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Abstract
It is notoriously challenging to develop parallel software sys-
tems that are both scalable and correct. Runtime support for
parallelism—such as multithreaded record & replay, data race de-
tectors, transactional memory, and enforcement of stronger mem-
ory models—helps achieve these goals, but existing commodity
solutions slow programs substantially in order to track (i.e., detect
or control) an execution’s cross-thread dependences accurately.
Prior work tracks cross-thread dependences either “pessimisti-
cally,” slowing every program access, or “optimistically,” allowing
for lightweight instrumentation of most accesses but dramatically
slowing accesses involved in cross-thread dependences.

This paper seeks to hybridize pessimistic and optimistic track-
ing, which is challenging because there exists a fundamental mis-
match between pessimistic and optimistic tracking. We address this
challenge based on insights about how dependence tracking and
program synchronization interact, and introduce a novel approach
called hybrid tracking. Hybrid tracking is suitable for building ef-
ficient runtime support, which we demonstrate by building hybrid-
tracking-based versions of a dependence recorder and a region se-
rializability enforcer. An adaptive, profile-based policy makes run-
time decisions about switching between pessimistic and optimistic
tracking. Our evaluation shows that hybrid tracking enables run-
time support to overcome the performance limitations of both pes-
simistic and optimistic tracking alone.

1. Introduction
Software must become more parallel in order to scale with suc-
cessive microprocessor generations that provide more, instead of
faster, cores. However, writing and debugging parallel programs
is notoriously difficult. General-purpose programming languages
provide shared memory and locks, which are simple to understand,
but hard to use to achieve both correctness and scalability.

Researchers have developed dynamic program analyses and
software systems that help support reliable, scalable parallelism.
This paper uses the general term “runtime support” to refer to such
analyses and systems, which check or enforce concurrency correct-
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ness properties such as atomicity, determinism, and data race free-
dom. Notable examples of runtime support include data race de-
tectors (e.g., [18]), software transactional memory (e.g., [20]), en-
forcement of strong memory models (e.g., [29]), atomicity check-
ers (e.g., [19]), and multithreaded record & replay (e.g., [38]).
However, existing instances of runtime support are impractical be-
cause they slow programs substantially, rely on custom hardware,
or have other serious limitations.

Existing runtime support for commodity systems (often called
software-only) adds expensive instrumentation at each program ac-
cess in order to track (detect or control) cross-thread dependences
(data dependences involving two threads). This instrumentation is
particularly costly because it must add its own synchronization in
order to ensure soundness in the presence of data races in the pro-
gram execution. Most existing runtime support uses an atomic op-
eration at every access (e.g., [18–20, 24, 25]), which we refer to
as pessimistic tracking of dependences. The performance of run-
time support built on pessimistic tracking is relatively insensitive to
the number of cross-thread dependences in an execution. However,
its frequent synchronization typically slows executions by several
times or more. Alternatively, optimistic tracking avoids synchro-
nization for accesses not involved in cross-thread dependences, but
requires coordination between threads when accesses are involved
in dependences [11, 13, 22, 33, 35, 39]. We emphasize that al-
though optimistic tracking performs well for the many programs
that perform relatively few conflicting accesses, its very high cost
for some programs is a severe impediment to its widespread use in
high-performance systems.

Contributions. This paper aims to get the benefits of both pes-
simistic and optimistic tracking by combining them. We argue that
combining pessimistic and optimistic tracking naïvely is insuffi-
cient for achieving sound and efficient runtime support, due to a
fundamental mismatch between them. Our novel approach, called
hybrid tracking, addresses these challenges based on insights about
the interplay between dependence tracking and program synchro-
nization. Hybrid tracking consists of two components:

1. A hybrid state model supports shared variables being in—and
transferring between—pessimistic and optimistic states (i.e.,
handled by pessimistic and optimistic tracking, respectively).

2. An adaptive policy makes profile-guided decisions about when
to apply pessimistic versus optimistic tracking.

We extend two kinds of runtime support to use hybrid tracking:

1. a dependence recorder, demonstrating sound detection of cross-
thread dependences; and

2. enforcement of region serializability, demonstrating sound con-
trolling of cross-thread dependences.



We have implemented the above components and runtime sup-
port in a high-performance Java virtual machine. Our evaluation
shows that although hybrid tracking’s average performance im-
provement over optimistic tracking is modest, hybrid tracking (1)
consistently outperforms pessimistic tracking, (2) significantly out-
performs optimistic tracking for high-conflict programs, and (3)
performs about the same as optimistic tracking for low-conflict
programs. While pessimistic and optimistic tracking each have
limitations for low- and high-conflict programs, respectively, hy-
brid tracking overcomes the limitations of both—suggesting it is
a promising direction for efficient, flexible, software-only runtime
support that targets diverse parallel software systems.

2. Background and Motivation
Runtime support that checks or enforces concurrency correctness
properties must track cross-thread dependences, which are data de-
pendences (write–read, write–write, and read–write dependences)
involving two threads. Tracking dependences means doing one of
the following soundly (i.e., without missing dependences):

• Detect (monitor) dependences. Examples: data race detectors,
atomicity violation detectors, and dependence recorders (e.g.,
for record & replay).
• Control (enforce) dependences. Examples: transactional mem-

ory, enforcing memory models, and deterministic execution.

For data-race-free (DRF) executions, runtime support can track
cross-thread dependences soundly by instrumenting only program
synchronization operations, because shared-memory languages
such as Java and C++ guarantee atomicity of synchronization-
free regions for DRF executions [2, 3, 9, 27]. However, programs
routinely have data races, which are hard to detect or eliminate
(e.g., [12, 18, 25, 40]), so runtime support must instrument all po-
tentially racy memory accesses. (Although sound static analysis
can identify some accesses as definitely DRF, instrumenting the re-
maining potentially racy accesses is still expensive [15, 17, 25, 40].)

Tracking cross-thread dependences. To track cross-thread depen-
dences, instrumentation at each memory access maintains the last-
access state of the accessed object.1 Without loss of generality, we
assume dependence tracking uses the following per-object states:

• WrExT: Write exclusive for thread T. Last read or written by T.
• RdExT: Read exclusive for T. Last read (not written) by T.
• RdShc: Read shared. Last read by multiple threads. The value c

helps ensure sound tracking of write–read dependences.2

Table 1 shows all possible state transitions, each of which is trig-
gered by a memory access by some thread. Prior work shows that
these state transitions establish happens-before edges [23] that tran-
sitively imply all of an execution’s cross-thread dependences [11].

Same-state transitions involve no state change; they do not im-
ply any cross-thread dependences. Other transitions imply potential
cross-thread dependences. Upgrading transitions change the state
to a new state that permits accesses allowed under the old state.
Fence transitions enable detecting write–read dependences when a
thread reads a RdShc object for the first time (prior work provides
details [11], which are not integral to understanding this paper). Fi-
nally, conflicting transitions change the old state to a new state that
disallows accesses allowed under the old state.

1 This paper uses the term “object” to refer to any unit of shared memory.
2 Prior work that introduces the counter provides details on how it helps
enable sound tracking of cross-thread dependences [11].

Transition Old New Sync. required
type state Access state Pessimistic Optimistic

tracking tracking

Same state
WrExT R/W by T Same

CAS NoneRdExT R by T Same
RdShc R by T Same∗

Upgrading RdExT W by T WrExT CAS CASRdExT1 R by T2 RdShc∗
Fence RdShc R by T Same∗ CAS Mem. fence

Conflicting

WrExT1 W by T2 WrExT2
CAS CoordinationWrExT1 R by T2 RdExT2

RdExT1 W by T2 WrExT2
RdShc W by T WrExT

Table 1. All possible state transitions for last-access states. ∗An upgrading
transition to RdShc gets the counter value c from a monotonically increas-
ing global counter. A read by T of an object in the RdShc state requires a
fence transition if and only if a per-thread counter T.rdShCount < c [11].

