Prescient Memory: Exposing Weak Memory
Model Behavior by Looking into the Future *

Man Cao Jake Roemer

Aritra Sengupta

Michael D. Bond

Ohio State University (USA)
{caoma,sengupta,mikebond}@cse.ohio-state.edu, roemer.37Qosu.edu

Abstract

Shared-memory parallel programs are hard to get right. A major
challenge is that language and hardware memory models allow un-
expected, erroneous behaviors for executions containing data races.
Researchers have introduced dynamic analyses that expose weak
memory model behaviors, but these approaches cannot expose be-
haviors due to loading a “future value”—a value written by a pro-
gram store that executes after the program load that uses the value.

This paper presents prescient memory (PM), a novel dynamic
analysis that exposes behaviors due to future values. PM specula-
tively returns a future value at a program load, and tries to validate
the speculative value at a later store. To enable PM to expose be-
haviors due to future values in real application executions, we intro-
duce a novel approach that increases the chances of using and suc-
cessfully validating future values, by profiling and predicting future
values and guiding execution. Experiments show that our approach
is able to uncover a few previously unknown behaviors due to fu-
ture values in benchmarked versions of real applications. Overall,
PM overcomes a key limitation of existing approaches, broadening
the scope of program behaviors that dynamic analyses can expose.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability; D.2.5 [Software
Engineering]: Testing and Debugging—monitors, testing tools

Keywords Data races; relaxed memory consistency models; Java
memory model; dynamic program analysis

1.

With the widespread adoption of multi-core processors, software
must become more parallel in order to scale with successive hard-
ware generations. However, it is notoriously challenging to write
and debug shared-memory parallel programs, which can have many
possible—and potentially harmful—behaviors that are difficult to
reason about. A key problem is that shared-memory languages and
architectures provide few, if any, guarantees for data races, lead-
ing to unexpected, erroneous behaviors. For example, C/C++ ex-

Introduction

* This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ISMM’16, June 14, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4317-6/16/06...
http://dx.doi.org/10.1145/2926697.2926700

99

ecutions that are racy (i.e., have a data race) have undefined se-
mantics [2, 11]. Java provides defined but weak semantics for racy
executions, in an effort to preserve memory and type safety [34],
although later work has shown that this model is impractical to en-
force [12, 34, 47].

Data races and their erroneous effects occur nondeterministi-
cally and only under certain conditions. Data races are difficult to
avoid, find, fix, and eliminate [1, 7, 13, 18-23, 37, 38, 41, 43, 44,
49-51]. Programmers often introduce data races intentionally for
performance [9, 10, 28, 29]. Data races and their erroneous effects
are thus ubiquitous, even in mature software systems.

Figure 1 shows an example shared-memory program in a Java-
like language; x and y are shared variables, and r1 and r2 are locals.
Under a weak memory model such as Java’s memory model [34],
it is legal for both loads to read the value 0, violating the asser-
tion. However, such an outcome would not be possible if memory
accesses appeared to execute in their original order (i.e., with se-
quential consistency (SC) semantics [31]). This kind of non-SC be-
havior not only is permitted in theory, but occurs in practice when
compiler and hardware optimizations reorder intra-thread memory
accesses.

Since non-SC behaviors tend to manifest infrequently and un-
expectedly, researchers have introduced dynamic analyses that in-
tentionally expose non-SC behaviors allowed under weak memory
models [17, 24, 29]. However, these dynamic analyses are limited
in the kinds of behaviors they can expose. Figure 2 shows an ex-
ample for which Java’s memory model permits both loads to read
the value 1. Existing dynamic analyses cannot expose this behav-
ior because they allow loads to read “stale” values (values stored in
the past), but not “future” values (values that will be stored in the
future).

This paper addresses the challenge of how to expose behaviors
due to future values, which (as we explain) is inherently more dif-
ficult than for stale values. To the best of our knowledge, we intro-
duce the first dynamic analysis that uses future values and evalu-
ates the effects of using future values in real application executions.
Prior work has used future values in the context of model checking
of small libraries that use C++ atomic types [40] (Section 9). In
contrast to model checking, which explores many executions ex-
haustively, dynamic analysis faces the challenges of how to expose
behaviors due to future values within a single execution—an impor-
tant goal since model checking techniques generally do not scale to
large, long-running programs.

Exposing effects due to future values (as opposed to stale val-
ues) presents a unique challenge: if a load reads a future value (i.e.,
a value that is expected to be stored in the future), this load opera-
tion can “change the future,” so that the anticipated future value is
no longer stored in the future, leading to an outcome not permitted
by weak memory models for safe languages such as Java. For ex-
ample, suppose a thread’s store is control-dependent on the value

Initially x =y =0

Thread 1: Thread 2:
y =1; x =1;
rl =x; 2 =y;

assert rl =01 r2!=0

Figure 1. An assertion failure is possible under Java’s memory
model. Existing dynamic analyses can expose the assertion failure.

Initiallyx =y =0

Thread 1: Thread 2:

rl =x; r2 =y,

y =1; x =1;
assert rl == 01| r2 ==

Figure 2. An assertion failure is possible under Java’s memory
model. Existing dynamic analyses cannot expose the failure.

Initially x =y =0

Thread 1: Thread 2:

rl = x; r2 =y,

y =1, if (r2 ==0)
x =1;

assert rl ==01r2==0

Figure 3. An assertion failure is not possible under Java’s memory
model. Dynamic analysis must be careful not to allow an execution
in which the assertion fails.

of a load, as in Figure 3. Then the assertion-violating outcome is
impossible under the Java memory model. Thus, special challenges
for using future values are (1) how to predict future values that are
likely to be stored in the future and (2) how to validate that specu-
latively used future values are in fact stored in the future.

This paper presents a novel dynamic analysis called prescient
memory (PM) that exposes behaviors caused by future values, with-
out exposing unjustified future value behaviors.! PM achieves this
objective by (1) speculatively using potential future values at loads
and (2) validating that the future value is later stored. In order for
PM to be useful, it must make reasonably good choices about which
loads should use future values and which future values to use. Our
solution to this challenge, which we call the PM workflow, consists
of three components: (1) profiling of values stored in the future; (2)
prediction of which loads should use future values and which fu-
ture values to use; and (3) deterministic execution from profiling to
prediction except when the latter execution unavoidably diverges,
which we call fuzzy replay. The resulting approach is well suited to
exposing (legal) uses of future values in real programs that are too
large for exhaustive exploration.

We have implemented PM in a Java virtual machine and eval-
uated PM’s ability to expose erroneous behaviors in benchmarked
versions of large, real Java applications. We have also imple-
mented and compared against prior work called adversarial mem-
ory (AM) [24], which exposes errors due to stale values. PM ex-
poses 7 bugs, i.e., 7 distinct shared variables for which a future
leads to erroneous behavior, such as crashes and incorrect output.
AM exposes 6 of these 7 bugs (as well as 2 other errors), although
in 2 of these cases, PM exposes different (and arguably more de-

! As we explain, PM exposes future value behaviors even for data-race-free
programs (Section 5), but the PM workflow does not (Section 6).

100

structive) erroneous behaviors than AM. These results show that
our approach is effective at using future values that can be val-
idated, and that future values can help to expose new bugs and
behaviors.

This paper makes the following intellectual and empirical con-
tributions:

e PM is the first dynamic analysis that exposes weak memory
model behaviors due to future values in large, real applica-
tions. In order to enable PM to expose these behaviors without
exhaustive exploration, we introduce a novel approach called
the PM workflow that incorporates three components: profiling,
prediction, and fuzzy replay. Our evaluation shows that this ap-
proach is in fact useful for using future values successfully.

