysis can provide
a sound set of potential data races, its precision does not scale with
program size and complexity, and it suffers from many false pos-
itives [27, 49, 50, 58, 69]. Chimera (and other approaches) could
provide significantly better performance by using a more precise set
of potential data races. In addition to benefiting unrelated analyses
and systems, sound race detection can simplify or optimize pre-
cise race detection by providing a set of potential data races from
observed executions (Section 6).

This work asks the question: is it possible to exploit the produc-
tion setting in order to detect all data races soundly, i.e., without
missing any true races that have occurred in production runs? To
be useful, such an approach must add minimal overhead and pro-
vide reasonable precision that is significantly better than that of
static analysis. To our knowledge, prior work provides no solution
that is simultaneously sound, more precise than static analysis, and
efficient enough for always-on use in production environments.

3. Overview

This paper addresses the two challenges motivated by the pre-
vious section, by introducing two complementary, lightweight
production-time analyses. Section 4 presents RaceChaser, a pre-
cise analysis that detects only true data races. Section 5 presents
Caper, a sound approach that detects all data races in observed

12

runs. These two approaches—one precise but unsound, the other
sound but imprecise—are inherently complementary (Section 6).
They maintain and refine an underapproximation and overapprox-
imation, respectively, of the set of real data races in observed ex-
ecutions. Furthermore, the two techniques can be integrated in a
data race detection framework in which the precise analysis uses
the overapproximation produced by the sound analysis.

4. RaceChaser: Precise Data Race Detection

This section describes a new analysis called RaceChaser that tar-
gets production-time race detection with minimal overhead. Race-
Chaser limits its analysis to a single potential data race per program
execution, and it bounds the run-time overhead it adds. In prac-
tice, RaceChaser could get each potential race from a set of races
identified by developers or by another analysis that identifies po-
tential races [37, 60]—including our Caper analysis, as Section 6
describes. While it may seem unsatisfying to try to detect only one
potential race per execution, we note that current practice is to per-
form no race detection in production!

RaceChaser provides several properties aside from precision:
bounded time and space overhead, scalability (i.e., time and space
overheads remain stable with more threads), and portability. Like
DataCollider [28], RaceChaser employs collision analysis. How-
ever, DataCollider (and CRSampler [17]) cannot bound their over-
head, nor are they portable (Section 2.1). On the other hand,
sampling-based analyses that track happens-before provide pre-
cision and portability, but cannot provide low, scalable, or bounded
overhead [15, 37, 46] (Section 2.1).

4.1 How the Analysis Works

A production run executing RaceChaser takes as input a single
potential data race, which is an ordered pair of program sites,
〈s1, s2〉. A site is a unique static program location (e.g., a method
and bytecode index in Java). RaceChaser limits its analysis to these
two sites (or one site if s1 = s2). When s1 6= s2, RaceChaser
considers 〈s1, s2〉 and 〈s2, s1〉 to be distinct, and it uses separate
runs to try to detect them.

Before a thread T executes an access to memory location m at
s1, the analysis potentially samples the current access by waiting,
i.e., pausing the current thread for some time. The analysis updates
global analysis state to indicate that T is waiting at s1 to access m.

When a thread T ′ executes an access to memory location m at
s2, the analysis checks whether some thread T is already waiting
at s1 before accessing the same location m. If so, the analysis has
detected a true data race, and it reports the call stacks of T and T ′.

Aside from the cost of waiting at some instances of s1, the
analysis can achieve very low overhead because it instruments only
two (or one, if s1 = s2) static sites and—like other collision analy-
ses [17, 28, 60]—avoids instrumenting synchronization operations.
Although updating global analysis state could be a scalability bot-
tleneck, these updates occur when at least one thread is waiting—
and the fraction of time spent waiting is bounded, as discussed next.

Instrumentation overhead. Although RaceChaser bounds how
long it spends waiting, it always executes instrumentation at s1 and
s2, which is lightweight in the common case (particularly because
it uses optimizations described shortly) but could incur nontrivial
overhead for very frequent accesses. RaceChaser could control this
cost at run time by detecting very frequent accesses (e.g., if s1 or
s2 is in a hot, tight loop) and triggering dynamic recompilation or
code patching to remove the instrumentation.

4.2 Sampling Policy

RaceChaser’s sampling policy bounds the total amount of time
spent waiting, and it prioritizes instances of s1 more likely to be
involved in data races.

Budgeting the overhead of waiting. RaceChaser is a “best-effort”
approach that seeks to detect data races without impacting produc-

tion performance significantly. As in prior work called QVM that
targets a specified maximum overhead by throttling the analysis [4],
RaceChaser targets a maximum overhead rmax specified by devel-
opers or users. To enforce this maximum, RaceChaser keeps track
throughout execution of (1) wall-clock time of the ongoing execu-
tion, ttotal , and (2) wall-clock time so far during which one or more
threads have waited, twaited , taking into account overlapped waits.
Throughout an execution, RaceChaser ensures the following:

twaited

ttotal
≤ rmax

This condition is conservative because a thread waiting for time t
does not necessarily extend total execution time by t.

RaceChaser computes the following probability for whether to
take a sample at s1:3

Pbudget = 1−
twaited + tdelay

(ttotal + tdelay)× rmax

This computation is based on the fraction of time that will have
been spent waiting after waiting for a planned amount of time
tdelay . Note that Pbudget will be close to 0 if RaceChaser is near
its maximum overhead. Pbudget will be close to 1 if RaceChaser is
substantially under-budget.

Prioritizing accesses. Some static sites execute only once per run,
while others execute millions of times. To account for this uncer-
tainty and variability, it is important to wait at the first instance of a
site (it might be the only one!) but less important to wait at later in-
stances. This reasoning follows the intuition behind the cold-region
hypothesis, which postulates that the likelihood of detecting bugs
in some part of a program is inversely proportional to the execution
frequency of that part of the program [19, 46]. As in prior work on
sampling-based data race detection [46], we find that it is important
to prioritize sampling of each thread’s initial access(es) (instead of
the global execution’s initial accesses) at s1.

RaceChaser thus samples an instance of s1 at a rate inversely
proportional to freq(s1, T), the execution frequency of s1 by the
current thread T so far:

Pfreq =
1

freq(s1, T)

RaceChaser can compute freq(s1, T) by counting how many times
thread T has executed s1 or how many times T has sampled s1.
Our implementation and evaluation use the latter policy.

Overall sampling probability. RaceChaser’s sampling policy com-
bines Pbudget and Pfreq :

PRaceChaser = Pbudget × Pfreq

A remaining issue is that soon after an execution starts, RaceChaser
will have virtually no budget (Pbudget ≈ 0), so very early accesses
will go unsampled, potentially missing some data races consis-
tently. To detect such data races, it seems unavoidable that an exe-
cution must risk exceeding its budget. RaceChaser assumes a min-
imum total running time tmin and uses max (tmin , ttotal) in place
of ttotal when computing Pbudget . Developers can estimate a con-
servative value for tmin using their knowledge of the program and
likely execution scenarios. In our experiments, tmin = 1 second.