Instrumentation atomicity. To track dependences accurately, in-
strumentation at each memory access must check, and potentially
update, the accessed object’s state. These actions must appear to
happen together atomically to avoid missing dependences; we call
this property instrumentation atomicity. Furthermore, most runtime
support requires instrumentation–access atomicity: that the instru-
mentation and access appear to execute together atomically. (A
notable exception is data race detection, which requires only in-
strumentation atomicity because it does not need to know the or-
der of racy accesses.) In any case, instrumentation atomicity and
instrumentation–access atomicity incur similar costs.

To guarantee instrumentation–access atomicity, most existing
runtime support uses instrumentation that performs atomic oper-
ations at every memory access, which we call pessimistic tracking
(Section 2.1). Alternatively, optimistic tracking eschews atomic op-
erations at non-communicating accesses, but requires inter-thread
coordination at some communicating accesses (Section 2.2).

We emphasize that the instrumentation and per-object states
used by dependence tracking, as well as the synchronization needed
to ensure instrumentation–access atomicity, are visible to runtime
support only, not to programmers.

2.1 Pessimistic Tracking
Pessimistic tracking provides instrumentation–access atomicity via
a small critical section around each access and its instrumentation.
As Table 1 indicates, pessimistic tracking requires an atomic op-
eration (e.g., compare-and-swap instruction) at every access. The
following pseudocode shows typical instrumentation at a program
store. (Instrumentation at a load is similar but more complex since
there are more possible state transitions.)

do {
s = o.state ; // load per-object metadata

} while (s == LOCKED || !CAS(&o.state, s, LOCKED));
if (s != WrExT) { // T is the executing thread
/∗ handle potential cross-thread dependence(s) ∗/

}
o.f = ... ; // program store
memfence; // type of fence depends on program access type
o.state = WrExT; // unlock and update metadata

The instrumentation starts a critical section by “locking” the ob-
ject’s state (represented as o.state) using a special LOCKED
value.3 If the current state is any state other than WrExT (T
is the current executing thread), a potential cross-thread depen-
dence exists, requiring additional runtime-support-specific work

3 The atomic operation CAS(addr, oldVal, newVal) attempts to update
addr from oldVal to newVal, returning true on success.



(not shown). For example, a dependence recorder could record the
dependence in a log, and speculation-based enforcement of region
serializability could roll back and restart a code region.

Performance. Pessimistic tracking requires frequent atomic op-
erations and memory fences, which slow program execution sub-
stantially by triggering remote cache misses and serializing out-of-
order execution. In our experiments on benchmarked versions of
large, real-world Java programs, pessimistic tracking (without any
runtime support on top of it) slows programs by more than 4X on
average (Section 7.5).

Existing runtime support commonly employs pessimistic track-
ing (e.g., [18–20, 24, 25]). We note that existing approaches often
avoid performing an atomic operation for every memory access.
For example, software transactional memory (STM) [20] can use
instrumentation that avoids atomic operations for accesses to the
same object in the same transaction. Some STM systems can fur-
ther avoid atomic operations at loads by validating them lazily, but
still require memory fences (e.g., [34]). Data race detectors [18]
can avoid atomic operations for repeated accesses in the same
synchronization-free region. Nonetheless, atomic operations and
memory fences remain frequent enough to incur high overhead.
Other approaches have sidestepped explicit dependence tracking
but incur other limitations and costs, e.g., DoublePlay detects con-
flicts implicitly using speculation and replication, but it adds high
overhead unless extra cores are available [38].

2.2 Optimistic Tracking
In contrast, optimistic tracking avoids synchronization at most ac-
cesses. Prior work uses optimistic tracking either to implement pro-
gram locks (Section 8) [13, 22, 33] or to track cross-thread depen-
dences [11, 35, 39]. This paper focuses on the latter context.

Optimistic tracking provides instrumentation–access atomicity
without requiring synchronization at accesses that trigger no state
change, but it requires coordination at accesses that trigger con-
flicting state changes. Table 1 shows the differing kinds of synchro-
nization needed for each transition type. The following pseudocode
shows the instrumentation added at a program store (instrumenta-
tion for a load is similar but more complex):

if ( o.state != WrExT) { // fast path
slowPath(o);

}
o.f = ... ; // program store

If the object’s state is already WrExT, the instrumentation takes
the synchronization-free fast path. Otherwise, the instrumentation
executes the slow path, shown in Figure 1, which changes the
state and handles the possible cross-thread dependence. Upgrading
transitions require an atomic operation to avoid racing with other
threads changing the state. Fence transitions require a memory
fence to ensure visibility for write–read dependences.

Conflicting transitions require coordination. Conflicting transi-
tions (last four rows of Table 1) require that threads coordinate with
each other, in order to ensure that thread(s) do not continue per-
forming unsynchronized same-state transitions to the object. Fig-
ure 1 shows the instrumentation slow path, for a program store only.
To initiate coordination, the executing thread T first changes the ob-
ject’s state to an intermediate state IntT (line 8), which simplifies
the protocol by allowing only one thread at a time to initiate coor-
dination for an object. T then coordinates with the remote thread
(line 12) to ensure that T’s state change does not interrupt the re-
mote thread’s instrumentation–access atomicity.4

The remote thread, which we call remoteT, participates in co-
ordination only when it is at a safe point: a program point that does

4 If o.state is RdShc, T conservatively coordinates with every other thread.

1 slowPath(o) {
2 state = o.state ;
3 if ( state == RdExT) {
4 ... ; // upgrading transition to WrExT
5 return ;
6 }
7 // Coordination for conflicting transition :
8 while ( state == Int∗ || !CAS(&o.state, state , IntT)) {
9 checkAndRespondToRequests(); // non−blocking safe point

10 state = o.state ; // re-read state
11 }
12 coordinate(getOwner(state));
13 o.state = WrExT;
14 }

15 coordinate(remoteT) {
16 response = sendRequest(remoteT); // return true if implicit

coordination used
17 while (! response) {
18 checkAndRespondToRequests(); // non−blocking safe point
19 response = checkResponse(remoteT);
20 }
21 }

Figure 1. Pseudocode for optimistic tracking’s instrumentation slow path
(for program stores only) and coordination. T is the executing thread.

not interrupt instrumentation–access atomicity (not shown in the
figure). Conveniently, managed language VMs already place safe
points at periodic points in compiled code (e.g., method entries and
loop back edges) so threads can be stopped promptly, e.g., for stop-
the-world garbage collection. Blocking operations, such as waiting
to acquire a lock or for I/O, are also safe points. If remoteT is at a
blocking safe point, T coordinates with remoteT implicitly by up-
dating remoteT’s status atomically, which remoteT will see when
it finishes blocking. Otherwise, T coordinates with remoteT ex-
plicitly: T sends a request to remoteT, and remoteT responds at its
next safe point. (Figure 1 does not show the actions of remoteT.)
Whenever a safe point responds (implicitly or explicitly) to coordi-
nation request(s), it is called a responding safe point. An important
detail is that while T waits for an explicit coordination response, it
acts as a safe point (line 18), so other threads can perform coordi-
nation with T in order to gain access to other objects, thus avoiding
deadlock.

Finally, T changes the state to WrExT (line 13) and proceeds
with its access. Since remoteT coordinates only at a safe point, and
T does not proceed with its access until coordination completes,
instrumentation–access atomicity is preserved.

Performance. Optimistic tracking exploits a tradeoff: it avoids
synchronization in the common, non-conflicting case but requires
coordination in the uncommon, conflicting case. As Section 7.5
shows, for programs that perform little communication, optimistic
tracking incurs low overhead. For programs that perform more
communication (e.g., as little as 0.5% of accesses conflicting), op-
timistic tracking incurs high overhead (e.g., >100% run-time over-
head). Optimistic tracking’s key limitation—and the main imped-
iment to its widespread use—is its poor performance for all but
low-conflict executions.