Our evaluation shows that legal uses of future values exist in
real applications and that they can lead to harmful behaviors.
Future values alone (i.e., without using any stale values) can
often trigger the same bugs that stale values trigger—but the
future-value behaviors are sometimes different and more de-
structive. These results motivate our approach’s utility for ex-
posing previously unknown program behaviors.

An existing line of research shows that seemingly “benign”
data races are in fact harmful [17, 24, 28, 29, 39, 40, 45]. By
exposing real, destructive behaviors due to future values, our
work advances the state of the art in this area.

Existing language memory models still have difficulty defin-
ing what program behaviors should be allowed for an execution
with data races [2, 12, 47]. Our approach provides an opportu-
nity to explore this gray area in large, real programs; real-world
evidence of controversial examples would inform and influence
future language specification revisions.

2. Background and Motivation

This section provides background on language memory models and
the behaviors that they allow, including behaviors due to “stale”
and “future” values. We then motivate both the importance and
challenges of exposing behaviors due to future values.

2.1 Memory Models

In 1990, Adve and Hill introduced the data-race-free-0 (DRFO0)
memory model [3], which guarantees sequential consistency for
well-synchronized program executions, i.e., executions that are free
of data races. An execution is sequentially consistent (SC) if all
memory accesses appear to be interleaved in an order that is con-
sistent with each thread’s program order [31]. A data race occurs
when two threads access the same memory location without syn-
chronization, and at least one of the accesses is a store [4]. The
rationale for the DRF0 model is that it permits compilers and hard-
ware to perform aggressive intra-thread optimizations, as long as
they do not arbitrarily reorder memory accesses across synchro-
nization operations. As long as programmers avoid data races, the
effects of optimizations will not be externally visible.

Modern shared-memory languages provide memory models
that are based on DRFO [2, 11, 34]. C and C++ lend undefined
semantics to a “racy” execution (i.e., an execution with a data
race) [11]. While this situation is acceptable for unsafe languages
such as C and C++, preserving memory and type safety in a safe
language such as Java demands providing some semantics for racy
executions.

The Java memory model (JMM) ensures certain weak seman-
tics for racy program executions [34]. However, subsequent work
shows that JMM actually precludes common Java virtual machine
(JVM) optimizations [2, 12, 47]. Commercial JVMs thus violate
JMM, since existing art does not demonstrate how to avoid certain

Initially x = 0

Thread 1: Thread 2:
X =7, if (X = 0)
r2 =rl/x;

Figure 4. An example program that can generate a divide-by-zero
exception under HBMM.

undesirable results without seriously inhibiting optimizations [12,
47]. Recent work tries to address this issue, using techniques based
on event structure models, but it is unclear whether this work per-
fectly delineates behaviors needed for optimization from other be-
haviors [27, 42]. Instead of conforming to JMM, JVMs at least
conform to a memory model that is the intersection of (1) DRFO
and (2) a weak memory model called the happens-before memory
model (HBMM), presented next.

Happens-before memory model (HBMM). The following de-
scription of HBMM is closely based on prior work [24, 34].
HBMM is an easy-to-understand memory model that provides
weak but defined semantics for executions with data races. HBMM
limits the values that a load can return according to the happens-
before relation [30], denoted as — 1. A load operation 7 may return
the value written by any store w to the same location, if and only if
the following properties hold true:

1. » Ahp w (i.e., w happens-before or is concurrent with 7).

2. There is no intervening store w’ to the same memory location
such that w —spp W' —>pp 7.

HBMM thus still permits various behaviors in which memory ac-
cesses appear to execute in an order other than program order, i.e.,
non-SC behaviors. HBMM allows assertion violations in the pro-
grams in Figures 1 and 2 (Section 1). As another example, HBMM
allows a divide-by-zero exception in Figure 4.

If a load reads from the latest store to a variable, then the
behavior is SC. If a load reads from an earlier store, then we say
it reads a stale value. If a load reads from a store that has not
yet happened, then we say it reads a future value. (Admittedly,
concepts such as “latest” and “before” are not well defined in
a concurrent execution in which operations are not ordered by
happens-before. However, these concepts are well defined in the
context of a dynamic analysis that observes conflicting operations
to each variable in some global order.) HBMM permits loading
both stale and future values. The failing behaviors in Figures 1
and 4 can be produced by using stale values. However, to produce
failing behavior in Figure 2, future values are needed.

Furthermore, future values can sometimes produce behaviors
different from those produced by stale values. For example, in
Figure 5, using stale values can cause non-termination, while only
future values allow the assertion to fail.

An important caveat of HBMM is that it does not guarantee SC
for data-race-free executions—the crucial guarantee mandated by
DRF(0. HBMM is thus not strictly stronger than DRFO, rendering
HBMM unsuitable as a language memory model.” Figure 6 shows
an example of non-SC behavior allowed by HBMM but not by
DREFO. This program is data race free because every SC execution
only executes loads. However, under HBMM, each load can spec-
ulatively return 1, diverting the control paths to store 1 to x and vy,
justifying the initial speculative loads.

2 Conversely, DRFO allows arbitrary behavior for racy executions and is
thus not strictly stronger than HBMM.

101

Initially x =y =0

Thread 1: Thread 2:
r =Xx; Whlle (y == 0) { }
y =1, x =1;

assert r == 0

Figure 5. Using stale values, the execution may not terminate.
Using future values, the assertion can fail.

Initiallyx =y =0

Thread 1: Thread 2:

rl =x; r2 =y;

if (r1 ==1) if (r2==1)
y =1, x =1;

assert r1 == 0&& 2 ==0

Figure 6. An example data-race-free program that can fail its as-
sertion under HBMM but not DRFO [2, 11, 12].

Initiallyx =y =0

Thread 1: Thread 2:
rl = x; r2 =y;
y =rl; X = r2;

assert rl |= 42

Figure 7. An example out-of-thin-air result [12, 34, 47].

Java memory model. JMM is a strictly stronger memory model
than both DRFO and HBMM [34]. It not only enforces SC for
data-race-free executions, but it tries to prohibit results that could
compromise memory and type safety. (JMM introduces a concept
called causality to define what behaviors are permitted [34].)

Figure 7 shows a canonical example [12, 34, 47] of behavior that
JMM prohibits but HBMM (and DRFO) allow. HBMM permits an
execution in which each load reads 42. This execution is possible as
follows: each load’s value is justified by a store on the other thread,
which in turn is justified by the load on the same thread. To see
why this behavior might conceivably happen, consider a compiler
optimization that modifies each thread’s code to speculatively use
a predicted value (e.g., 42) at each load, and then checks the value
after the store.

Out-of-thin-air results. Prior work refers to behaviors such as
Figure 7 as out-of-thin-air (OOTA) results. Prior work has not
generally agreed on what constitutes an OOTA result [12, 34, 47].
In this paper, we reuse the following informal definition of OOTA
results: “results that can be justified only via reasoning that is in
some sense circular” [12]. Under this definition, Figure 6’s non-SC
behavior and Figure 7’s assertion failure are OOTA results.

Figure 8 shows another OOTA example from prior work [47].
JMM only permits executions in which r2 = y sees 0. However,
HBMM additionally permits executions in which r2 =y sees 1. To
see why this behavior is possible, suppose that the loads of x and y
see the value 1. The resulting execution (racily) stores 1 to x and vy,
justifying the value seen by the initial loads.