The probability function PRaceChaser is one of many possible
functions that satisfy our goals of (1) staying under an overhead
budget and (2) prioritizing each thread’s early accesses. It may
suffer drawbacks, e.g., it may sample too infrequently as freq(s, T)

3 Although RaceChaser could choose which dynamic accesses to sample
using a deterministic function, it instead uses randomness, waiting at each
dynamic access with some probability P as described. Using randomness
increases the chances of finding a race in the long run, over multiple
executions, although in practice RaceChaser detects most races consistently
from run to run.

13

grows, significantly undershooting the overhead budget. That said,
we have found the function to be suitable in practice for achieving
RaceChaser’s design goals.

4.3 Optimizations

RaceChaser’s low instrumentation overhead and good scalability
(Section 8.2) rely on the following optimizations.

Sampling check. RaceChaser’s instrumentation at s1 uses an opti-
mized, two-part check, which is equivalent to sampling with proba-
bility PRaceChaser . The instrumentation first computes Pfreq , which
is thread local and cheap. Then, with probability Pfreq—that is,
infrequently in the common case—the instrumentation computes
Pbudget and samples the access with probability Pbudget .

Avoiding scalability bottlenecks. Whenever instrumentation at s1
waits, it acquires a lock on global analysis state, records that the
current thread T is waiting at site s1 on memory location m, and
increments a global count of waiting threads. The instrumentation
then performs a non-busy timed wait on the global lock, which
atomically releases the lock while waiting. When the timed wait
completes, the instrumentation atomically reacquires the global
lock, restores global analysis state to indicate that T is no longer
waiting, and releases the global lock. A thread tries to acquire the
global lock at s1 only when it should wait, so any lock contention
costs are effectively bounded.

Instrumentation at s2 checks if another thread is waiting on the
same memory location m at s1. To do this efficiently, s2 first checks
the global counter to see if any threads are waiting, avoiding remote
cache misses in the common case when no threads are waiting. It
acquires the global lock and accesses global analysis state only if
at least one thread is waiting at s1, thus limiting the possibility of
lock thrashing in the common, non-waiting case. We implement
the counter as a Java volatile variable, so this optimization does not
introduce any unsoundness.

5. Caper: Detecting All Potential Data Races

This section focuses on the problem of detecting a sound overap-
proximation of all data races that occur in production runs. Al-
though whole-program static analysis can provide a sound set of
potential races, it reports many false races (Section 8.3). Current
predictive race detection approaches do not scale to large pro-
grams [35, 65]. Can a sound, low-overhead approach provide sig-
nificantly better precision than static analysis alone?

5.1 Caper Overview

We introduce a novel analysis called Caper that detects a set of
potential data races that includes all true data races from observed
executions. Caper combines static and dynamic analyses. Caper
initially runs a static analysis (e.g., [27, 49, 50, 58, 69]) to produce
a set of statically possible pairs of racy accesses, spPairs . This
set consists of unordered pairs 〈s1, s2〉 (i.e., 〈s1, s2〉 = 〈s2, s1〉)
where s1 and s2 are each a static program location. The set spPairs
need not be particularly precise—and in fact we find that a state-of-
the-art static analysis [50] reports many false races (Section 8.3).

During each program execution, Caper’s dynamic analysis iden-
tifies dynamically possible race pairs, dpPairs , from spPairs .
Each invocation of Caper moves newly identified possible race
pairs from spPairs to dpPairs . At any time, spPairs∩dpPairs =
∅, and dpPairs is a sound overapproximation (no missed races) of
every data race that has occurred across all analyzed executions.

Caper incurs low run-time overhead by using two insights. First,
Caper refines spPairs and dpPairs on each successive program
execution, so that in steady state, production runs are unlikely to
detect and move any new pairs from spPairs to dpPairs . This
feature allows Caper to optimize for not detecting new pairs in
spPairs that should move to dpPairs . Second, Caper employs
lightweight, sound dynamic escape analysis, described shortly.

Although Caper’s run-time overhead in steady state is low, it is
not bounded (unlike RaceChaser). To provide soundness, it seems
infeasible to bound overhead (without “giving up” and declaring all
pairs in spPairs to be in dpPairs).

5.2 Caper’s Dynamic Analysis

Caper’s dynamic analysis builds on dynamic escape analysis
(DEA), which identifies objects that have potentially become
shared (accessed by two or more threads). Caper’s DEA instru-
ments all accesses to track the escape property soundly, while Ca-
per’s sharing analysis instruments sites in spPairs , i.e., every site
s such that ∃s′ | 〈s, s′〉 ∈ spPairs . Instrumentation at s checks if
the object accessed at s has escaped; if so, it marks s as “escaped.”
Caper maintains a set of dynamically escaped sites called deSites
such that

deSites =
{

s | (∃s′ | 〈s, s′〉 ∈ spPairs ∪ dpPairs) ∧

s escaped in an analyzed execution
}

Caper removes 〈s1, s2〉 from spPairs and adds it to dpPairs for
future invocations of Caper if both s1 and s2 are in deSites , i.e.,
dpPairs = {〈s1, s2〉 | s1 ∈ deSites∧s2 ∈ deSites}. Future runs
of Caper instrument only the sites that are in spPairs , but DEA
continues to monitor all memory accesses.

Caper’s reachability-based DEA. Caper’s form of DEA is based
on the idea that an object may have escaped if it is transitively
reachable from another escaped object. Reachability-based DEA
conservatively identifies the first time an object becomes reachable
by some thread other than its allocating thread, using these rules:

• Each newly allocated object starts in the NOT_ESCAPED state.
Thread objects (e.g., java.lang.Thread objects in Java) are ini-
tialized to the ESCAPED state.

• At each reference-type store to a global variable (C.sf = p), the
object referenced by p becomes ESCAPED.

• At each reference-type store to an instance field (q.f = p),
the object referenced by p becomes ESCAPED if the object
referenced by q is ESCAPED.

• Whenever an object becomes ESCAPED, all objects transitively
reachable from the object become ESCAPED.

Soundness. Importantly, this reachability-based DEA soundly de-
tects shortest data races, which are data races that are not depen-
dent on some other race. In contrast, a non-shortest data race r
“depends” on some other data race r′, meaning that eliminating
r′ necessarily eliminates r. Consider the following example:

// T1:
x. f = ...; // s1

C.sf = x; // s2

// T2:

y = C.sf; // s3

... = y.f ; // s4

Suppose thread T1’s local variable x initially refers to an unescaped
object o. Object o becomes reachable by other threads when T1
publishes a reference to it in the escaped field, C.sf.4 T2 acquires
this reference via C.sf and uses it to access o’s field f.

T1 and T2 race on C.sf at s2 and s3. This is a shortest race:
it does not depend on any other races. T1 and T2 also perform
unsynchronized accesses to o.f at s1 and s4, but this race depends
on the other, “shorter” race. s1 and s4 can only race on o.f if s2 and
s3 also race on C.sf. Fixing the s2–s3 race (e.g., by making C.sf a
volatile field in Java) necessarily fixes the s1–s4 race.