The following table reports costs of different kinds of state
transitions, averaged across all programs (Section 7.2 describes
overall experimental methodology):

Pessimistic Optimistic
Same state Conflicting

Explicit Implicit
CPU cycles 150 47 9,200 360



The average time in CPU cycles for pessimistic instrumentation is
150 cycles, which is largely independent of the transition type. Op-
timistic instrumentation’s cost is only a few dozen cycles for non-
communicating accesses (Same state), but conflicting transitions
that use Explicit coordination cost 2–3 orders of magnitude more
by incurring the latency of roundtrip communication. Implicit co-
ordination requires atomic operations but incurs no latency, so its
cost is relatively close to the cost of a pessimistic access.

Goal and outline. Our goal is to develop a hybrid of pessimistic
and optimistic tracking that keeps overhead low by using optimistic
tracking for most accesses, but avoids most coordination by us-
ing pessimistic tracking for most conflicting accesses. Sections 3
presents challenges inherent in combining pessimistic and opti-
mistic tracking, and introduces a hybrid state model that addresses
these challenges. Sections 4 and 5 design sound and efficient run-
time support using the hybrid state model. Section 6 describes a
policy that decides between pessimistic and optimistic states at
run time. The remaining sections describe our implementation and
evaluation, and compare with related work.

3. Hybrid State Model
This section introduces a hybrid state model that combines the
state models of pessimistic and optimistic tracking. Section 3.1
argues that hybridization presents fundamental challenges, and
then describes insights for addressing these challenges. Section 3.2
presents details of the hybrid state model.

3.1 The Pessimistic–Optimistic Mismatch
Pessimistic and optimistic tracking are fundamentally different in
two key ways that complicate hybridization. First, pessimistic and
optimistic tracking differ in how they transfer access privileges.
Pessimistic tracking unlocks an object’s state after a program ac-
cess, allowing another thread to lock the state. Optimistic tracking,
on the other hand, does not unlock the state after an access; in-
stead, a thread relinquishes access privileges only when requested
by another thread. To support objects being in both pessimistic and
optimistic states, it seems that each access must be followed by po-
tentially costly instrumentation that conditionally unlocks the state
(depending on whether the state is pessimistic).

Second, pessimistic and optimistic tracking provide instrumen-
tation–access atomicity differently. Pessimistic tracking provides
atomicity of each instrumentation–access pair. Optimistic track-
ing provides atomicity interrupted at responding safe points—
including conflicting accesses that respond to coordination re-
quests. This mismatch implies that the atomicity of instrumented
code can be interrupted at points that are statically unpredictable,
making it problematic to design efficient runtime support that de-
tects and controls cross-thread dependences. This problem is easier
to understand in the context of specific kinds of runtime support;
Sections 4 and 5 explain these challenges in the contexts of the
dependence recorder and region serializability (RS) enforcer.

In the early stages of this work, we designed and implemented a
straightforward approach for combining pessimistic and optimistic
tracking. This approach added conditional instrumentation after ev-
ery program access, to unlock the state when it was pessimistic. We
built a dependence recorder and RS enforcer on top of this hybrid
approach, but they added significant overhead to perform condi-
tional instrumentation and to deal with atomicity being interrupted
unpredictably at many program points.

To overcome the mismatch between pessimistic and optimistic
tracking that impaired our initial design, we introduce the following
insight: the hybrid state model can and should defer unlocking of
pessimistic states. Deferring unlocking consists of the following
design points:

T1
synchronized (m) {

...
/∗ lock o.state ∗/
o.f = ... ;
...
/∗ unlock all states ∗/

}

T2

synchronized (m) {
...
/∗ lock o.state ∗/
... = o.f ;
...

(a) For well-synchronized accesses, locking a pessimistic state encounters
no contention.

T1
synchronized (m) {

...
/∗ lock o.state ∗/
o.f = ... ;
...
...
/∗ safe point ∗/
...

T2

/∗ lock o.state ∗/
.
.
.
.

... = o.f ;

(b) An access involved in an (object-level) data race may encounter con-
tention. In this case, hybrid tracking triggers coordination.

Figure 2. Deferred unlocking encounters contention only for object-level
data races. Comments show instrumentation actions assuming o is in pes-
simistic states.

• A thread defers unlocking pessimistic states until the next pro-
gram synchronization release operations (PSRO) such as lock
release, monitor wait, or thread fork.
• To avoid substantial false contention from concurrent readers,

pessimistic states use reader–writer locking.
• A thread encountering any remaining contention “falls back” to

using coordination to change an object’s state.

Interestingly, if instrumentation encounters contention trying to
lock a pessimistic state, the access must be involved in an object-
level data race: two unsynchronized, conflicting accesses to the
same object, but not necessarily the same field or array element. An
object-level data race is a necessary but insufficient condition for
a true (precise) data race. Prior work shows that object-level data
races closely over-approximate precise data races in practice [39].
The performance of our hybrid design relies on object-level data
races being rare, so that few (if any) pessimistic transitions en-
counter contention.

Deferring unlocking bridges the pessimistic–optimistic mis-
match by making pessimistic tracking more “optimistic”: threads
do not unlock pessimistic states until PSROs, but incur high co-
ordination cost (the same as for optimistic states) if a conflicting
access occurs in the meantime.

Example. Figure 2 illustrates deferring unlocking of pessimistic
states. The example assumes o is in pessimistic states for the ac-
cesses shown. In Figure 2(a), each thread executes a critical section
acquiring the same program lock m. Code comments (e.g., /* lock
o.state */) summarize the run-time behavior of hybrid tracking’s
instrumentation. Immediately before T1 releases m (a PSRO), in-
strumentation unlocks all pessimistic states that T1 has locked, in-
cluding o’s state. T2 thus locks o’s state without contention.

In contrast, in Figure 2(b), the two accesses are involved in an
object-level data race (in this case, a true data race). As a result,
T2 encounters contention when trying to lock o’s state. T2 handles
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Figure 3. High-level state transition diagram for the hybrid state model.
The left and right halves show transitions starting in pessimistic and opti-
mistic states, respectively. The diamonds on the vertical dashed line indicate
decisions by the adaptive policy, described in Section 6.

this case safely by falling back to using coordination: T2 sends a
coordination request to T1, which unlocks all pessimistic states at
the next responding safe point, enabling T2 to lock o’s state.

3.2 States, Terminology, and Transitions
The hybrid state model uses the following states:

• Pessimistic states can be either unlocked or locked. The pes-
simistic unlocked states are WrExPessT , RdExPessT , and RdShPessc .
The pessimistic locked states are WrExRLockT , WrExWLock

T ,
RdExRLockT , and RdShRLock(n)c . To support reader–writer lock-
ing, a WrExT state can be either read- or write-locked, and a
RdShRLock(n)c state is read-locked by n threads. The read-locked
write-exclusive state (WrExRLockT ) enables a second concurrent
reader to upgrade to RdShRLock(2)c , instead of encountering con-
tention. To support reentrant read locks, each thread also keeps
track of the set of objects whose states it has read-locked.

• The optimistic states are WrExOpt
T , RdExOpt

T , and RdShOpt
c .

A pessimistic (or optimistic) object is an object whose state is
pessimistic (optimistic). A pessimistic (optimistic) access is a pro-
gram access to a pessimistic (optimistic) object. A pessimistic (op-
timistic) transition is a transition from a pessimistic (optimistic)
state to another pessimistic (optimistic) state. The model also sup-
ports transitions between pessimistic and optimistic states.

Figure 3 shows at a high level the state transitions in the hy-
brid state model. The labeled circles summarize the three types of
states: pessimistic unlocked, pessimistic locked, and optimistic. Ar-
rows represent transitions between states: bold, red arrows show
transitions requiring coordination; other transitions do not require
coordination. The rest of this section further explains Figure 3, fo-
cusing on transitions that are different from those shown in Table 1.
Appendix A shows pseudocode for hybrid tracking’s instrumenta-
tion. Appendix B presents a table detailing every state transition.