The OOTA behavior in this example actually happens in com-
mercial JVMs [47]. A JVM’s just-in-time, optimizing compiler can
eliminate the redundant load of y at line 5, replacing it with r3 =
1. This transformation in turn allows x = 1 on both control paths,
which in turn allows r2 to load a value of 1 fromy.

Initially x =y =0

Thread 1: Thread 2:
1rl =x; 312 =y;
2y =rl; 4 if (r2 ==1){
5 3=y,
6 X =1r3;
7 } else x = 1;

assert r2 == 0

Figure 8. An example program in which compiler transformations
can violate JMM [47].

We make the following observation: in order to produce OOTA
results, an execution must use future values (e.g., the OOTA results
in Figures 6, 7, and 8 rely on future values). Other unexpected
and counterintuitive, yet JMM-compliant behaviors, such as the
assertion-violating behavior in Figure 2, also require future values.
Since real-world JVMs neither conform to the JMM nor prevent
OOTA results, it is useful to expose all possible but unexpected
results due to future values, whether or not they are OOTA, as long
as they conform to both HBMM and DRFO.

2.2 Exposing Weak Memory Model Behaviors

Despite much effort, data races are widespread. By developing and
evaluating analyses that expose weak memory model behaviors,
researchers have demonstrated that many real data races lead to
harmful behaviors. However, existing analyses have not exposed
the full range of possible behaviors—particularly behaviors due to
future values, which are uniquely difficult to expose.

Data races are ubiquitous. Data races are hard to avoid, detect,
and eliminate. Data races—and the erroneous behaviors caused
by them—manifest only under certain thread interleavings, inputs,
and environments, making them difficult to detect and reproduce.
In spite of much research on detecting and eliminating data races
(e.g., [1, 7, 13, 18-23, 37, 38, 41, 43, 44, 49-51]), there remains
a fundamental tension between soundness, precision, and perfor-
mance. Furthermore, programmers often introduce data races in-
tentionally in their efforts to improve performance and scalability
and avoid deadlock [9, 10, 28, 29].

Data races are harmful. The conventional wisdom for decades,
persisting even to the present day, is that many data races are
“benign.” This misconception has been solidified in part by prior
work that exposes behaviors in racy executions, but considers only
SC behaviors [28, 39, 45]. More recent research considers non-
SC behaviors, and shows that many data races are demonstrably
harmful [17, 24, 29]. However, existing dynamic analyses have
been limited to exposing effects due to stale values. Adversarial
memory (AM) is one such analysis, which we compare against and
present in Section 4. One contribution of our work is to broaden the
exploration of what kinds of harmful behaviors are possible due to
data races.

Exposing behaviors due to future values. Since AM and other
dynamic analyses simulate behaviors due to stale values only [17,
24, 29], they cannot expose behaviors due to future values (e.g.,
Figures 2 and 5). An existing model checker called CDSChecker
uses future values in the context of accesses to C++ atomic vari-
ables [40] (Section 9). CDSChecker explores program behaviors
exhaustively but is limited to analyzing small libraries. In contrast,
our work addresses the problem of how to use future values in dy-
namic analysis, i.e., how to use future values successfully in a sin-
gle execution.

102

/DRFO memory model
fHappens-before memory model

P e ety

/ Our goal

Java memory model

‘/is}(iéiifrﬁéﬁéiﬁé; -
3 © Typical JVMs
|

N

|
|
!
!
!
!
|
|
|
!
!
!
!
|

.

Figure 9. Illustration (inspired by prior work [24]) of the behaviors
permitted by various memory models (solid lines), exposed by
dynamic analyses (dashed lines and bold text), and exposed by
typical JVMs (dotted line).

Exposing behaviors due to future values is not straightforward.
Using a future value may affect whether the value is actually even-
tually stored—a necessary condition for a valid execution. Consider
the example program in Figure 3 (from Section 1). An assertion
failure is not possible under HBMM because the store to x of 1
is control-dependent on the value loaded from y. Thus, a dynamic
analysis that exposes behaviors due to future values must validate
that future values that are used by loads, are later stored.

This paper seeks to expose erroneous behaviors due to future
values on data races, such as in Figure 2, without exposing behav-
iors that are not permitted under DRFO or HBMM, such as the as-
sertion failures in Figures 3 and 6. Notably, we argue that exposing
OOTA behaviors such as in Figures 7 and 8 is worthwhile since
(1) JVMs actually allow some OOTA behaviors, and (2) it is still
unclear what behaviors JMM should allow or forbid.

Figure 9 illustrates the behaviors allowed by several memory
models, compared with behaviors exposed by prior dynamic analy-
ses and targeted by this paper’s analysis. Neither DRFO nor HBMM
is a subset of the other, as Section 2.1 explained. JMM permits be-
haviors that are a strict subsect of the intersection of DRF0 and
HBMM. Typical JVMs do not conform to JMM, and existing anal-
yses for Java programs can only expose a subset of behaviors al-
lowed by JMM. Our goal is to expose not only behaviors allowed by
the JMM, but also behaviors allowed by the intersection of DRFO
and HBMM.

3. Preliminaries: Common Notation

This section introduces notation that we use to present both prior
work’s adversarial memory (AM) analysis [24] in Section 4 and our
prescient memory (PM) analysis in Sections 5 and 6.

We use the following notation to describe a multithreaded exe-
cution:

t : A thread identifier.
x : A shared-memory variable.

v : A value loaded from or stored to a variable.

The analyses are mainly concerned with memory access operations,
which are each one of the following:

rd(t,x) : Thread ¢ loads from variable x.

wr(t, x,v) : Thread ¢ stores a value v to variable x.

Both the AM and PM analyses rely on the classic vector clock
algorithm [23, 35] to track logical time and happens-before rela-

Algorithm 1
Wy +— W, - vQC,

STORE [AM]: wr(t, z,v)

Algorithm 2

let v < pick(visible(Wy))
return v

LOAD [AM]: rd(t, x)

tions [30]. The algorithm associates a vector clock with each thread
and each synchronization object (in Java, every object and volatile
field), and updates these vector clocks at synchronization opera-
tions (lock acquire and release, monitor wait, thread fork and join,
and volatile accesses). The vector clock algorithm uses the follow-
ing notations:

K : A vector clock, which maps each thread to an integer [35].

K C K’ : This relationship means that for every thread identifier,
K’s integer is less than or equal to K'’s integer. The vector
clock algorithm ensures that if an event at logical time K
happens before an event at time K, then K C K'. Otherwise
KZK'.

C: : Represents thread ¢’s current vector clock.

4. Prior Work: Adversarial Memory

Prior work introduces adversarial memory (AM) [24] to expose a
subset of behaviors that are allowed under the Java memory model
(Section 2.1). AM enables loads to see stale values by buffering
an execution’s stores and tracking happens-before relations. Like
other existing dynamic analyses [17, 29], AM does not allow loads
to see future values.

AM associates a write buffer with every shared variable:

W, : A write buffer for variable x, which has the following form:
Wm = ’Ul@Kl . ’Uz@Kz et ’Un@Kn

where n > 0. Each pair v@QK denotes that a store of value
v to x was executed at vector clock timestamp K. The write
buffer initially contains only 0@Q_L (where L is the vector clock
that maps all threads to 0), representing that the variable is
initialized to its default value [33].

Algorithms 1 and 2 show the analysis that AM performs at each
program store and load, respectively. At each store, AM appends
the current v@QC} to the write buffer. At each load, AM picks a
value from the visible set of values from the write buffer. AM picks
a value using a heuristic function pick() (definition not shown).
Our experiments reuse heuristics from prior work, which include
picking the oldest value, picking the oldest value that is different
from the last returned value, and picking a random value from the
visible set [24].