Caper’s escape analysis targets memory- and type-safe lan-
guages in order to compute dynamic reachability-based escape ac-
curately. In contrast to Caper, prior DEA-based data race detec-

4 The example uses a static field for simplicity. Any escaped field suffices.

14

Input

program

static
data race

escaping
pairs

detector

Caper

Potential
data races

dynamically
sound

Potential
data races

(pruned)

(a) Caper’s first run, usually during testing.

Execution 1

Execution n

pairs
new escaped

Potential
data races

(observed during

Caper's first run)

Potential
data races

(updated)

monitor

one pair

monitor

one pair

True data

(if detected)

True data

(if detected)

race pair 1

Potential

race pair n

Potential

race

race

Caper RaceChaser

(b) Caper and RaceChaser’s runs during production.

Figure 1. Runs of Caper and RaceChaser can work together to detect data
races efficiently during production.

tion is generally unsound [21, 33, 41, 53, 54, 59] (Section 9). To
our knowledge, our work is the first to apply a form of DEA as a
fully sound filter for data race detection. More significantly, to our
knowledge, Caper is the first to use DEA to prune the results of
static data race detection.

As presented, Caper’s soundness argument does not apply to
escaping memory_order_relaxed accesses in C++. For the above
example, if s2 and s3 were memory_order_relaxed, Caper would
miss the s1–s4 race, but the s2–s3 pair would no longer be consid-
ered a race. The underlying issue is that the Java and C++ mem-
ory models define data races differently [13, 45]. Caper could be
extended to warn separately about memory_order_relaxed escape.
Alternatively, since Caper is already imprecise, it could treat mem-
ory_order_relaxed accesses as normal accesses that may race.

Balance. Caper strikes a balance between soundness, precision,
and performance that is unmatched by existing static and dynamic
analyses. Compared to sound static analyses, Caper is significantly
more precise in practice (Section 8.3). Compared to dynamic analy-
ses that are precise for a single run, Caper provides soundness
across all observed runs and has much lower run-time overhead
than analyses that are sound and precise on a single run (Sec-
tion 8.3.1). By observing all (or many) production runs, Caper has
full (or high) coverage of all data races in production runs.

6. Synergy of RaceChaser and Caper

Detecting a sound overapproximation of data races in the current
run by Caper allows its use as a dynamic filter for analyses that
require a sound knowledge of all data races in the run, e.g., record &
replay [39], atomicity checking [8, 30], and software transactional
memory [64]. Furthermore, the sound-but-imprecise approach of
Caper can provide a set of potential data races for the precise-but-
unsound approach of RaceChaser.

Xie et al. observe that “data races should be detected with a
range of tools used in stages, including both static and dynamic
detectors” [72]. Figure 1 shows how the Caper and RaceChaser
analyses can be staged to detect data races precisely and efficiently
during production runs. Figure 1(a) shows the first execution of
Caper during testing, when dpPairs = ∅ and deSites = ∅.
During the testing runs, Caper will potentially find many escaped
sites and can incur high overhead. Future invocations of Caper
during production runs (Figure 1(b)) only monitor sites that are in
spPairs . The low overheads of Caper in the steady state allow it
to continually monitor program executions during production runs
to find previously unseen potential data races, ensuring soundness
across all production runs. The framework limits the the potential
races monitored by RaceChaser to those reported by Caper.

We have not implemented this framework, nor evaluated Caper
as the sole filter for RaceChaser. Although Caper is more precise
than static analysis, it still reports many potential data races.

7. Implementation

We have implemented RaceChaser and Caper’s dynamic analysis in
Jikes RVM 3.1.3 [3], a Java virtual machine that has performance
competitive with commercial JVMs [9]. We have also implemented
an existing precise analysis for comparison with RaceChaser, and
an existing sound analysis for comparison with Caper. We have
made our implementations publicly available on the Jikes RVM
Research Archive.5

7.1 Detecting Data Races Precisely

RaceChaser. RaceChaser’s implementation closely follows Sec-
tion 4’s design. Although RaceChaser could dynamically remove
the instrumentation at s1 and s2 when these sites are very frequent
(e.g., in a hot, tight loop; Section 4.1), we have not implemented
this feature since it is not needed for our experiments.

Instrumenting different accesses in each production run, as in
RaceChaser, naturally lends itself to just-in-time-compiled lan-
guages such as Java: the dynamic compiler instruments only those
accesses targeted by the current run. An implementation in an
ahead-of-time compiled language such as C++ could use dynamic
code patching, distribute a different binary to each production site,
or (at higher cost) instrument all potentially racy sites [37].

LiteHB. We have implemented an analysis that we call LiteHB

that is based on RaceMob’s happens-before analysis [37].6 Like
RaceChaser, LiteHB takes as input a single potential data race
〈s1, s2〉, and tries to detect it in the current execution.

LiteHB implements RaceMob’s optimized tracking of the
happens-before relationship [37]. In particular, LiteHB (1) only
starts tracking happens-before after some thread executes s1 and
(2) stops tracking happens-before when all threads can no longer
race with a prior instance of s1, i.e., when all threads’ vector clocks
happen after the clocks for all executed instances of s1.

Our LiteHB implementation adds the following metadata to
each object: a header word to track the vector clock if the object’s
lock is acquired; a header word that points to an array of metadata,
which is used if the object is an array that is accessed by LiteHB’s
instrumentation; and a word of metadata for each field, which is
used if the field is accessed by LiteHB’s instrumentation. With
additional engineering effort, LiteHB could avoid adding some of
this metadata; in particular, it could limit per-field metadata to those
fields that s1 and s2 might access. Instead, our evaluation of LiteHB
accounts for the costs of extraneous metadata.

7.2 Detecting Potential Data Races Soundly

Caper. As described in Section 5, Caper starts with statically over-
approximating the set of potential data races. For Caper’s static
analysis, we use the publicly available static data race detector
Chord, revision 1825 [50]. Chord’s default setup is unsound be-
cause it uses a may-alias analysis for locks.7 We thus disable
Chord’s static lockset analysis, along with other unsound options
such as ignoring accesses in constructors, and we enable a Chord
feature that resolves reflective calls by executing the program. The
result is a sound analysis that identifies potential races based solely
on (static) thread escape analysis and fork–join analysis. Although
Chord analyzes each program together with the Java libraries, it
analyzes a different library implementation than what Jikes RVM
uses, so our experiments detect potential races in application code
only. Caper uses the set reported by Chord as spPairs (Section 5).
Caper’s dynamic analysis works as described in Section 5.

5 http://www.jikesrvm.org/Resources/ResearchArchive/
6 Although RaceMob’s happens-before analysis also includes waiting at
some accesses [37], we omit this feature from LiteHB in order to measure
the cost of (optimized) happens-before analysis alone.
7 We have confirmed with Naik that there is no available sound implemen-
tation of Chord that uses conditional must-not alias analysis [49].

15

http://www.jikesrvm.org/Resources/ResearchArchive/

Dynamic alias analysis. For comparison with Caper, we have
implemented a dynamic alias analysis, which detects all pairs of
aliasing sites. It reports 〈s1, s2〉 if and only if accesses at s1 and s2
by threads T1 and T2 at memory locations m1 and m2 such that
T1 6= T2 ∧ m1 = m2.