Pessimistic uncontended transitions. Any access to an unlocked
pessimistic state triggers an uncontended transition to a corre-
sponding locked state (see the transition labeled “Any access (un-
contended)” in Figure 3). For example, a read (or write) by T1 to
an object in WrExPessT1 state triggers an uncontended transition to
WrExRLockT1 (WrExWLock

T1 ). A read by T2 to an object in WrExPessT1

triggers an uncontended transition to RdExRLockT2 .
An access to a locked state that does not conflict with the state

also triggers an uncontended transition (transition labeled “Non-
conflicting access (uncontended & possibly reentrant)”). For ex-

ample, a read by T2 to a RdExRLockT1 object triggers an uncontended
transition to RdShRLock(2)c (read-locked by T1 and T2). A write
by T1 to a WrExRLockT1 object triggers an uncontended transition to
WrExWLock

T1 . If an uncontended transition requires no state change
at all (e.g., a read by T1 to an object in RdExRLockT1 state), we also
call the transition reentrant. Reentrant transitions require no atomic
operations.

Unlocking of pessimistic states. To support deferred unlocking,
each thread records every pessimistic object whose state it has
locked in the thread’s lock buffer. Every program synchroniza-
tion release operation (PSRO) and responding safe point flushes
the buffer by unlocking the states of all objects in the buffer
(transition labeled “PSRO & responding safe point”). Unlocking
a RdShRLock(n)c object means transitioning to RdShRLock(n−1)

c (if
n>1) or the unlocked state RdShPessc (if n=1). Whenever a thread
flushes its lock buffer, it also clears its set of read-locked objects.

Pessimistic contended transitions. An access that conflicts with
a pessimistic locked state cannot immediately change the state. It
triggers a contended state transition, which initiates coordination
with the thread(s) that have locked the object’s state (transition
labeled “Conflicting access (contended)”).

Since every responding safe point flushes the lock buffer, the
thread(s) that have locked the state will unlock it, allowing the ac-
cessing thread to change the state into a compatible pessimistic
locked state. By using coordination to trigger early unlocking of
states, contended transitions ensure responsiveness and deadlock
freedom when an execution violates deferred unlocking’s assump-
tion of object-level data race freedom.

As an example, in Figure 2(b), a read by T2 to an object in
WrExWLock

T1 triggers a contended transition: T1 unlocks the state to
WrExPessT1 before responding to coordination. T2 then performs an
uncontended transition from WrExPessT1 to RdExRLockT2 .

Transitions between pessimistic and optimistic states. The model
supports transitioning to an optimistic state whenever it unlocks a
pessimistic state (upper diamond in Figure 3), and to a pessimistic
state from an optimistic state on any conflicting transition (lower
diamond).

Although we have designed and presented hybrid tracking based
on the states and transitions in Table 1, our hybridization approach
could in theory be applied to other optimistic and pessimistic ap-
proaches that use different state models to track dependences.

4. Recording and Replaying Dependences
This section demonstrates how runtime support that needs to de-
tect (i.e., monitor) cross-thread dependences soundly can use our
hybrid state model. We build a dependence recorder based on hy-
brid tracking that identifies and records happens-before edges that
transitively imply all cross-thread dependences in the execution.

4.1 Optimistic Dependence Recorder and Replayer
Multithreaded record & replay helps programmers debug nondeter-
ministic multithreaded programs, and it provides systems benefits
such as replication-based fault tolerance [24–26, 30, 32, 38, 41].
Prior work introduces a record & replay approach that designs (1)
an optimistic recorder on top of optimistic tracking and (2) an opti-
mistic replayer for the recorder [10, 11]. (The optimistic replayer is
“optimistic” because it replays dependences recorded by the opti-
mistic recorder. It does not use optimistic tracking.) The optimistic
recorder identifies and records happens-before edges at transitions
between WrExOpt, RdExOpt, and RdShOpt states. It records each
happens-before edge by recording its source and sink in per-thread
logs. In another execution, the optimistic replayer replays each
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/* lock o.state */
      ... = o.f

          T1
       o.f = ...
/* unlock o.state */

<execution point e1>

<execution point e2>

(a) pessimistic transition

       T2

/* coordinate */

/* change o.state */
    ... = o.f

        T1
     o.f = ...

/* safe point */

(b) optimistic transition

Figure 4. The challenge of recording pessimistic conflicting transitions.

happens-before edge by making the sink wait for its correspond-
ing source to be reached.

4.2 Hybrid Dependence Recorder & Replayer
We design a hybrid recorder based on hybrid tracking, and a hybrid
replayer for the hybrid recorder. For optimistic transitions, the
hybrid recorder uses the same approach as the optimistic recorder.
For some, but not all, pessimistic transitions, the hybrid recorder
uses essentially the same approach as for optimistic transitions,
since pessimistic and optimistic states and transitions each maintain
the same last-access information. For example, the recorder can
record a happens-before edge for RdExPessT →RdShRLock(2)c in the
same way that it records RdExOpt

T →RdShOpt
c .

Pessimistic conflicting transitions. The key challenge is pes-
simistic transitions that involve conflicting states, as Figure 4(a)
shows. In this example, suppose pessimistic transitions do not defer
unlocking. Thread T1 immediately unlocks an object o to WrExPessT1

state after a write to o; then T2 wants to read o. It is challenging
to identify and record the source of the happens-before edge, be-
cause T1 continues executing during the pessimistic transition by
T2. An eligible source needs to be (1) after T1’s write to o, in
order to capture the cross-thread dependence soundly, but (2) no
later than T1’s current execution point e1, or else replay could
deadlock: suppose T2 records a future execution point e2, and T1
writes to o again (not shown) between e1 and e2. T1 would record
an execution point after T2’s read of o as the source of another
happens-before edge, creating a cycle of dependences.

In contrast, an optimistic conflicting transition triggers coordi-
nation, as shown in Figure 4(b). T1 stops to respond to T2 at a
safe point, providing an opportunity to record the happens-before
source. The responding safe point satisfies both requirements for
an eligible source.

The hybrid recorder could record every pessimistic access, but
they are frequent enough that recording each one would be ex-
pensive. Alternatively, incrementing a counter at every pessimistic
access would be efficient—but the replayed run would not know
which accesses had been pessimistic versus optimistic during the
recorded run. We encountered these challenges in our initial de-
sign of the hybrid recorder (Section 3.1), which performed worse
on average than the optimistic recorder.

Utilizing deferred unlocking. These challenges are naturally ad-
dressed by, and thus motivate the use of, deferred unlocking (Sec-
tion 3.1). By deferring unlocking of pessimistic states until program
synchronization release operations (PSROs), the potential sources
of happens-before edges are effectively limited.

The hybrid recorder handles pessimistic uncontended transi-
tions involving conflicting states as follows. In both recorded and
replayed executions, instrumentation at every PSRO and respond-
ing safe point increments a per-thread release counter. Using Fig-
ure 2(a) from Section 3.1 as an example, T1 increments its release
counter before it releases the program lock m. When T2 changes
the state to RdExRLockT2 , it records the happens-before edge in its
log by reading T1’s release counter and recording its value. Since
each PSRO and responding safe point has release semantics, and
each state change has acquire semantics, T2 is guaranteed to read

<region boundary>
/∗ possibly lock o.state ∗/
... = o.f ;
...
/∗ possibly lock p.state ∗/
p.g = ... ;
...
/∗ possibly unlock o.state , p.state , ... ∗/
<region boundary>

Figure 5. Challenge of building an RS enforcer using hybrid tracking.

a value of T1’s release counter that is at least as great as the value
at the first PSRO after T1 writes to o. In addition, T2 cannot read
a value that T1’s release counter has not reached, preventing dead-
lock during replay. During replay, T2 waits for T1’s release counter
to reach the recorded value.

For a contended transition as in Figure 2(b), T2 initiates coordi-
nation. T1 unlocks o’s state to WrExPessT1 , responds at a safe point,
and records the response just as it would record an optimistic coor-
dination response. T2 then records its uncontended transition from
WrExPessT1 to RdExRLockT2 as described above.

5. Enforcing Region Serializability
This section applies the hybrid state model to enforcing serializ-
ability (atomicity) of executed code regions, demonstrating how the
model enables controlling cross-thread dependences.