Algorithm 3 defines the function wvisible() for computing the
visible set. The condition in braces specifies what values in the
write buffer are legal for the current load to see. Since every value
in the write buffer is the result of a concrete, previously executed
store, a load cannot see values from future stores. Thus, the rule
only needs to ensure that there is no intervening store. A value v;
is legal to return if there is no subsequent store of v; (1 < 7 < n)
that (1) happens after the store of v; and (2) happens before the
current load. The returned visible set maintains the same order of
the values as they appear in W.

103

Algorithm 3

function visible(W,)
return {v; | 1<i<n A(Bj>i.K; CK; CCy)}

Helper function

Algorithm 4 LOAD [PM]: rd(t, x)
1: let v < latest(Wy,) > Start with current value
2: v < predict(v, ...)
3: if v & visible(W,) then > Is v a speculative value?
4: Sy < Sz U{(C,v)}
5: return v

Algorithm 5 STORE [PM]: wr(t, z,v)

1: We +— W, - U@Ct

2: for all (K,v") € S, do

3: if K Z Cy Av' = v then > Is speculative load validated?
4 Sy Su — {(K,v')}

5. Prescient Memory

A key limitation of AM and related existing work [17, 24, 24, 28,
29, 39, 45] is the inability to “look into the future” and load a future
value (Section 2). This limitation means that these analyses cannot
expose some behaviors that are allowed under weak memory mod-
els. To overcome this limitation, we introduce an analysis called
prescient memory (PM), which supports using and validating future
values. The behaviors exposed and validated by PM are allowed
under the happens-before memory model (HBMM; Section 2.1).
However, PM as presented in this section can expose non-DRFO0
behaviors, by producing non-SC results in data-race-free programs
such as Figure 6 (from Section 2). In contrast, Section 6 introduces
a PM workflow that exposes non-SC behaviors only for programs
with data races.

Since every legitimately loaded future value is the result of a
future store, PM performs speculative loads to “guess” a future
value. At later stores to the same variable, PM tries to validate each
speculative load by checking if any concurrent store (i.e., a store
that races with the load) actually stores the same value that the load
used.

PM uses the same notation as AM, and it calls the wvisible()
function from Algorithm 3. PM maintains the same state as AM
(the write buffer W) and the following additional state:

Sz : A speculative read history for variable . S, contains tuples
of the form (K, v), which denotes that a load of z at time K
used a speculative value v. Initially S, is 0.

Algorithm 4 shows the analysis that PM performs at a load. The
analysis picks a value that is predicted to be a future value, using
the predict() function (line 2), which may elect to return the pro-
vided latest value instead of a potential future value. (The “...” in
predict()’s parameter list represents additional parameter(s) that
could be provided to help prediction. Section 6 introduces an ad-
ditional parameter that encodes dynamic program location.) If the
predicted value is not in the visible set, then the load operation is
speculative, and the analysis records the load in S, (line 4).

Algorithm 5 shows the analysis at a program store. In addition
to appending the current v@QCY to W, (line 1), the algorithm checks
if the current store validates a previously executed speculative load
from S, (line 3). The algorithm removes all such matching entries
from S (line 4).

An execution is valid only if (and when) all speculative loads
have been validated. Algorithm 6 checks at program termination

Algorithm 6

1: for all x do
2: if S; # (0 then
3: Invalid execution!

TERMINATION [PM]

Algorithm 7

1: for all (K,v) € S, do
2: if Vt, K C C; then
3: Invalid execution!

EARLY VALIDATION [PM]:

> Can v never be validated?

if all speculative loads have been validated. If not, the current
execution may not conform to HBMM, and any erroneous behavior
it exhibits is not worth investigating.

An execution may fail to terminate normally, by throwing an
exception or getting stuck in an infinite loop, as a result of a
speculative load. This behavior should be considered to be legal
under HBMM if and only if PM can validate all speculative loads
(i.e., Vx .Sz = (). Otherwise, the behavior is invalid: it is quite
possibly not allowed under HBMM.

It is sometimes possible to determine prior to program termi-
nation that an unvalidated speculative load can never be validated.
Algorithm 7 shows the logic, which can be invoked at any point
during program execution. If a speculative load happened before all
threads’ current vector clocks (line 2), any future stores will hap-
pen after this speculative load—so the load will never be validated.
In a managed language such as Java, it is convenient to implement
Algorithm 7 at garbage collection (GC) time, since (full-heap) GC
traverses all shared variables z, at which point it can process Sy.

6. Making Prescient Memory Practical

PM as described in Section 5 presents two main challenges:

1. It is difficult to make PM efficiently produce a valid execution
containing future values for large, real programs. In particular,
how should PM choose when and which future values to use,
what actions can it take to improve the chances that future val-
ues will be validated? Prior work that has used and validated
future values has not dealt with this challenge; instead it per-
forms model checking of small programs [40] (Section 9).

2. PM can expose behaviors that are possible under HBMM but
not DRFO. As a result, PM can expose non-SC behaviors even
for data-race-free programs, such as the assertion failure in
Figure 6.

We address the above challenges using a novel approach called
the PM workflow (or simply the workflow) that consists of the
following components:

e profiling of potential future values;

e predicting which loads should use future values, and which
values to use; and

e deterministic replay that helps provide consistent behavior be-
tween profiling and predicting runs, while also permitting di-
vergence as needed.

Figure 10 illustrates the workflow. The workflow limits analysis
to memory accesses involved in data races, identified in separate
program execution(s) using a dynamic data race detector, as in
prior work that uses stale values [17, 24, 29]. By limiting PM only
to accesses involved in data races, the workflow avoids producing
non-SC results for data-race-free programs.

104

—> PM
Racy . G : .
Data race | accesses!| |PM-Profiler ; > predict()
detector b ;
Record —»Fuzzy replay

Figure 10. Overview of the PM workflow. Dashed lines separate
distinct program executions.

Algorithm 8
1: Wy +— W, - vQC:
2: for all (I, K,{v1,v2,...}) € R, do
3: if K ZCy Av ¢ {v1,v2,...} then > Potential future value?
4. Gl < GL] {U}

STORE [PM-profiler]: wr(t, z, v)

Algorithm 9 LOAD [PM-profiler]: rd(t, z,1)

I: Ry + Ro U{{l,C4, visible(W5))}
2: let v < latest(Wy)
3: return v

The rest of this section describes specific challenges and how
the workflow’s components address them.

6.1 Profiling Potential Future Values

In order to assist PM’s prediction of future values, we introduce a
separate analysis called PM-profiler that produces a set of promis-
ing future values for each executed load.

PM-profiler and PM need a mechanism to identify executed
load operations. We introduce the following identifier:

L : A dynamic program location that uniquely identifies a dynamic
load. [encodes both the thread that executed the load and the
dynamic instance of the static instruction.

PM-profiler maintains the following data structures:

R : A concrete read history for variable x. Each element in R, is
a tuple with the form (I, K, {v1,v2,...}). The set {v1,v2,...}
is a non-empty set of all visible values at the load operation.
Initially R, is 0.

G : The “promising” future value set for a load operation identi-
fied by [. G is the interface between PM-profiler and PM: PM-
profiler produces G, and PM’s predict() function uses G as a
read-only dictionary.