Dynamic alias analysis is more precise than Caper but adds high
run-time overhead (Section 8.3). (In contrast, RaceMob uses a form
of dynamic alias analysis that checks one potentially aliasing pair
in each execution [37].) Dynamic alias analysis offers a different
point of comparison than static analysis, which is highly imprecise
but adds no overhead. To our knowledge, there exists no sound
analysis that has (1) better precision than Caper and (2) overhead
low enough for production.

8. Evaluation

This section evaluates RaceChaser and Caper’s efficiency and ef-
fectiveness, and compares with competing approaches.

8.1 Methodology

Benchmarks. Our evaluation analyzes and executes benchmarked
versions of large, real applications. Our experiments execute the
DaCapo benchmarks [10], versions 2006-10-MR2 and 9.12-bach,
which we distinguish using names suffixed by 6 and 9; and fixed-
workload versions of SPECjbb2000 and SPECjbb2005.8 We omit
programs with only one thread or that Jikes RVM cannot execute.
We also omit eclipse6 since Chord’s static analysis fails when
analyzing it; and jython9 and pmd9 because Chord reports no
potential data races for them.9 We run the large workload size
of the DaCapo benchmarks. Table 1(a) (page 8) reports total and
maximum active threads for each program.

Platform. For each of our implementations, we build a high-
performance configuration of Jikes RVM (FastAdaptive) that
adaptively optimizes the application at run time and uses the de-
fault high-performance garbage collector, which adjusts the heap
size automatically. The experiments execute on an AMD Opteron
6272 system with eight 8-core 2.0 GHz processors (64 cores total),
running 64-bit RedHat Enterprise Linux 6.7, kernel 2.6.32.

8.2 Detecting Data Races Precisely

This section evaluates the run-time performance and race detection
coverage of RaceChaser, compared with LiteHB.

Methodology. Each run of RaceChaser or LiteHB takes as input a
potential data race 〈s1, s2〉. In a real production setting, such poten-
tial races could be identified by developers or by another analysis.
Potential races could be generated by a sound analysis such as static
analysis (the approach taken by RaceMob [37]), testing-time analy-
sis such as dynamic alias analysis, or our Caper production-time
analysis (as Section 6 describes). However, to keep our experiments
manageable (especially since we run multiple configurations and
trials), we evaluate RaceChaser and LiteHB on a relatively small
set of potential races: the set of access pairs identified by dynamic
alias analysis that also violate the dynamic lockset property, i.e.,
the accesses hold no common lock while accessing the same vari-
able. (Prior work introduces heavyweight dynamic analyses that
check the lockset property [20, 23, 53, 54, 59, 68]. RACEZ sam-
ples memory accesses via the hardware performance monitoring
unit (PMU), using imprecise lockset analysis and offline analysis
of sampled accesses to maximize online performance [63]. Lock-
set analyses report false data races.) This methodology simulates
a realistic scenario: prioritizing certain potential races by using a
heavyweight testing-time analysis to prioritize a subset of potential
races, albeit at the cost of missing a few true races. Although in
general a prioritized set will miss some races, our experiments do

8 http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005

9 pmd9 has data races [9], but Chord does not recognize its use of threads.

not encounter this issue because they use the same inputs across
configurations.

8.2.1 Performance

Run-time overhead. Figure 2 shows the overhead added over unin-
strumented execution (unmodified Jikes RVM) for configurations
of RaceChaser and LiteHB. Each bar is the mean execution time
over 30 randomly selected potential races (from those identified by
dynamic alias analysis that violate the lockset property). If a pro-
gram has fewer than 30 potential races, we use multiple trials of
each potential race.

All RaceChaser configurations use wait times of tdelay = 10
ms, which is sufficient to expose all data races that happens-before
analysis detects in the evaluated programs. In general, increasing
tdelay helps detect data races whose accesses are “far apart,” but
leads to fewer accesses being sampled.

The RaceChaser configurations are for three target maximum
overheads, rmax = 0%, 5%, and 10%. The rmax = 0% configura-
tion shows overhead without any waiting, measuring the cost of in-
strumentation at accesses alone. This overhead, which RaceChaser
cannot measure or bound with its sampling model, is consistently
low (always <5%). For rmax = 5% and 10%, RaceChaser stays
under the target overhead across all programs, as expected. Since
RaceChaser instruments only one pair of accesses, the instrumen-
tation overhead is generally low. The average overheads for rmax

= 5% and 10% are 1.0% and 1.6%, respectively. It is unsurpris-
ing that actual overheads are generally less than rmax , since Race-
Chaser’s model conservatively assumes that pausing one thread by
tdelay slows the entire program by tdelay .

The LiteHB and FullHB configurations are variants of LiteHB.
LiteHB is the default LiteHB algorithm that uses RaceMob’s opti-
mized happens-before tracking; it adds 20% run-time overhead on
average. LiteHB (only HB tracking) shows overhead incurred by
optimized happens-before tracking only: it adds no instrumentation
to accesses, except for instrumentation at s1 that enables happens-
before tracking if it is currently disabled. This configuration iso-
lates the cost of optimized happens-before tracking, which incurs
13% average overhead.

We note that both LiteHB configurations include space over-
head, as well as cache pressure and GC costs, from per-object and
per-field metadata—but most of the per-field metadata could be
avoided with additional engineering effort (Section 7.1). We find
that per-field metadata alone adds run-time overhead of 7% (results
not shown), so the true cost of optimized happens-before analysis
is as low as 13%.

FullHB (only HB tracking) performs unoptimized happens-
before tracking by performing vector clock computations at ev-
ery synchronization operation; it adds no instrumentation at ac-
cesses. This configuration, which shows the benefit of RaceMob’s
happens-before optimization [37], adds 18% average overhead. The
last configuration, FullHB, shows the overhead of instrumenting s1
and s2 and performing unoptimized happens-before tracking, and
adds 37% overhead on average. These results show that RaceMob’s
optimization is indeed beneficial in our experiments.

For sunflow9, both LiteHB and FullHB add especially high
overheads (162 and 526%, respectively). As the results indicate,
most of this overhead actually comes from instrumentation at ac-
cesses, not from tracking happens-before. In sunflow9, instrumen-
tation at mostly read-shared accesses must perform updates to per-
variable clocks, leading to many remote cache misses. Such high,
unpredictable overheads prohibit use of happens-before-analysis-
based race detection on production systems.

Space overhead. We have also measured the space overhead in-
curred by RaceChaser and LiteHB (detailed results omitted). Race-
Chaser, which adds only a small amount of global metadata, adds
1% overhead on average and at most 5% overhead for any program
(which is mostly due to increased dynamic compilation permit-

16

http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005

hsqldb6

lusearch6

xalan6

avrora9

luindex9

lusearch9

sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

10

20

30

40

O
v
er

h
ea

d
 (

%
)

o
v
er

 u
n

m
o
d

if
ie

d
 J

V
M

RaceChaser (r_max = 0%)

RaceChaser (r_max = 5%)

RaceChaser (r_max = 10%)

LiteHB

LiteHB (only HB tracking)

FullHB (only HB tracking)

FullHB

162% 526%

Figure 2. Run-time overhead of configurations of RaceChaser and LiteHB. The error bars represent 95% confidence intervals.