5.1 Optimistic RS Enforcer
Modern language memory models make strong guarantees for data-
race-free (DRF) executions but provide virtually no guarantees for
racy executions [2, 3, 8, 9, 27]. Prior work enforces memory mod-
els that provide region serializability (RS) even for executions with
data races [29, 36]. We focus on work that introduces a memory
model called statically bounded region serializability (SBRS) that
provides serializability of regions that are bounded by program syn-
chronization operations, method calls, and loop back edges [36].

Prior work, which we call the optimistic enforcer, enforces
SBRS using optimistic tracking at each object access [36]. The
optimistic enforcer provides region serializability via two-phase
locking: each object access uses optimistic tracking to change the
state if needed, and a region does not relinquish objects’ states (i.e.,
does not respond to coordination requests) until the region ends.
However, to avoid deadlock, a thread may respond to coordination
requests while itself waiting to complete a transition (lines 9 and 18
in Figure 1 from Section 2.2), relinquishing ownership of objects’
states and thus potentially violating serializability.

The optimistic enforcer transforms regions at compile time so
they can restart safely after responding to a coordination request.

5.2 Hybrid RS Enforcer
To understand the challenges of using hybrid tracking for the RS
enforcer, consider how an RS enforcer based on pessimistic track-
ing would work. To preserve serializability, no pessimistic state
locked during a region’s execution should be unlocked until the re-
gion completes. At region end, instrumentation should unlock each
pessimistic state locked during the region’s execution.

However, using hybrid tracking presents a challenge, as illus-
trated in Figure 5. The compiler cannot predict whether the ac-
cesses to objects o and p will use pessimistic versus optimistic
tracking, so each region end needs conditional checks for which
pessimistic states to unlock, if any. Since we expect most accesses
to be optimistic, most regions would need to unlock no pessimistic
states. As statically bounded regions are short, the overhead of



checking at the end of each region would be significant. We en-
countered these challenges in our initial design of a hybrid enforcer
(Section 3.1).

Using deferred unlocking. Our hybrid enforcer relies on deferred
unlocking to address these challenges. Hybrid tracking defers un-
locking of pessimistic states until program synchronization release
operations (PSROs). PSROs are generally infrequent compared to
region boundaries, so it is inexpensive to flush the lock buffer at
each PSRO. Regions thus unlock pessimistic states only at region
boundaries, preserving SBRS.

The one exception is pessimistic contended transitions, which
trigger coordination in the middle of a region. Since the thread
initiating coordination can respond to other threads’ coordination
requests, a region restarts after completing coordination, just as it
does for optimistic conflicting transitions.

6. Adaptive Policy
This section addresses how to choose between pessimistic and
optimistic states at run time. We introduce a cost–benefit model for
deciding whether an object should be in pessimistic or optimistic
states, and an efficient policy that approximates the cost–benefit
model based on online profiling.

6.1 Cost–Benefit Model
The basic idea of the cost–benefit model is that an object’s state
should be pessimistic (versus optimistic) if and only if the total
time incurred on optimistic transitions for the object would exceed
the total time incurred on pessimistic transitions.

A limitation of our cost–benefit model is that it models pes-
simistic transitions based on pessimistic tracking without deferred
unlocking. Thus, the model assumes that all accesses to objects in
optimistic states that trigger conflicting transitions (and thus coor-
dination), would trigger uncontended (and thus coordination-free),
non-reentrant pessimistic transitions if the objects were in pes-
simistic states.

The cost–benefit model considers each object individually. Let
Npess be the number of pessimistic transitions that would occur for
the object if its state were always pessimistic. Npess thus counts
all program accesses to an object. Let Nconfl and NnonConfl be the
numbers of conflicting and non-conflicting transitions, respectively,
that would occur if the state were optimistic. Since together Nconfl

and NnonConfl count all accesses,

Npess = NnonConfl + Nconfl (1)

Let TnonConfl , Tconfl , and Tpess be the average time costs for an
optimistic non-conflicting,5 optimistic conflicting,6 and pessimistic
transition, respectively. The model considers these values to be
(platform-specific) constants computed ahead of time, e.g., from
the table in Section 2.2. An object’s state should be optimistic if
and only if the following is true:

Tpess ×Npess ≥ TnonConfl ×NnonConfl + Tconfl ×Nconfl (2)

The left-hand side of (2) is the total time spent on state transitions if
the object’s state were pessimistic. The right-hand side is the total
time on state transitions if the state were optimistic.

Applying (1) into (2) and transforming it yields:

NnonConfl ≥ Kconfl ×Nconfl (3)

5 The model computes the time for non-conflicting transitions as simply the
time for same-state transitions, ignoring other non-conflicting transitions
(upgrading and fence transitions), which each incur a cost similar to a
pessimistic transition’s cost.
6 Tconfl is the time for a conflicting transition using explicit coordination.

where Kconfl is a run-time constant:

Kconfl =
Tconfl − Tpess

Tpess − TnonConfl

Thus, according to (3), using the cost–benefit model requires know-
ing only the numbers of non-conflicting and conflicting transitions
(NnonConfl and Nconfl ), or merely their ratio.

6.2 Profile-Guided Adaptive Policy
Using the cost–benefit model to change each object’s state to op-
timistic or pessimistic at run time presents several challenges that
we address as follows.

Predicting the future. The cost–benefit model seems to require or-
acle knowledge: it needs to know the future ratio NnonConfl/Nconfl

when allocating an object, to initialize its state. The adaptive pol-
icy instead uses online profiling, assuming future behavior approx-
imates past behavior in the same execution. Each object newly al-
located by thread T starts in the WrExOpt

T state.
Profiling each object separately might limit the adaptive policy’s

effectiveness. For example, if many objects each trigger only a
few conflicting transitions, the policy will not transfer them to
pessimistic states early enough. Profiling objects in aggregate (e.g.,
by object type) could enable allocating certain objects directly
into pessimistic states. However, for our evaluated workloads, our
policy gets nearly all of the possible benefit (Section 7.3).

Efficient profiling. Counting optimistic same-state transitions
would be expensive because they are common (by design). The
profiling thus counts only conflicting transitions for optimistic ob-
jects,7 but it counts all pessimistic transitions, since they are rela-
tively infrequent (by design). This policy thus readily transfers po-
tentially high-conflict objects to pessimistic states—at which point
more-intrusive profiling categorizes every pessimistic transition in
order to determine whether an object should stay in pessimistic
states or change back to optimistic states.

For each object o, the profiling counts the number of optimistic
conflicting transitions o.numConflicts. If an object experiences
“enough” conflicting transitions, i.e., if

o.numConflicts ≥ Cutoff confl (4)

then the policy transitions the object to a pessimistic state.
For every pessimistic transition, profiling counts whether it was

non-conflicting or conflicting. The policy changes an object back
to optimistic based on the following formula, derived from (3):

NnonConfl ≥ Kconfl ×Nconfl + Inertia (5)

The parameter Inertia avoids prematurely changing back to opti-
mistic states before a significant amount of profiling has occurred.

Checks and balances. By using a low value for Cutoff confl , the
adaptive policy quickly transitions objects to pessimistic states if
they might be better off in pessimistic states, based on (4). Then
profile-guided decisions based on (5) can more accurately distin-
guish objects that should be in pessimistic versus optimistic states.
To avoid repeatedly switching an object between optimistic and
pessimistic states that should ideally remain optimistic, the policy
disallows repeated transitions to pessimistic: each object starts in
WrExOpt

T state; it can transition to pessimistic and later can transi-
tion back to optimistic; after that, it must stay optimistic. Alterna-
tively, the policy could allow repeated transitions from optimistic
to pessimistic, but with a greater Cutoff confl value.

7 The policy counts only transitions that use explicit coordination, since
implicit coordination is roughly as expensive as a pessimistic transition.