PM-profiler’s analysis at a program store, shown in Algorithm 8,
identifies promising future values. It checks if the current store can
provide a future value for any of the previous loads in R, (lines 2—
4). If the current store is concurrent with a previous load, and the
store provides a value that is distinct from any value in the visible
set of the load (line 3), then the analysis records the value of the
store in the set of promising future values for the load (line 4).

At a program load, PM-profiler computes and stores the visible
set for the load, as Algorithm 9 shows. The analysis records the
dynamic program location [, the current time C, and the visible
set in R,. It always returns the latest value from W, ; PM-profiler
does not try to expose any weak memory model behaviors.

6.2 Predicting Future Values

‘We now overview the prediction component of the workflow, which
is represented with the call to function predict() in Algorithm 4
(from Section 5). In order to use GG (the potential future values

produced by PM-profiler), PM passes [to predict(); that is, PM’s
analysis in Algorithm 4 calls predict(v,).

There are two different questions for prediction: which loads
should use future values, and which future values should they use?
We find that in practice only the first question matters: most loads
with future values have only one future value, and using different
future values for loads with multiple future values has little impact
on the behaviors that PM can expose.

Thus, predict() is concerned with choosing which loads with
a future value (i.e., loads at [with non-empty G;) should use a
future value. (When there are multiple values in Gy, predict()
chooses one randomly.) In general, if more loads return future
values, the execution is more likely to exhibit new, potentially
erroneous behaviors. On the other hand, using more future values
means that the execution is less likely to be able to validate every
loaded future value.

Our implementation of predict() supports the following poli-
cies:

All : Every load with non-empty G uses a future value. Except for
microbenchmarks, this policy almost always leads to validation
failures. However, it is useful for exposing behaviors that might
be possible if the “right” set of loads were selected to use future
values.

Selective : The first k executed loads do nor use future values, and
the following m executed loads use future values. Skipping
k executed loads helps when we have identified that some
loads either (1) have future values that PM cannot validate
successfully or (2) have future values that can be validated
and lead to erroneous behavior, but we want to look for other
behaviors later in the execution. Using future values for the next
m loads only, increases the chances that all future values will
be validated.

Per-site : This policy modifies the previous policy so that predic-
tion applies only to one particular static load site (i.e., static
program location that performs a load). By running with this
policy separately for each site, we can increase the chances of
finding a load that produces a future value that can be validated.

Our evaluation tries various combinations of these in order to find
future values that can be validated and to expose erroneous behav-
iors. We also tried introducing randomness into the above policies,
but did not uncover any new behaviors as a result.

Behaviors exposed by the PM workflow. The PM workflow ex-
poses not only behaviors allowed by JMM but also additional be-
haviors permitted by both HBMM and DREFO, i.e., the behaviors
labeled “Our goal” in Figure 9 (from Section 2). Figure 8 (from
Section 2) shows an example of such behavior. While some of these
behaviors likely cannot be exposed by any conceivable JVM opti-
mization, these behaviors are still of interest to developers, partic-
ularly since the exact set of possible behaviors that JVM optimiza-
tions might allow is ill defined.

The PM workflow allows some strange behaviors that are still
DRF0O—depending on one’s exact definition of DRF0. Consider
Figure 11, for which the PM workflow can cause the assertion
to fail. PM-profiler identifies the racy store x = 1 by Thread 1.
However, when PM uses that value at Thread 2’s load, the data
race on z would nor manifest and Thread 1’s store to x does not
execute. Instead, Thread 3’s store to x validates the load.

6.3 Fuzzy Deterministic Replay

Multithreaded executions are inherently nondeterministic due
to timing-sensitive thread interleavings. This nondeterminism
presents two challenges for PM-profiler and PM, which operate
on separate executions. First, nondeterminism makes it difficult to

105

Initiallyx =y =z =10

Thread 1: Thread 2: Thread 3:
r2 =x; 3 =y;
if (r2==1) if (r3==1)
y =1; x =1;
else
z =1,
rl = z;
if (rl ==1)
x =1;
assert r3 ==

Figure 11. An example program for which the PM workflow can
cause the assertion to fail.

match loads across program executions: the mapping G produced
by PM-profiler is unlikely to be useful to PM if program execution
diverges. Second, nondeterminism makes it less likely that a poten-
tial future value from a prior execution will actually be validated
by a future store.

Our workflow thus extends multithreaded record & replay [14,
32, 48] in order to eliminate nondeterminism between the PM-
profiler and PM executions. Deterministic replay helps guide the
PM execution to match the PM-profiler execution’s thread inter-
leavings. However, after PM uses a future value, execution may
diverge from the recorded execution. Nonetheless, we have found
that deterministic replay is still useful at this point in order to po-
tentially guide the execution to store (and thus validate) the future
value.

In some cases, divergence could cause the deterministic replay
mechanism to be unable to continue. For example, suppose thread
T2 is waiting for thread T1 to reach a specific execution point in
order to ensure deterministic replay. If T1 loads a future value
and diverges from the recorded execution, T1 may never reach
the point that T2 is waiting for, in which case replay is “stuck.”
Instead of failing the execution, PM detects when replay is stuck
and proceeds without being guided by replay. We refer to this best-
effort replay approach as fuzzy replay. Fuzzy replay is useful not
only for validating future values at upcoming stores, but also for
using additional future values at upcoming loads after the execution
has already diverged.

7. Implementation

We have implemented AM, PM, and the PM workflow in Jikes
RVM 3.1.3 [5, 6], a high-performance Java virtual machine (JVM)
that performs competitively with commercial JVMs [7]. Our im-
plementation of the PM workflow builds on existing, publicly avail-
able implementations of dynamic data race detection (the FastTrack
algorithm [23] implemented in Jikes RVM [7]) and multithreaded
record & replay [14]. Our implementation of AM is influenced by
a publicly available implementation of AM in Jikes RVM [46].

AM, PM, and PM-profiler modify Jikes RVM’s dynamic com-
pilers to add instrumentation at every memory access identified by
the data race detector. The analyses bound the size of each vari-
able’s write buffer (I¥/,) and read history (R, for PM-profiler; Sy
for PM) in order to avoid running out of memory. The implementa-
tions represent dynamic program location [as a tuple of the thread,
the static site (method and bytecode index), and a per-thread, per-
site counter.

We extend the existing record & replay implementation to sup-
port our workflow. We extend the record and replay analyses to
record and replay synchronization operations (which normally
would be ignored [14]), so PM can perform the vector clock al-

Program Field(s) involved Worst erroneous behavior
AM (Observable?) | PM workflow (Observable?)

Figure 1 X,y Assertion failure (Yes) None (N/A)
Figure 2 X,y None (N/A) Assertion failure (Yes)
Figure 3 X,y None (N/A) None (N/A)
Figure 4 X Divide-by-zero (Yes) Divide-by-zero (Yes)
Figure 5 X,y Non-termination (Yes) Assertion failure (Yes)
Figure 6 None* None (N/A) None (N/A)
Figure 7 X,y None (N/A) None (N/A)
Figure 8 X,y None (N/A) Assertion failure (Yes)
Figure 11 | x, z None (N/A) Assertion failure (Yes)
hsqldb6 MemoryWatcherThread.keep running | Non-termination (Yes) Data corruption (Yes)
hsqldb6 JavaSystem.memoryRecords None (N/A) Performance bug (No)
avrora9 Transmission.lastBit Data corruption (Yes) Data corruption (Yes)
lusearch9 | ThreadlLocal.nextHashBase Performance bug (No) None (N/A)
sunflow9 | Geometry.builtAccel Null ptr exception (Yes) Null ptr exception (Yes)
pjbb2000 | Company.mode Non-termination (Yes) Data corruption (Yes)
pjbb2000 | Company.elapsed time Data corruption (Yes) Data corruption (Yes)
pjbb2005 | DomNode.eventDatalock Data corruption (No) Data corruption (No)
pibb2005 | DomEvent.stop Data corruption (No) None (N/A)

Table 1. Summary of erroneous program behaviors discovered by returning stale or future values. *The program in Figure 6 is data race
free, so AM and the PM workflow do not instrument any memory accesses.

gorithm. To support fuzzy replay, we extend replay so that it stops
trying to replay if it gets stuck or encounters a replay error. In order
to support multiple replay attempts from one recorded execution,
we extend the “fork-and-restart” mechanism that the record & re-
play implementation uses [14].