1 4 8 16 32 64

Application threads

0

5

10

15

20

25

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Unmodified JVM

RaceChaser (r_max = 5%)

LiteHB

(a) lusearch9

1 4 8 16 32 64

Application threads

0

20

40

60

80

100

(b) sunflow9

1 4 8 16 32 64

Application threads

0

20

40

60

80

100

(c) xalan9

Figure 3. Execution times of RaceChaser (rmax = 5%) and LiteHB for 1–64 application threads. The execution times for 64 threads correspond to the results
in Figure 2. The legend applies to all graphs.

ted by slower execution). For LiteHB, if we subtract out all space
overhead due to per-object and per-field metadata (optimistically
assuming all such metadata could be avoided; Section 7.1), space
overhead is 5% on average and at most 29% for any program.

Scalability. Production software often has many threads and will
likely have more as future systems provide more cores [43]. To
compare how RaceChaser and LiteHB scale with more threads, we
evaluate the three programs that support spawning a configurable
number of application threads: lusearch9, sunflow9, and xalan9
(Table 1(a)). Figure 3 plots execution time for 1–64 application
threads, using configurations from Figure 2. The Unmodified JVM
configuration shows that lusearch9 and sunflow9 naturally scale
with more threads, while xalan9 anti-scales starting at 16 threads.

RaceChaser (rmax = 5%) not only adds low overhead, but its
overhead is largely unaffected by the number of threads for all
programs. Note that in the plots, the Unmodified JVM and Race-
Chaser lines are difficult to distinguish. In contrast, for lusearch9
and sunflow9, LiteHB not only adds high overhead, but its over-
head grows with more threads.10 As discussed earlier, most of sun-
flow9’s LiteHB overhead is due to conflicts from updating per-
variable clock metadata—a cost that increases as the number of
threads increases. Most of lusearch9’s overhead comes from track-
ing happens-before via vector clock computations that take linear
time in the number of threads. For xalan9, LiteHB always incurs
very low overhead and has no noticeable scalability issues.

10 For 32 threads, the Unmodified JVM and RaceChaser configurations
experience anomalous performance for lusearch9. We have attributed this
anomaly to Linux thread scheduling decisions [5].

These scalability results imply that LiteHB will add additional
overhead for even larger thread counts, while RaceChaser will pro-
vide consistently low overhead. In general, LiteHB is afflicted with
the drawbacks of happens-before analysis, which scales poorly
with the number of application threads.

Comparison with RaceMob’s reported results. Our RaceMob-like
implementation of optimized happens-before analysis, evaluated
on Java programs, adds 13% average overhead (after subtracting
out overhead from per-field metadata). In contrast, Kasikci et al.
report 2.3% average run-time overhead for RaceMob’s happens-
before analysis evaluated on C/C++ programs [37]. Although there
are many implementation and experimental differences in play,
we suspect three primary causes for the difference. First, our pro-
grams generally have more threads (Table 1). Second, Java pro-
grams tend to have much more frequent synchronization opera-
tions. Table 1 compares the sizes, measured in executed mem-
ory accesses, of synchronization-free regions for C/C++ programs
and the Java programs that we evaluate, i.e., the ratio of total
memory accesses to total synchronization operations. The C/C++
programs are the PARSEC benchmark suite [7], version 3.0-beta-
20150206 (excluding freqmine since it uses OpenMP for its par-
allelization and facesim which does to run with our tool), with
the simmedium input size; we count their synchronization oper-
ations and memory accesses by modifying a Pintool from prior
work [22, 44]. With the exception of one Java program (sunflow9),
synchronization operations are several orders of magnitude more
frequent in Java programs than most C/C++ programs. A re-
lated issue is that the RaceMob authors report that their eval-
uated C/C++ programs execute synchronization barriers, which

17

Java program Total Max live
Avg. accesses

per SFR

hsqldb6 402 102 26
lusearch6 65 65 156
xalan6 9 9 21

avrora9 27 27 553
luindex9 2 2 718
lusearch9 c c 201
sunflow9 2× c c 1,030,000
xalan9 c c 53

pjbb2000 37 9 7
pjbb2005 9 9 15

(a) Java programs

C/C++ program
Avg. accesses per SFR

Threads n=8 n=16 n=32

blackscholes 1 + n 9,150,000 4,750,000 2,290,000
bodytrack 2 + n 63,600 57,400 47,800
canneal 1 + n 5,470,000 2,746,000 1,370,000
dedup 3 + 3n 36,300 36,300 35,900
ferret 3 + 4n 630,000 514,000 388,000
fluidanimate 1 + n 131 99 68
raytrace 1 + n 5,820,000 3,030,000 1,550,000
streamcluster 1 + 2n 4,320 2,260 1,250
swaptions 1 + n 83,000,000 41,600,000 20,800,000
vips 3 + n 105,000 81,100 55,800
x264 1 + 2× frames 208,000 202,000 202,000

(b) C/C++ programs

Table 1. Spawned threads and average executed memory accesses per synchronization-free region (SFR), rounded to three significant figures and the nearest
integer, for Java and C/C++ programs. (a) The table shows Total threads created and Max live at any time, which is dependent on the core count c (64 in our
experiments) for three programs. (b) n is PARSEC’s minimum threads parameter. frames is the input-size-dependent number of frames processed by x264.

RaceChaser LiteHB Overlap

hsqldb6 10 (10) 10 (10) 10 (10)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 17 (17) 17 (17) 17 (17)

avrora9 7 (6) 7 (7) 7 (6)
luindex9 2 (2) 2 (2) 2 (2)
lusearch9 0 (0) 0 (0) 0 (0)
sunflow9 2 (2) 2 (2) 2 (2)
xalan9 7 (7) 7 (7) 7 (7)

pjbb2000 7 (7) 7 (7) 7 (7)
pjbb2005 1 (1) 1 (1) 1 (1)

Total 53 (52) 53 (53) 53 (52)

Table 2. Data races reported by RaceChaser and LiteHB. The two numbers
are distinct races reported at least once and (in parentheses) at least twice,
out of 10 trials. Overlap is distinct races reported by both analyses.

RaceMob-optimized happens-before analysis automatically ex-
ploits by halting tracking of happens-before immediately after a
barrier [37]. In contrast, the Java programs we evaluate execute
few or no synchronization barriers.
Comparison with other happens-before tracking. The state-of-
the-art sound and precise data race detection analysis FastTrack in-
curs 750% overhead for the FastTrack authors’ implementation and
evaluation [31]. In prior work that implements FastTrack in Jikes
RVM, it adds 340% overhead on average [9]. Industry-standard
tools such as Intel’s Inspector XE,11 Google’s ThreadSanitizer
v2 [61], and Helgrind [52] are largely based on happens-before
analysis. They add high run-time overheads and are suitable for
testing runs only.

The sampling-based happens-before race detector Pacer avoids
analysis at most operations, but still must instrument all opera-
tions [15]. For sampling rates of 0%, 1%, and 3%, Pacer imple-
mented in Jikes RVM adds 33%, 52%, and 86% run-time overhead
on average [15]—significantly higher than RaceChaser’s overhead.