Optimistic transitions Pessimistic transitions Opt. to Pess.
Same state Conflicting Uncontended %Reentrant Contended Pess. to Opt.

eclipse6 (1.2×1010) 1.2×1010 (1.3×105) 1.3×105 1.5×106 32% 1.3×102 1.2×102 1.1×102

hsqldb6 (6.1×108) 6.1×108 (9.2×105) 5.2×105 4.7×106 64% 9.0×102 5.1×101 0–1
lusearch6 (2.4×109) 2.3×109 (4.4×103) 4.3×103 2.6×102 30% 0 1.0×100 0
xalan6 (1.1×1010) 1.0×1010 (1.8×107) 3.9×105 2.1×108 52% 1.5×101 5.4×102 1.0×102

avrora9 (6.0×109) 6.0×109 (6.0×106) 2.7×106 8.4×106 17% 8.0×105 1.0×105 1.2×102

jython9 (5.1×109) 5.1×109 (6.7×101) 7.3×101 0 0% 0 0 0
luindex9 (3.4×108) 3.4×108 (3.7×102) 3.8×102 0 0% 0 0 0
lusearch9 (2.3×109) 2.3×109 (2.8×103) 2.3×103 3.9×103 44% 7.6×101 1.1×101 2.0×100

pmd9 (5.6×108) 5.5×108 (4.2×104) 1.7×104 1.9×105 58% 2.1×103 3.0×102 5.4×101

sunflow9 (1.7×1010) 1.7×1010 (6.1×103) 6.2×103 5.9×103 92% 3.0×101 8.4×100 3.6×100

xalan9 (1.0×1010) 9.8×109 (1.7×107) 2.9×105 1.9×108 68% 3.0×101 9.0×102 1.4×102

pjbb2000 (1.7×109) 1.7×109 (9.5×105) 9.3×105 2.4×106 58% 1.3×102 2.4×103 1.1×103

pjbb2005 (6.6×109) 6.5×109 (4.4×107) 8.4×105 1.4×108 32% 7.6×105 3.2×103 3.1×103

Table 2. State transitions for hybrid tracking, compared with state transitions for optimistic tracking alone (shown in parentheses).

7. Evaluation
This section evaluates the run-time characteristics and performance
of hybrid tracking, compared with pessimistic and optimistic track-
ing alone. It also compares the performance of the hybrid and opti-
mistic versions of the dependence recorder and RS enforcer.

7.1 Implementation
We have implemented the hybrid state model, adaptive policy, hy-
brid dependence recorder and replayer, and hybrid RS enforcer in
Jikes RVM 3.1.3, a Java virtual machine [4] that performs compet-
itively with commercial JVMs [6]. We have made our implemen-
tation, which targets the IA-32 platform, publicly available on the
Jikes RVM Research Archive. Our implementation builds on pub-
licly available implementations of pessimistic and optimistic track-
ing [11], the optimistic recorder and replayer [10], and the opti-
mistic RS enforcer [36].

By targeting a managed language, our implementation can pig-
gyback on existing language implementation features. Notably, co-
ordination piggybacks on the safe point mechanism that commonly
exists in managed language implementations. An implementation
for a native language would need to add support for safe points.

Jikes RVM’s dynamic just-in-time compilers insert instrumen-
tation before every memory access, PSRO, and safe point in the
application and Java libraries. The implementation adds two 32-
bit words to each (scalar and array) object and static field: one for
last-access state and another for the adaptive policy’s profile infor-
mation. For exclusive states (WrEx*

T and RdEx*
T), the state word

encodes T’s (8-byte-aligned) address and uses remaining bits to
differentiate states (e.g., pessimistic versus optimistic; WrEx ver-
sus RdEx). For RdSh*

c states, the bits encode c and the read-lock
count, and differentiate pessimistic versus optimistic.

Extraneous contention. Due to limited bit patterns available in a
metadata word, our prototype implementation omits the WrExRLockT

state: a read to a WrExPessT object triggers a transition to WrExWLock
T .

The implementation could avoid this limitation with more engi-
neering effort, e.g., by encoding an identifier for T, rather than T’s
address, for WrExPessT and RdExPessT states.

Thus, the implementation may encounter pessimistic contention
even in the absence of object-level data races. Suppose T1 reads an
object in WrExPessT1 state, transitioning the state to WrExWLock

T1 . T2
then reads the object, triggering a pessimistic contended transition.
However, T1 has only read the object since its last PSRO, i.e., no
object-level data race exists in this case.

To measure potential costs incurred by triggering unnecessary
coordination, we implemented and evaluated an alternate configu-
ration in which a read of a WrExPessT1 object by T1 triggers a tran-

sition to RdExRLockT1 . This configuration triggers coordination only
when object-level data races exist, but it loses information about
T1’s previous write to the object, making it unsuitable for runtime
support that needs to detect cross-thread dependences soundly. This
unsound configuration provided no performance benefit, indicating
that the default configuration is not encountering significant spuri-
ous contention in our experiments.

Optimistic tracking performance issue. When investigating the
performance of high-conflict microbenchmarks (Section 7.5), we
discovered an optimization opportunity that improves the perfor-
mance of the optimistic tracking implementation. In particular, re-
leasing a program lock that is a so-called “fat” lock [5] can in-
cur significant latency, so making this operation a blocking safe
point improves performance significantly. Our experiments do not
include this optimization. We discovered the optimization shortly
before the camera-ready deadline, and including it would require
re-tuning the adaptive policy and re-collecting all results.

7.2 Methodology
Our experiments execute benchmarked versions of real applica-
tions: the DaCapo benchmarks, versions 2006-10-MR2 and 9.12-
bach (2009) [7] (limited to multithreaded programs that Jikes RVM
can run), and fixed-workload versions of SPECjbb2000 and 2005.8

The experiments run on a system with four Intel Xeon E5-4620
8-core processors (32 cores total) running Linux 2.6.32. We build a
high-performance configuration (FastAdaptiveGenImmix) of Jikes
RVM. Each performance result is the median of 20 trial runs; we
also show the mean as the center of 95% confidence intervals. Each
reported statistic is the mean from five statistics-gathering runs.

7.3 Adaptive Policy Limit Study
To evaluate whether per-object profiling identifies most optimistic
conflicting transitions in advance, we perform a limit study on opti-
mistic tracking alone. Figure 6 plots a cumulative distribution of the
number of optimistic conflicting transitions (explicit coordination
only) triggered by each object. For each point (x, y), y counts total
conflicting transitions—as a percentage of all accesses—involving
objects that have (so far) triggered at most x conflicting transitions.
For example, (4, 0.05%) means that 0.05% of all accesses triggered
conflicting transitions that were the first, second, third, or fourth
conflicting transition triggered by the accessed object. The max-
imum y value for each program is its overall rate of conflicting
transitions (explicit coordination only).

The plot shows that, at least for these programs, each object’s
first few conflicting transitions together constitute an insignificant

8 http://spec.org/, http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005



Figure 6. Cumulative distribution of conflicting transitions (explicit coor-
dination only) triggered per object for optimistic tracking. Both axes use
a logarithmic scale. The legend sorts programs by their maximum y-axis
value. Three programs have a conflict rate <0.0001% and are excluded.

fraction of overall program accesses. For high-conflict programs,
most conflicting transitions are to objects that have triggered many
conflicting transitions (avrora9 is an exception). For low-conflict
programs, the overall conflict rate is low, so conflicting transitions
are negligible. Thus, per-object profiling can “catch” most conflict-
ing accesses, leaving little additional opportunity for aggregate pro-
filing.

The rest of the paper’s experiments use the following adaptive
policy parameter values: Cutoff confl = 4, Kconfl = 200, Inertia
= 100. We find that larger values of Cutoff confl have little impact
(results not shown), except for avrora9, as Figure 6 would suggest.
Performance is not very sensitive to the other parameters; various
values for Kconfl (20–1,600) and Inertia (20–1,600) are effective.

7.4 Run-Time Characteristics
Table 2 counts state transitions under hybrid tracking. The ta-
ble breaks down Optimistic transitions into Same state and Con-
flicting transitions, which have significantly different costs (Sec-
tion 2.2). For comparison, transitions triggered under optimistic
tracking alone are shown in parentheses.