A limitation of our current implementation is that it can use
future values with primitives types but not reference types (i.e.,
references to objects). This limitation exists because object ad-
dresses are not in general the same across record and replay, since
the record & replay implementation provides application-level de-
terminism [14]. That said, it should be possible to use reference
types by extending our implementation. Objects can be identified
uniquely across runs by tagging each object with its thread and a
per-thread counter incremented at each allocation (the record & re-
play implementation already identifies objects this way in order
to provide deterministic hash codes [14]), although this approach
would seem to require the ability to look up any object based on its
tag during replay. Another challenge is that at a load to a reference-
type future value, the object may not have been allocated yet. The
implementation could address this by eagerly allocating (but not
initializing) the object at the load.

8. Evaluation

This section evaluates the PM workflow’s ability to expose erro-
neous program behaviors using future values. In this section, “PM”
refers to the PM analysis executing as part of the PM workflow
(Section 6), not the general form of PM from Section 5.

8.1 Methodology

Our experiments execute benchmarked versions of real applica-
tions: the DaCapo benchmarks, versions 2006-10-MR2 and 9.12-
bach (2009) [8] (limited to multithreaded programs that Jikes RVM
can run), and fixed-workload versions of SPECjbb2000 and 2005.

We build a high-performance configuration of Jikes RVM. The
experiments run on a system with an Intel Core i5-2500 4-core pro-
cessor running Linux 2.6.32. (We also tried running experiments on
a 32-core machine, but that did not expose any new behaviors.)

3 http://spec.org/, http://users.cecs.anu.edu.au/"steveb/research/
research- infrastructure/pjbb2005

106

For a fair comparison between AM and PM, the experiments
only consider fields of non-reference types, since the PM imple-
mentation does not currently support reference types (Section 7).
We execute AM and PM repeatedly for each program, trying out
different AM heuristics [24] and PM prediction policies (Sec-
tion 6.2) to see what kinds of erroneous behaviors can be exposed,
such as corrupted output, exceptions, and non-termination.

8.2 Exposing Erroneous Behavior

Table 1 summarizes erroneous behaviors discovered by our imple-
mentations of AM and PM. For completeness, our evaluation in-
cludes results for the example programs in Figures 1-8 and Fig-
ure 11. For the 12 real programs we evaluated, PM exposes 7 er-
roneous behaviors. Of these 7 bugs, AM can expose the same be-
haviors for 4 of them, AM exposes different behaviors for 2, and
AM cannot expose the bug for 1. Additionally, AM can expose er-
roneous behavior for 2 bugs for which PM cannot expose erroneous
behavior. In some cases, the same error manifests differently in AM
and PM, e.g., non-termination versus data corruption.

Interestingly, PM exposes erroneous behavior for most of the
same bugs for which AM exposes erroneous behavior, even though
PM does not use stale values. Our evaluation intentionally com-
pares analyses with non-overlapping functionality: AM uses only
stale values, while PM uses only future values. A more powerful
analysis would ideally combine AM and PM in order to load both
stale and future values.

In the evaluated real programs, PM does not expose any out-of-
thin-air (OOTA) results. Nonetheless, researchers and practitioners
could use the PM workflow to identity OOTA behaviors, including
controversial and/or JMM-violating behaviors. Any real-world evi-
dence of such behaviors would inform future revisions to language
specifications.

Our experiments detect a few stale and future values beyond
those reported in Table 1. For 5 fields (2 in hsqldb6, 2 in avrora9,
and 1 in sunflow9), AM detects stale values but cannot expose er-
roneous behavior. For the field in sunflow9, PM-profiler detects fu-
ture values, which PM can use and validate, but it cannot expose
erroneous behavior. Other than these cases and the cases in Table 1,
there are no fields for which AM detects stale values or PM-profiler

detects future values (including future values that PM cannot vali-
date).

Microbenchmarks. The table shows that PM and AM behave
as expected for the microbenchmarks corresponding to Figures 1—
8 and Figure 11. Although the general form of PM presented in
Section 5 can expose erroneous behavior for Figures 6 and 7, the
PM workflow cannot.

hsqldb6. This database management system has a thread that
continuously monitors the application’s memory usage and uses
a boolean flag MemoryWatcherThread.keep running as a ter-
mination condition. Threads access this variable racily. Returning
a stale value can prevent the thread (and consequently the whole
program) from terminating. Returning a future value can cause the
thread to terminate early and corrupt memory usage statistics. By
default, the benchmarked version of the program does not output
the statistics, but we have modified it to do so, making the data
corruption visible.

JavaSystem.memoryRecords is a counter that the program in-
crements at certain memory operations. The program periodically
checks the counter to decide if it should trigger garbage collection
(GO):

if (memoryRecords > n) { // n is a run—time constant
memoryRecords = 0;
System.gc();

Returning a stale value can trigger GC less frequently, but trigger-
ing GC is unnecessary since the JVM does it automatically. (Fur-
thermore, JVMs are permitted to ignore System.gc() calls [33].)
Returning a future value can trigger GC more frequently; PM is
able to successfully use and validate future values. In theory, re-
peatedly using a large future value could cause a performance bug
by triggering GC frequently. However, we have been unable to pro-
duce PM executions that use future values that can be validated but
are also large enough to cause noticeable slowdowns.

avrora9. This program is a simulator for an embedded micro-
controller. Transmission.lastBit is a long field that indicates the
end-byte position of a simulated radio transmission. The program
uses this field to compute a list of intersecting transmissions and
other simulation metrics:

List getlntersection (long bit) {

1

2 List it = null;

3 synchronized (medium) {

4 Iterator i = medium.transmissions. iterator ();
5 while (i.hasNext()) {

6 Transmission t = (Transmission) i.next();
7 if (it == null) it = new LinkedList();

8 if (bit >=t.firstBit && bit < t.lastBit) {
9 it .add(t);

10

11 }

12}

13 return it;

14 }

Loading from this field (line 8) can return stale values and future
values that can be validated. In both cases, the values lead to
an incorrect list and corrupt the resulting metrics. However, this
corruption is infrequent in our experiments. In 500 trials each for
AM and PM, we found that AM and PM corrupted output in
23 trials (4.6%) and 10 trials (2.0%), respectively. It is easier to
expose this bug using AM: all AM executions are always legal
under HBMM (and JMM, in fact). For PM, more than half of the

107

500 executions failed to validate every future value, making them
invalid even though they corrupted output in some cases.

lusearch9. This program uses the lucene indexing and search li-
brary to perform text search. The program uses a field Thread-
Local.nextHashBase, which is part of GNU Classpath, the Java
library implementation used by Jikes RVM. The library uses the
counter to initialize a final field, hashCode, for each new Thread-
Local instance. The method that increments nextHashBase is syn-
chronized but (erroneously) not static. We note that this bug should
be attributed to GNU Classpath, not the lusearch9 benchmark or
lucene library.