8.2.2 Detecting Real Data Races

Empirical comparison. Table 2 reports how many (true) data races
RaceChaser and LiteHB detect. For each potential race pair from
the sound set of lockset-violating access pairs, we execute 10 trials
each of RaceChaser and LiteHB. The first column for each analysis
reports distinct races reported at least once across 10 trials. To
account for uncertainty about the repeatability of detecting a race
reported in just one trial, we also report, in parentheses, races
reported in at least two trials. We run RaceChaser configured with

11 https://software.intel.com/en-us/intel-inspector-xe

a target maximum run-time overhead of rmax = 5% and a fixed
wait time of tdelay = 10 ms. The table omits 30 additional access
pairs (all in sunflow9 or xalan9) reported by LiteHB, which are
non-shortest, or dependent, races (Section 5.2).

The data races detected in these experiments are frequent races,
i.e., they manifest commonly across multiple runs. RaceChaser
detects all of the races detected by LiteHB, with the caveat that
RaceChaser detects one race in avrora9 in only one of the trials.
RaceChaser’s per-trial coverage is dependent on its (randomized)
sampling policy, which could benefit from further work. We have
verified that the data races reported by RaceChaser and LiteHB
match those reported by a publicly available implementation of
FastTrack in Jikes RVM from prior work [9].

Despite using sampling-based collision analysis, RaceChaser pro-
vides essentially the same coverage as happens-before analysis for
the evaluated programs. Furthermore, RaceChaser provides signifi-
cantly lower, bounded overhead and better scalability than LiteHB.

8.3 Detecting Potential Data Races Soundly

This section evaluates the performance and precision of Caper,
compared with static analysis and dynamic alias analysis.

8.3.1 Performance

Static analysis. Caper initially employs static analysis to generate
the set spPairs . Static analysis needs to execute only once (or
whenever the code changes) and does not affect run time, so its
performance is not crucial. Chord (Section 7.2) takes at most 30
minutes to analyze any program.

Caper’s dynamic analysis. Figure 4 shows the overhead added by
Caper’s dynamic analysis over unmodified Jikes RVM. Each bar
is the mean of 25 trials, with 95% confidence intervals centered at
the mean. The first bar, DEA, shows the overhead of reachability-
based dynamic escape analysis alone, which incurs 3% overhead
on average. Caper (first run) is Caper when it analyzes a program
for the first time, i.e., when dpPairs = ∅ and deSites = ∅. Under
these conditions, the analysis finds many newly escaped sites to add
to deSites , incurring 27% average overhead.

In contrast, Caper (steady state), represents performance during
production, when prior testing (and production) runs have added
nearly all escaped sites to deSites . Under these conditions, Ca-
per’s dynamic analysis elides instrumentation at sites in deSites ,
and it incurs little or no overhead from instrumented sites being
added to deSites . On average, Caper (steady state) incurs 9% run-
time overhead. These results suggest that Caper in steady state is
efficient enough for many production environments.

The results for xalan9 are unintuitive. We find that adding any
instrumentation to xalan9 improves performance relative to the

18

https://software.intel.com/en-us/intel-inspector-xe

hsqldb6

lusearch6

xalan6

avrora9

luindex9

lusearch9

sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

20

40

60

80

100

O
v

e
r
h

e
a

d
 (

%
)

o
v

e
r

u
n

m
o

d
if

ie
d

 J
V

M

DEA

Caper (first run)

Caper (steady state)

Figure 4. Run-time performance of Caper.

baseline. We believe this issue is caused by Linux thread scheduling
decisions [5].

Dynamic alias analysis. We find that our implementation of dy-
namic alias analysis slows program execution by 13X on average
(results not shown). Admittedly, this implementation is not heav-
ily optimized; we have implemented it mainly for measuring its
precision. But dynamic alias analysis is inherently a heavyweight
analysis because it must keep track of every accessed combination
of thread, site, and variable to detect future aliasing in the run.

8.3.2 Precision and Effectiveness

Precision. Table 3 shows potential races (unique, unordered access
pairs) reported by static analysis (Chord), Caper, and dynamic
alias analysis. The table counts a potential race if it is reported
at least once across 10 trials. Although it is undecidable whether
a potential race is real or not, we assume that the vast majority
of potential races detected are false races; as evidence, we note
that predictive analyses have been able to expose at most dozens,
not thousands, of additional races beyond those found by precise
dynamic analysis [29, 35, 65].

The Static analysis columns show potential race pairs identi-
fied by the unsound and sound versions of Chord. For most pro-
grams, the sound analysis reports tens of thousands of potential
races. In comparison, Chord’s unsound analysis, which is less im-
precise since it uses Chord’s may-alias lockset analysis [50], re-
ports three times fewer potential races on average. However, the un-
sound analysis is demonstrably unsound: we find that it misses 17
of the 53 real data races identified by RaceChaser and LiteHB. We
have verified that the other analyses (Chord’s sound static analysis,
Caper, and dynamic escape analysis) report all known true races.

The last two columns of Table 3 show the precision of dy-
namic approaches. Notably, Caper usually provides substantially
better precision (often 1–2 orders of magnitude fewer potential
races) than static analysis for all but two programs (avrora9 and
pjbb2000). For the most part, dynamic alias analysis provides bet-
ter precision than Caper, which is unsurprising since dynamic alias
analysis detects aliasing and Caper detects reachability-based es-
caping. However, in some cases, Caper actually reports fewer po-
tential races than dynamic alias analysis because Caper does not
count a site as escaped if it accesses a non-escaped object, even
if the object later becomes escaped. This effect is particularly pro-
nounced for sunflow9, whose main thread initializes data before
the data escapes and is accessed by worker threads. Importantly,
Caper’s approach is sufficient both for detecting all true data races
(Section 5.2) and for clients that need sound knowledge of data
races or sharing [30, 39, 64] (Section 2.2).

Effectiveness. To estimate the effectiveness of Caper in optimiz-
ing other dynamic analyses that must account for potential data
races [30, 39, 64], we compute how many dynamic (executed) ac-
cesses are identified as being part of a potential data race. We expect
this value to be proportional to a client dynamic analysis’s run-time

Known Static analysis
Caper

Dyn. alias
races unsound sound analysis

hsqldb6 10 13,749 (5) 212,205 1,612 757
lusearch6 0 395 (0) 4,692 302 292
xalan6 17 70,263 (7) 83,488 1,241 581

avrora9 7 1,301 (5) 61,193 19,941 570
luindex9 2 6,015 (0) 10,257 192 193
lusearch9 0 441 (0) 7,303 34 39
sunflow9 2 24,616 (0) 28,587 200 1,086
xalan9 7 13,335 (0) 20,036 1,861 600

pjbb2000 7 12,708 (0) 29,604 11,243 1,679
pjbb2005 1 682 (0) 2,552 984 447

Table 3. Potential data races reported by static analysis, Caper, and dy-
namic alias analysis. Known races are data races reported by a precise de-
tector (see Table 2). For unsound static analysis, the number in parentheses
is known data races missing from the set of reported potential races.