The Conflicting column measures how well the adaptive pol-
icy achieves its primary goal of reducing conflicting transitions.
The reduction is substantial for high-conflict programs: 43–98%
for hsqldb6, xalan6, avrora9, pmd9, xalan9, and pjbb2005. Hy-
brid tracking provides little or no improvement for low-conflict
programs—but they incur low coordination costs anyway.

The Same state column measures the downside of transition-
ing to pessimistic states: some transitions that would have been
optimistic same-state become pessimistic. Only a small fraction
of same-state transitions become pessimistic, because the adaptive
policy identifies pessimistic objects to transition back to optimistic
states, based on accurate profiling of pessimistic objects.

As the table shows, the adaptive policy causes more same-state
than conflicting transitions to become pessimistic (compared with
optimistic tracking alone). However, this result does not imply a
performance loss, since a conflicting transition costs 2–3 orders of
magnitude more than a same-state transition. For these programs at
least, the adaptive policy achieves its goal of eliminating most of
the conflicting transitions—and thus most of the expensive coordi-
nation overhead—while minimizing pessimistic transitions.

The Pessimistic columns show the number of pessimistic tran-
sitions under hybrid tracking. We note that deferred unlocking en-
ables a significant fraction of Uncontended accesses to be Reen-

trant and thus avoid atomic operations. Still, a substantial fraction
of pessimistic accesses require atomic operations, so pessimistic
tracking alone would be costly even if it used deferred unlocking.

For most programs, a small fraction of pessimistic accesses
are Contended, indicating that deferring unlocking of pessimistic
states is generally successful. However, for avrora9 and pjbb2005,
contended transitions are of the same order as optimistic conflicting
transitions, so hybrid tracking still incurs a considerable amount of
coordination. Investigating further, we find that the contention is, as
expected, due to object-level data races. In pjbb2005, contention is
caused by true (precise) data races. In avrora9, contention is caused
by both true and false (object-level-only) data races.

The last two columns show transitions between pessimistic and
optimistic states. Not all of the objects that transition from opti-
mistic to pessimistic should ideally be pessimistic. The fraction of
pessimistic objects transitioned back to optimistic states varies sig-
nificantly across the programs but is often substantial, indicating
that accurate profiling of pessimistic objects is crucial.

7.5 Performance of Tracking Alone
Figure 7 compares the performance of hybrid tracking with pes-
simistic and optimistic tracking alone (no runtime support on top
of dependence tracking). Each bar shows the run-time overhead
added over unmodified Jikes RVM. For sunflow9, the mean over-
head is noticeably higher than the median for several configura-
tions. Across many additional trials, we found that about 15% of
the trials run substantially slower than the rest of the trials.

Pessimistic tracking adds 340% overhead on average (excluding
sunflow9, the geomean is 210%), showing that pessimistic states
must be applied judiciously. In contrast, the average overhead of
Optimistic tracking is just 28%, but a few high-conflict programs
(xalan6 and pjbb2005) incur substantially higher costs.

Hybrid tracking w/infinite cutoff uses hybrid tracking but sets
Cutoff confl to∞, so no object ever transitions to pessimistic states.
This configuration measures only the costs, not the benefits, of
hybrid tracking over optimistic tracking. The average cost over
optimistic tracking is 2.3% (of baseline execution time).

Hybrid tracking uses the default values of Cutoff confl and
other parameters. Hybrid tracking significantly improves the per-
formance of several programs that perform poorly with optimistic
tracking—the same programs that have many conflicting transitions
reduced by the adaptive policy (Table 2). Hybrid tracking reduces
overhead by 63% (65% → 24%) for xalan6; by 74% (19% →
5%) for xalan9; and by 45% (from 110%→ 49%) for pjbb2005.
Despite reducing conflicting transitions significantly for hsqldb6
(Table 2), hybrid tracking has little performance impact because
hsqldb6’s conflicting transitions mainly use implicit coordination,
which costs about as much as a pessimistic transition.

Ideal is the overhead of optimistic tracking, but without per-
forming coordination for conflicting transitions. This unsound con-
figuration estimates the cost of all conflicting transitions becoming
pessimistic and all same-state transitions remaining optimistic. It
adds 14% on average, representing an estimated upper bound on
the performance that hybrid tracking might be able to provide.

Hybrid tracking adds 22% average overhead, 21% less than
optimistic tracking’s 28% overhead. Hybrid tracking incurs 27%
less overhead than Hybrid tracking w/infinite cutoff, recovering
most of the overhead difference between optimistic tracking alone
and the ideal, unsound configuration.

While optimistic tracking provides the best performance for
low-conflict programs, hybrid tracking provides better performance
for high-conflict programs. On average, hybrid tracking adds lower
overhead than both pessimistic and optimistic tracking alone.

Many of the programs we evaluate perform relatively little
shared-memory communication [21]. These programs may or may
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for ( int i=0; i<MAX; i++) {
synchronized (gLock) {
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}
}

for ( int i=0; i<MAX; i++) {
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Figure 8. Run-time overhead of tracking alone on microbenchmarks.

not accurately represent all real-world parallel programs in the
wild. Because of these programs’ low average communication, op-
timistic tracking performs well on average, leaving little room for
hybrid tracking to improve. Nevertheless, only hybrid tracking can
scale to diverse communication patterns: it helps cases for which
optimistic tracking performs poorly, without harming cases for
which optimistic tracking performs well.

Stress tests. In addition to large, real programs, we evaluate pes-
simistic, optimistic, and hybrid tracking on two microbenchmarks—
one well synchronized and one with data races—that represent
extreme, high-conflict cases. Each microbenchmark spawns eight
threads; each thread repeatedly increments a global counter in a
loop. Figure 8 shows, for each microbenchmark, the code executed
by each thread, as well as run-time overhead over execution time
on the unmodified JVM. The program syncInc acquires a global
lock before every increment, whereas racyInc does not.

The figure shows that for syncInc, hybrid tracking signifi-
cantly reduces overhead relative to optimistic tracking (84% versus
1200%), eliminating most coordination thanks to object-level data
race freedom. For this program, hybrid tracking essentially mim-
ics pessimistic tracking by using pessimistic transitions. However,
hybrid tracking incurs more overhead in order to defer unlocking
states and to perform profiling.

In contrast, racyInc represents a worst case for hybrid track-
ing since almost all conflicting accesses are involved in data races.
Hybrid tracking adds 4300% overhead because threads repeatedly
trigger coordination in order to perform pessimistic contended tran-
sitions. Upon further investigation, we find that although only 24%
of memory accesses perform pessimistic contended transitions,

most of these accesses trigger coordination more than once. Hy-
brid tracking could alleviate this deficiency by modifying the adap-
tive policy to switch a pessimistic object back to optimistic states if
accesses to it trigger coordination frequently.

Pessimistic and optimistic tracking both add about 1200% over-
head for racyInc; this similarity is initially surprising considering
that racyInc executes many conflicting accesses, which are typi-
cally more expensive for optimistic tracking than for pessimistic
tracking. We find that in optimistic tracking, only 8.5% of all ac-
cesses trigger conflicting transitions, because a thread that locks
a state can perform several same-state transitions before another
thread initiates a conflicting transition. In contrast, in pessimistic
tracking, another thread tries to lock a state more quickly, leading to
more remote cache misses: 26% of pessimistic tracking’s accesses
lock a state with a different thread than the previous access.

7.6 Performance of Runtime Support
This section compares optimistic and hybrid versions of the depen-
dence recorder and RS enforcer. We have not implemented or eval-
uated pessimistic runtime support, since pessimistic tracking alone
is slower than both optimistic and hybrid runtime support.

Dependence recorder. Figure 9(a) shows the performance of the
optimistic and hybrid dependence recorders and replayers. Hybrid
tracking improves the recorder’s performance significantly for the
high-conflict programs xalan6, xalan9, and pjbb2005, and incurs
modest overhead for low-conflict programs. On average it reduces
overhead by 11% (from 46 to 41%). While the hybrid recorder
triggers less coordination than the optimistic recorder, it still de-
tects and records the same number of cross-thread dependences as
the optimistic recorder does. This fact explains why the hybrid re-
corder’s improvement over the optimistic recorder is smaller than
for hybrid tracking over optimistic tracking alone.