Two object instances can share the same hash code value, as
long as the hashCode field remains constant after initialization,
which could lead to a performance bug by increasing the chances of
hashing collisions. However, ThreadLocal is used infrequently in
this program, so a performance bug is not observable. Future values
could in theory lead to a performance bug by using the same future
value for many loads, but our experiments cannot successfully
validate executions in which many loads use future values.

sunflow9. The program uses a double-checked locking pattern to
lazily initialize the shared reference Geometry.accel (code simpli-
fied from the original):

1 if (builtAccel == 0) {
2 synchronized(this) {
3 if (builtAccel
4 accel = new ..;
5
6
7

0) {
builtAccel = 1;

}

8 }
9 accel. intersect (...) ;

The accesses to accel and int field builtAccel are racy because
the program fails to declare builtAccel as volatile. Returning a
future value of 1 for builtAccel at line 1, can trigger a null pointer
exception (NPE) at line 9. (AM is also able to expose this bug if
it instruments accesses to the reference-type field accel, which can
return a stale value of null at line 9.)

The following figure shows an interleaving that PM can produce
by using future values. The arrow connects the racy accesses that
load and later store the future value 1.

if (builtAccel == 0) {

... // Not executed if (builtAccel ==0) {
synchronized(this) {
accel.intersect(...); // NPE if (builtAccel ==0) {
accel = new ..;
builtAccel = 1;

) by

accel . intersect (...) ;
Accesses to another int field Geometry.built Tess use a similar racy
double-checked locking pattern. However, returning a stale value or

a future value on this field does not lead to any erroneous behavior
that we could detect.

pjbb2000. This program is an artificial benchmark that simulates
the backend of a business server. It uses a field Company.mode
to maintain the state of a Company object. The program uses
the following unsynchronized load of mode to decide whether to
update statistics data:

1 static boolean eventDatalock = false;

2 static Object lock = new Object();

3 static DomMutationEvent m = new
DomMutationEvent();

4 void insertionEvent (DomNode target) {
5 boolean doFree = false;

6 DomMutationEvent e = null;

7 synchronized(lock) {

8 if ('eventDatalock) {

9 eventDatalock = true;

10 doFree = true;

11 e =m;

12 }

13}

14 if (e ==null) {

15 e = new DomMutationEvent();
16

17 e. initialize (...) ;

18 target .dispatchEvent(e);
19 if (doFree) {

20 e. clear ();

21 eventDatalock = false;
2}

23 }

Figure 12. Code from pjbb2005.

if (company.mode == Company.RECORDING)
myTimerData.updateTimerData(txntype, txntime);

PM returns a future value of Company.RECORDING at this load,
leading the program to take the true branch, which should not be
taken until later in the execution, corrupting reported statistics.

Returning a stale value cannot trigger this data corruption, be-
cause the value Company.RECORDING does not exist in the set
of stale values. Nonetheless, using a stale value for a different pro-
gram load of mode can lead to non-termination. For this other load,
PM-profiler detects no future value.

For another field Company.elapsed _time, both stale and fu-
ture values lead the program to report an incorrect timing value,
corrupting the output statistics. (Table 1 thus reports the erroneous
behavior as “observable.” However, the behavior may be hard to
observe in practice because the program is an artificial benchmark
targeting performance testing and does not have a clear specifica-
tion for correct output, which is nondeterministic from run to run.)

pjbb2005. This artificial benchmark invokes the following code
in XML processing libraries that are part of the GNU Classpath im-
plementation. DomNode.eventDatalock is a static boolean field
that helps to enforce mutual exclusion. The program minimizes al-
locations of DomMutationEvent objects using code shown in Fig-
ure 12.

Consider the following scenario. One thread initializes a Dom-
MutationEvent object (line 17) and dispatches it to a target node
object (line 18). Instead of allocating a new DomMutationEvent
object every time, the code tries to reuse the shared “scratch” object
referenced by m (lines 7-13). The eventDatalock field indicates
if m is currently used by a thread. In a sequentially consistent (SC)
execution, lines 17-18 execute atomically when threads reuse the
shared object m.

However, “releasing” eventDatalock on line 21 is racy. This
permits the load of the field on line 8 to return false even if the SC
value would be true. As a result, two threads can simultaneously

108

use the shared object on lines 17-18, violating mutual exclusion.
Using either a stale value or a future value can trigger this behav-
ior. The following illustration shows an interleaving with a future
value, with the arrow connecting the load and store that use and
store the future value of false, respectively.

synchronized(lock) {
if (leventDatalock) {
eventDatalock = true;
doFree = true;
e =m;

}

:if (e == null) {
// Not executed.

synchronized(lock) {
if (leventDatalock) {
eventDatalock = true;
doFree = true;
e=m;

}

}if (e == null) {
// Not executed.

e. initialize (...) ; e. initialize (...) ;
target . dispatchEvent(e); target . dispatchEvent(e);
if (doFree) {
e.clear();
eventDatalock =false ;
}

The dispatchEvent() method (called from line 18 in Figure 12)
accesses another field, DomEvent.stop. As a result of the racy
“release” of eventDatalock, loads to DomEvent.stop can return
a stale value, prematurely ending a traversal of a DomNode array
and possibly corrupting data. PM-profiler does not detect any future
values for this field.

For both fields, we have been unable to detect any visible effect
from the output of pjbb2005, even though using a stale or future
value can violate mutual exclusion and corrupt memory states.
We suspect that since this benchmark is designed for performance
testing alone, it lacks sensitivity to this data corruption. In any case,
these bugs (like the lusearch9 bug) should be attributed to GNU
Classhpath, not to pjbb2005.

8.3 Run-Time Performance

This section measures the run-time overhead added by PM, com-
pared with AM. We run configurations of AM and the PM workflow
that do not use any stale or future values; PM-profiler still records
potential future values, and PM simulates the cost of using future
values by recording them in the read history Sg.

Figure 13 shows the run-time overhead that each analysis adds
over execution on the unmodified JVM. The average overhead of
AM is 76%. PM-profiler incurs almost 600% overhead on average,
while PM incurs 390%. We find that less than one-third of PM-
profiler and PM’s overhead comes from the record and replay
analyses, respectively (results not shown).

PM-profiler and PM perform significantly more work than AM
and thus add substantially more overhead. PM-profiler adds more
overhead than PM since only PM-profiler tracks the concrete read
history R, for each variable x. AM and PM add overhead propor-
tional to the frequency of instrumented (racy) accesses, so mea-
sured overhead varies significantly across the evaluated programs.
We have not endeavored to optimize the implementations, which
for convenience use inefficient patterns (e.g., heavy use of contain-
ers with boxed primitives).

[JAM [PM-profiler [l PM

4.500 1,400

700 1 5,400 3.500 9,100
600 1
® 5001
2 400
g []
< 3001
s []
& 200
1001
ol

sy, lus, Yy, Uy Dy Y, Sy, Yo, L, O

Uy S, Y, 0’610'4' /2;(7 17}79’/‘9/66J66

%6 6606 ’;?9 ’79 0* '5 9 005 ‘717

Figure 13. Run-time overhead of AM, PM-profiler, and PM. Each
bar is the median of 10 trials. The intervals are 95% confidence
intervals centered at the mean. Overheads exceeding 700% are
labeled using two significant figures.