Static analysis Caper Dyn. alias analysis

hsqldb6 97% 44% 71%
lusearch6 73% 57% 52%
xalan6 74% 20% 8%

avrora9 99% 91% 54%
luindex9 33% 4% < 1%
lusearch9 84% < 1% < 1%
sunflow9 65% 14% 53%
xalan9 62% 28% < 1%

pjbb2000 72% 39% 35%
pjbb2005 97% 26% 8%

Table 4. Percentage of dynamic memory accesses that three sound analyses
identify as part of a potential data race.

overhead. Table 4 shows the percentage of dynamic accesses that
static analysis, Caper, and dynamic alias analysis identify as being
part of a potential data race. Each percentage is computed as:

∑

s|(∃s′|〈s,s′〉∈potentialRaces) freq(s)
∑

s
freq(s)

where potentialRaces is the set of potential races identified by
the analysis (e.g., dpPairs for Caper), and freq(s) is the dynamic
execution frequency of site s.

The table shows that static analysis’s high imprecision leads
to most executed accesses being potentially racy. Caper improves
precision substantially over static analysis for all programs but
avrora9. Although dynamic alias analysis usually has the best dy-
namic precision, Caper provides the best precision for hsqldb6 and
sunflow9, due to analysis differences discussed above.

These results suggest that Caper’s generated set of potential
races can enable significantly reduced costs of dynamic analyses
and systems, including race detectors such as RaceChaser. In con-
trast, static analysis is significantly more imprecise, and dynamic
alias analysis is too slow to be run continuously in production.

In summary, the results for Caper suggest that it is an efficient and
effective approach that, compared with known alternatives, pro-
vides a reasonable tradeoff in balancing performance and precision
for detecting potential data races.

9. Related Work

Previous sections compared our RaceChaser analysis with closely
related work on sampling-based data race detectors including Data-
Collider and RaceMob’s happens-before analysis [28, 37] (Sec-
tions 2 and 8.2.1), and Caper with static analysis and dynamic alias
analysis. This section compares RaceChaser and Caper with other
existing work.

19

Dynamic escape analysis. Dynamic escape analysis (DEA) iden-
tifies when thread-private data becomes shared (Section 5.2). DEA
can be implemented based on either “first shared access” [33, 54,
59], reachability from a shared context [21], or variants on these
approaches [41, 53].

First-shared-access-based DEA marks each field with its orig-
inal accessing thread [33, 53, 54, 59].12 These analyses check at
each access whether the current accessing thread is the same as the
original accessing thread, thereby detecting the first shared access
and marking the field shared. Access-based analysis is unsound as
a filter for more expensive data race checks. Since no race detection
metadata is recorded for accesses to a field before its first shared ac-
cess, the data race detector cannot determine whether pre-sharing
accesses race with post-sharing accesses on this field.

Reachability-based DEA has the potential to be a sound filter for
data race detection, as we show in Section 5.2. However, existing
data race detection techniques that make use of reachability-based
DEA may miss data races. The TRaDe race detection analysis
uses sound, reachability-based DEA, but pairs it with an unsound
optimization for reprivatization of escaped objects [21]. The SOS
race detection analysis uses a less precise, but sound, reachability-
based DEA as part of a larger unsound optimization to detect
stationary objects [41]. Reachability-based DEA has been deployed
soundly in the implementations of thread-local heaps [24] and
software transactional memory [64].

Recent work introduces a field-precise dynamic analysis to pre-
cisely track sharing across threads [34], but its overhead is too high
for production.

Optimizing data race detection. Wester et al. parallelize happens-
before and lockset analyses by using a speculation-based technique
called uniparallelism [70]. Its performance depends on having ex-
tra available cores for speculative execution. Veeraraghavan et al.
employ uniparallelism to infer data races, based on different out-
comes under deterministic synchronization schedules [67].

Several analyses detect conflicts between regions of code, in
order to detect the subset of true data races that may violate region
serializability in the current execution [9, 17, 25, 43, 47], trading
coverage for performance. These techniques either require custom
hardware [43, 47], incur substantial slowdowns [9, 25], or use
sampling to trade coverage for performance [17].

Custom hardware can accelerate data race detection by adding
on-chip memory for tracking vector clocks or locksets, and extend-
ing cache coherence to identify conflicts [22, 71, 73].

Increasing coverage. Predictive analysis and model checking en-
hance race detection coverage without sacrificing precision [29, 35,
48, 65]. These analyses are inherently heavyweight and unsuited
for production. Predictive analysis finds data races in an execu-
tion other than the observed execution [29, 35, 65], but coverage is
still limited largely by the observed execution. (Racageddon uses
a combination of concolic testing and predictive analysis [29].)
Model checkers such as CHESS [48] can explore many thread in-
terleavings and/or inputs, but they suffer state-space explosion and
do not scale well to large programs.

Estimating harmfulness. Prior work tries to infer which data races
are most likely to be harmful (e.g., crash the program, hurt perfor-
mance, or corrupt data) [16, 18, 28, 32, 36, 51, 60]. Several ap-
proaches expose errors by exposing rare but allowable behaviors,
such as weak memory model behaviors, at racy accesses [16, 18,
32, 51, 60]. Prioritizing races is complementary to our work, which
seeks to expose and detect data races. Researchers have argued
persuasively that essentially all data races are problematic because
languages like Java and C/C++ provide virtually no guarantees for
them [1, 12, 13, 45] (Section 1).

12 Nishiyama’s DEA marks an object escaped when a second thread obtains
a direct reference to the object, which is unsound for race detection [53].

10. Conclusion

Data races are elusive, manifesting unexpectedly in production
runs. Sound and precise race detection is too expensive for produc-
tion runs, so we attack soundness and precision separately, intro-
ducing complementary approaches that maintain a precise under-
approximation and sound overapproximation of true data races—
useful inputs both for developers and for analyses and tools. Race-
Chaser is a novel, precise race detector that adds bounded run-time
overhead and outperforms its closest competitor without sacrific-
ing coverage. Caper soundly combines static and dynamic analyses
in a novel way to provide significantly better precision than static
analysis alone, without the high overhead of more-precise dynamic
analyses. Together, these contributions and results demonstrate how
to leverage production runs for data race detection effectively.

Acknowledgments

Many thanks to Dan Grossman for valuable discussions and sug-
gestions. We thank Baris Kasikci and the anonymous reviewers
for detailed feedback on the text. Thanks to George Candea, Baris
Kasikci, Mayur Naik, and Aritra Sengupta for helpful discussions.

References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking

Parallel Languages and Hardware. CACM, 53:90–101, 2010.
[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting

Data Races on Weak Memory Systems. In ISCA, pages 234–243,
1991.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399–417, 2005.

[4] M. Arnold, M. Vechev, and E. Yahav. QVM: An Efficient Runtime for
Detecting Defects in Deployed Systems. In OOPSLA, pages 143–162,
2008.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe Multi-
threaded Programming for C/C++. In OOPSLA, pages 81–96, 2009.

[6] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few Bil-
lion Lines of Code Later: Using Static Analysis to Find Bugs in the
Real World. CACM, 53(2):66–75, 2010.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Bench-
mark Suite: Characterization and Architectural Implications. In PACT,
pages 72–81, 2008.

[8] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. DoubleChecker:
Efficient Sound and Precise Atomicity Checking. In PLDI, pages 28–
39, 2014.

[9] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In OOPSLA, pages 241–
259, 2015.

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, pages 169–190, 2006.

[11] H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[12] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but
Data Races are Pure Evil. In RACES, pages 9–14, 2012.

[13] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68–78, 2008.

[14] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In MSPC, pages 7:1–7:6, 2014.

[15] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In PLDI, pages 255–268, 2010.

[16] J. Burnim, K. Sen, and C. Stergiou. Testing Concurrent Programs on
Relaxed Memory Models. In ISSTA, pages 122–132, 2011.

[17] Y. Cai, J. Zhang, L. Cao, and J. Liu. A Deployable Sampling Strategy
for Data Race Detection. In FSE, pages 810–821, 2016.

20

[18] M. Cao, J. Roemer, A. Sengupta, and M. D. Bond. Prescient Memory:
Exposing Weak Memory Model Behavior by Looking into the Future.
In ISMM, pages 99–110, 2016.

[19] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling. In ASPLOS, pages
156–164, 2004.

[20] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In PLDI, pages 258–269, 2002.

[21] M. Christiaens and K. De Bosschere. TRaDe, A Topological Approach
to On-the-fly Race Detection in Java Programs. In Symposium on Java
Virtual Machine Research and Technology Symposium, pages 15–15,
2001.

[22] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: Always-On Sound and Complete Race Detection
in Software and Hardware. In ISCA, pages 201–212, 2012.

[23] A. Dinning and E. Schonberg. Detecting Access Anomalies in Pro-
grams with Critical Sections. In PADD, pages 85–96, 1991.

[24] D. Doligez and X. Leroy. A Concurrent, Generational Garbage Col-
lector for a Multithreaded Implementation of ML. In POPL, pages
113–123, 1993.

[25] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm.
IFRit: Interference-Free Regions for Dynamic Data-Race Detection.
In OOPSLA, pages 467–484, 2012.

[26] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255, 2007.

[27] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In SOSP, pages 237–252, 2003.

[28] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
Data-Race Detection for the Kernel. In OSDI, pages 1–16, 2010.

[29] M. Eslamimehr and J. Palsberg. Race Directed Scheduling of Concur-
rent Programs. In PPoPP, pages 301–314, 2014.

[30] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity
Checker for Multithreaded Programs. SCP, 71(2):89–109, 2008.

[31] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121–133, 2009.

[32] C. Flanagan and S. N. Freund. Adversarial Memory for Detecting
Destructive Races. In PLDI, pages 244–254, 2010.

[33] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis
Framework for Concurrent Programs. In PASTE, pages 1–8, 2010.

[34] J. Huang. Scalable Thread Sharing Analysis. In ICSE, pages 1097–
1108, 2016.

[35] J. Huang, P. O. Meredith, and G. Rosu. Maximal Sound Predictive
Race Detection with Control Flow Abstraction. In PLDI, pages 337–
348, 2014.

[36] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data Race
Bugs: Telling the Difference with Portend. In ASPLOS, pages 185–
198, 2012.

[37] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced Data
Race Detection. In SOSP, pages 406–422, 2013.

[38] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558–565, 1978.

[39] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463–474, 2012.

[40] N. G. Leveson and C. S. Turner. An Investigation of the Therac-25
Accidents. IEEE Computer, 26(7):18–41, 1993.

[41] D. Li, W. Srisa-an, and M. B. Dwyer. SOS: Saving Time in Dynamic
Race Detection with Stationary Analysis. In OOPSLA, pages 35–50,
2011.

[42] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In
ASPLOS, pages 329–339, 2008.

[43] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In ISCA, pages 210–221, 2010.

[44] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In PLDI, pages
190–200, 2005.

[45] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[46] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In PLDI, pages 134–
143, 2009.

[47] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory Model for
Concurrent Programming Languages. In PLDI, pages 351–362, 2010.

[48] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Sys-
tematic Testing of Multithreaded Programs. In PLDI, pages 446–455,
2007.

[49] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race
Detection. In POPL, pages 327–338, 2007.

[50] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for
Java. In PLDI, pages 308–319, 2006.

[51] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In PLDI, pages 22–31, 2007.

[52] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In PLDI, pages 89–100,
2007.

[53] H. Nishiyama. Detecting Data Races using Dynamic Escape Analysis
based on Read Barrier. In VMRT, pages 127–138, 2004.

[54] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection.
In PPoPP, pages 167–178, 2003.

[55] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region
serializability for all. In HotPar, 2013.

[56] PCWorld. Nasdaq’s facebook glitch came from race conditions,
2012. http://www.pcworld.com/article/255911/nasdaqs_
facebook_glitch_came_from_race_conditions.html.

[57] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. CCPE, 19(3):327–
340, 2007.

[58] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, pages
320–331, 2006.

[59] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In SOSP, pages 27–37, 1997.

[60] K. Sen. Race Directed Random Testing of Concurrent Programs. In
PLDI, pages 11–21, 2008.

[61] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov. Dy-
namic Race Detection with LLVM Compiler. In RV, pages 110–114,
2012.

[62] J. Ševčík and D. Aspinall. On Validity of Program Transformations in
the Java Memory Model. In ECOOP, pages 27–51, 2008.

[63] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng. RACEZ: A Lightweight and Non-invasive Race Detection
Tool for Production Applications. In ICSE, pages 401–410, 2011.

[64] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
Isolation and Ordering in STM. In PLDI, pages 78–88, 2007.

[65] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound
Predictive Race Detection in Polynomial Time. In POPL, pages 387–
400, 2012.

[66] U.S.–Canada Power System Outage Task Force. Final Report on the
August 14th Blackout in the United States and Canada. Technical
report, Department of Energy, 2004.

[67] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and Surviving Data Races using Complementary Schedules.
In SOSP, pages 369–384, 2011.

[68] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70–82, 2001.

[69] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection
on Millions of Lines of Code. In ESEC/FSE, pages 205–214, 2007.

[70] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy.
Parallelizing Data Race Detection. In ASPLOS, pages 27–38, 2013.

[71] B. P. Wood, L. Ceze, and D. Grossman. Low-Level Detection of
Language-Level Data Races with LARD. In ASPLOS, pages 671–686,
2014.

[72] X. Xie and J. Xue. Acculock: Accurate and Efficient Detection of Data
Races. In CGO, pages 201–212, 2011.

[73] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted
Lockset-based Race Detection. In HPCA, pages 121–132, 2007.

21

http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html

	Introduction
	Background and Motivation
	Detecting Real Data Races Only
	Detecting All Data Races in Observed Executions

	Overview
	RaceChaser: Precise Data Race Detection
	How the Analysis Works
	Sampling Policy
	Optimizations

	Caper: Detecting All Potential Data Races
	Caper Overview
	Caper's Dynamic Analysis

	Synergy of RaceChaser and Caper
	Implementation
	Detecting Data Races Precisely
	Detecting Potential Data Races Soundly

	Evaluation
	Methodology
	Detecting Data Races Precisely
	Performance
	Detecting Real Data Races

	Detecting Potential Data Races Soundly
	Performance
	Precision and Effectiveness

	Related Work
	Conclusion