9. Related Work

Section 2.2 compared our prescient memory (PM) work with exist-
ing dynamic analyses that expose erroneous behavior due to data
races [17, 24, 28, 29, 39, 45]. More recent analyses have gener-
ally exposed more behaviors (e.g., uses of stale values), but none
of these analyses can use future values. Our work thus expands the
scope of this area, providing insights into what new behaviors are
legal under weak memory models.

Prior work employs model checking and verification techniques
to explore concurrent program behaviors, including effects due to
data races under weak memory models [15, 16, 25, 26, 36, 40].
These techniques typically offer better theoretical guarantees and
greater coverage than dynamic analyses. However, model checking
typically suffers from state-space explosion for realistically sized
programs. Thus, these tools commonly target small portions of
code such as concurrent data structures and core algorithms, instead
of entire large applications.

CDSChecker is a model checker that exhaustively explores pro-
gram behaviors allowed by the C/C++ memory model [40]. It only
considers C/C++ atomic variable accesses, since racy accesses on
ordinary C/C++ variables have undefined semantics. CDSChecker
supports returning both stale and future values for atomic vari-
able loads, which are permitted by the C/C++ memory model [11]
with constraints similar to those in the happens-before memory
model (HBMM; Section 2.1). It would be infeasible to extend CD-
SChecker’s exhaustive approach to large, real programs, particu-
larly for a safe language such as Java, in which every potentially
racy access can have weak memory model behavior. CDSChecker’s
evaluation does not report any new behaviors from future values
(i.e., no behaviors not already possible by using stale values).

In contrast, our work targets full applications in which any racy
access has weak but defined semantics [12, 30, 34, 47]. Model
checking would be impractical for these long executions with fre-
quent relevant operations. We introduce a workflow that often en-
ables an execution to use validatable future values. As a result, PM
successfully exposes new behaviors due to future values in large
applications.

10. Conclusion

Prescient memory (PM) enables programs to return future values
at load operations via a speculation-and-validation approach. We
introduce a novel, practical workflow that incorporates profiling,
prediction, and fuzzy replay to help PM use future values success-
fully in large, real applications. Our evaluation demonstrates that

109

this approach effectively exposes previously unknown erroneous
behaviors due to future values. Thus, our work overcomes a key
limitation of existing dynamic analyses that are unable to use fu-
ture values, advancing the state of the art in practically exposing
behaviors possible under weak memory models.

Acknowledgments

We thank our shepherd, Doug Lea, and the anonymous reviewers
for valuable suggestions for improving the paper, particularly for
help with the treatment of behaviors allowed by HBMM but not
DRFO. We thank Hans Boehm, Brian Demsky, and Harry Xu for
helpful discussions.

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking:
Static Race Detection for Java. TOPLAS, 28(2):207-255, 2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking
Parallel Languages and Hardware. CACM, 53:90-101, 2010.

[3] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In
ISCA, pages 2-14, 1990.

[4] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting
Data Races on Weak Memory Systems. In ISCA, pages 234-243,
1991.

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapefio Virtual Machine. IBM Systems Journal,
39(1):211-238, 2000.

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399—417, 2005.

S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In OOPSLA, pages 241—
259, 2015.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, pages 169-190, 2006.

H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[10] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but
Data Races are Pure Evil. In RACES, pages 9-14, 2012.

[11] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68-78, 2008.

[12] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In MSPC, pages 7:1-7:6, 2014.

[13] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In PLDI, pages 255-268, 2010.

[14] M. D. Bond, M. Kulkarni, M. Cao, M. Fathi Salmi, and J. Huang. Effi-
cient Deterministic Replay of Multithreaded Executions in a Managed
Language Virtual Machine. In PPPJ, pages 90-101, 2015.

[15] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: Checking
Consistency of Concurrent Data Types on Relaxed Memory Models.
In PLDI, pages 12-21, 2007.

[16] S. Burckhardt and M. Musuvathi. Effective Program Verification for
Relaxed Memory Models. In CAV, pages 107-120, 2008.

[17] J. Burnim, K. Sen, and C. Stergiou. Testing Concurrent Programs on
Relaxed Memory Models. In ISSTA, pages 122-132, 2011.

[5

=

[6

=

[7

—

[8

—

[9]

[18] M. Christiaens and K. D. Bosschere. Accordion Clocks: Logical
Clocks for Data Race Detection. In Euro-Par, pages 494-503, 2001.

[19] M. Christiaens and K. De Bosschere. TRaDe, A Topological Approach
to On-the-fly Race Detection in Java Programs. In Symposium on Java
Virtual Machine Research and Technology Symposium, pages 15-15,
2001.

[20] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245-255, 2007.

[21] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In SOSP, pages 237-252, 2003.

[22] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
Data-Race Detection for the Kernel. In OSDI, pages 1-16, 2010.

[23] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121-133, 2009.

[24] C. Flanagan and S. N. Freund. Adversarial Memory for Detecting
Destructive Races. In PLDI, pages 244-254, 2010.

[25] K. Havelund and T. Pressburger. Model Checking Java Programs
Using Java PathFinder. International Journal on Software Tools for
Technology Transfer, 2(4):366-381, 2000.

[26] T. Q. Huynh and A. Roychoudhury. Memory Model Sensitive Byte-
code Verification. Formal Methods in System Design, 31(3):281-305,
2007.

[27] A. Jeftrey and J. Riely. On Thin Air Reads: Towards an Event
Structures Model of Relaxed Memory. In LICS, 2016.

[28] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data Race
Bugs: Telling the Difference with Portend. In ASPLOS, pages 185—
198, 2012.

[29] B. Kasikci, C. Zamfir, and G. Candea. Automated Classification of
Data Races Under Both Strong and Weak Memory Models. TOPLAS,
37(3):8:1-8:44, May 2015.

[30] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558-565, 1978.

[31] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Computer, 28:690-691, 1979.

[32] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463-474, 2012.

[33] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Prentice Hall PTR, 2nd edition, 1999.

[34] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378-391, 2005.

[35] F. Mattern. Virtual Time and Global States of Distributed Systems.
In Workshop on Parallel and Distributed Algorithms, pages 215-226,
1988.

110

[36] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Sys-
tematic Testing of Multithreaded Programs. In PLDI, pages 446455,
2007.

[37] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race
Detection. In POPL, pages 327-338, 2007.

[38] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for
Java. In PLDI, pages 308-319, 2006.

[39] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In PLDI, pages 22-31, 2007.

[40] B. Norris and B. Demsky. CDSChecker: Checking Concurrent Data
Structures Written with C/C++ Atomics. In OOPSLA, pages 131-150,
2013.

[41] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection.
In PPoPP, pages 167-178, 2003.

[42] J. Pichon-Pharabod and P. Sewell. A Concurrency Semantics for Re-
laxed Atomics that Permits Optimisation and Avoids Thin-Air Execu-
tions. In POPL, pages 622-633, 2016.

[43] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. CCPE, 19(3):327-
340, 2007.

[44] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In SOSP, pages 27-37, 1997.

[45] K. Sen. Race Directed Random Testing of Concurrent Programs. In
PLDI, pages 11-21, 2008.

[46] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.

Hybrid Static-Dynamic Analysis for Statically Bounded Region Seri-
alizability. In ASPLOS, pages 561-575, 2015.

[47] J. Sev&ik and D. Aspinall. On Validity of Program Transformations in
the Java Memory Model. In ECOOP, pages 27-51, 2008.

[48] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging
and Replay. In ASPLOS, pages 15-26, 2011.

[49] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70-82, 2001.

[50] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection
on Millions of Lines of Code. In ESEC/FSE, pages 205-214, 2007.

[5171 Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking. In SOSP, pages 221-
234,2005.