The optimistic replayer is not fully robust: it successfully re-
plays 11 out of 13 programs (failing on eclipse6 and xalan9) [10].
The optimistic replayer adds 20% overhead on average—lower
than the optimistic recorder because it is cheaper to replay known
dependences than record unknown dependences. The replayer out-
performs the baseline substantially for pjbb2005. This result is not
an experimental anomaly; the replayer elides program synchroniza-
tion operations and replays only the recorded dependences, so it can
outperform baseline execution for programs dominated by coarse-
grained, overly conservative synchronization.

Our hybrid replayer successfully replays all 11 programs that
the optimistic replayer can replay. The hybrid replayer adds 24%
overhead on average, slower than the optimistic replayer, due to
the cost of maintaining the per-thread release counter, as well
as the fact that hybrid tracking cannot reduce the number of re-
played cross-thread dependences. Overall, hybrid tracking im-
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Figure 9. Run-time overhead of optimistic and hybrid runtime support.

proves record time and degrades replay time—a worthwhile trade-
off since (1) optimizing record is more important since it is usually
slower than replay, and (2) replay performance is not important in
all settings (e.g., offline replay).

Region serializability enforcer. Figure 9(b) shows the overhead of
enforcing SBRS using optimistic versus hybrid tracking. The hy-
brid enforcer substantially improves the performance of xalan6,
xalan9, and pjbb2005. This reduction is similar to the reduction
between hybrid and optimistic tracking alone—which is unsurpris-
ing since the hybrid enforcer employs hybrid tracking in essentially
the same way as the optimistic enforcer employs optimistic track-
ing. On average, the hybrid enforcer reduces overhead by 13% over
the optimistic enforcer (from 39% to 34%).

The performance story for runtime support is similar to the story for
dependence tracking alone: hybridizing pessimistic and optimistic
tracking overcomes the limitations of both, providing the best over-
all performance for a mix of low- and high-conflict programs.

8. Related Work
This section compares with prior work not covered already.

Program locks. This paper focuses on locks that are used by run-
time support and are not visible to programmers. Program locks
face similar tradeoffs as pessimistic versus optimistic tracking. No-
tably, biased locking avoids atomic operations for repeated lock ac-
quisitions by the same thread, requiring coordination when another
thread acquires the lock [13, 22, 33]. A biased lock typically falls
back to an unbiased lock after triggering coordination once.

Adaptive mechanisms. Prior work has used adaptive techniques to
combine different kinds of synchronization. Usui et al. use online
profiling and a cost–benefit model to adaptively choose between
lock-based mutual exclusion and software transactional memory
(STM) for enforcing atomicity of critical sections [37]. Abadi et
al. present an STM that adaptively changes how it detects conflicts
for non-transactional accesses, depending on whether transactions
access the same objects as non-transactional code [1]. Dice et al.
build a runtime library that supports adaptive lock elision using
hardware transactional memory (HTM) and optimistic software ex-
ecution [16]. Ziv et al. formalize a theory for correctly composing
different concurrency control protocols in programs [43].

Tracking dependences using commodity hardware. Intel’s re-
cently introduced Haswell architecture provides restricted trans-
actional memory (RTM): best-effort TM support with an upper
bound on shared-memory accesses in a transaction [42]. Recent
work finds that an RTM transaction must be expanded to replace at

least 3–4 atomic operations, in order to amortize the overhead of a
transaction [28, 31, 42]. While an empirical comparison with RTM
is beyond this work’s scope, prior results suggest that optimistic
tracking is likely to outperform RTM for non-conflicting accesses
by avoiding atomic operations altogether, while hybrid tracking is
likely to perform best for a mix of high- and low-conflict accesses.

9. Conclusion
Hybrid tracking uses a hybrid state model and adaptive policy to
combine pessimistic and optimistic tracking effectively and effi-
ciently, achieving better overall performance than either alone. We
demonstrate hybrid tracking’s potential by building runtime sup-
port to record dependences and enforce region serializability. The
results motivate hybrid tracking’s use in building efficient runtime
support that targets diverse applications on commodity systems.
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A. Instrumentation Pseudocode
Figure 10 shows the instrumentation added by hybrid tracking.
For simplicity, we only show instrumentation for a program store.
The instrumentation for loads is more complex because it handles
RdEx∗T and RdSh∗c states and supporting reentrant reader locks.

The fast path (Figure 10(a)) only checks for the WrExOpt
T state,

since we expect that the majority of accesses trigger same-state op-
timistic transitions. The slow path (Figure 10(b)) changes the state
based on hybrid tracking’s state transitions (Figure 3 and Table 3).
The slow path repeatedly reloads and tries to change the state if
an atomic update fails. A contended transition triggers coordina-
tion (line 39); then the slow path retries until the state becomes un-
locked, enabling an uncontended transition (lines 33–37). Upon a
successful transition to a pessimistic state, the instrumentation adds
the object to the per-thread lock buffer (lines 35 and 48).

Figure 10(c) shows the instrumentation at each PSRO and
responding safe point. The instrumentation flushes the current
thread’s lock buffer by unlocking each object in the buffer, po-
tentially transferring the object to an optimistic state, according
to the adaptive policy (Section 6). The pseudocode shows how to
handle objects in WrExWLock

T state only, not other states.



22 if ( o.state != WrExOpt
T ) {

23 slowPath(o);
24 }
25 o.f = ... ; // program store

(a) The instrumentation fast path for hybrid tracking.

26 slowPath(o) {
27 while(true) {
28 state = o.state ;
29 if ( isPess ( state )) { // Pessimistic
30 // Pessimistic Locked, uncontended
31 if ( state == WrExWLock

T ) break;
32 // Pessimistic Unlocked
33 if (isUnlocked( state ) || state == WrExRLockT ) {
34 if (CAS(&o.state, state , WrExWLock

T )) {
35 T.lockBuffer.add(o);
36 break;
37 }
38 } else { // Pessimistic Locked, contended
39 coordinate(getOwner(state));
40 }
41 } else { // Optimistic
42 if ( state == RdExOpt

T ) { ... }
43 if (( state != Int∗) && CAS(&o.state, state, IntT)) {
44 coordinate(getOwner(state));
45 // Decision from adaptive policy
46 if (AdaptivePolicy.toPess(o)) {
47 o.state = WrExWLock

T ;
48 T.lockBuffer.add(o);
49 } else {
50 o.state = WrExOpt

T ;
51 }
52 break;
53 }
54 }
55 checkAndRespondToRequests(); // non−blocking safe point
56 }
57 }

(b) The instrumentation slow path for hybrid tracking.

58 for (o : T.lockBuffer ) {
59 o.state = AdaptivePolicy.toOpt(o) ? WrExOpt

T : WrExPessT ;
60 }

(c) Instrumentation at PSROs and responding safe points.

Figure 10. Instrumentation added by hybrid tracking, for program stores
only. (Handling loads is analogous but more complex.)

B. Complete State Transitions
Table 3 shows all possible transitions for the hybrid state model.9

Rows above the double line are pessimistic transitions; rows below
are optimistic transitions. The rows labeled Pessimistic unlock OR
Pess→ Opt show transitions for deferred unlocking, which occur
at program synchronization release operations (PSRO).

Each thread keeps track of which objects it has read-locked in a
per-thread read set, T.rdSet. The table omits the following details:
When T reads an object not in its read set (o 6∈ T.rdSet), it adds
the object to its read set: T.rdSet← T.rdSet ∪ {o}. Whenever T
flushes its lock buffer, it also clears its read set: T.rdSet← ∅.

9 An early version of our work introduces a significantly different hybrid
state model (e.g., it does not use deferred unlocking) and thus presents
significantly different state transitions [14].
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Trans. Old Program New Sync. Cross-thread
type state access state needed dependence?

Pessimistic WrExWLock
T R or W by T

Same None Nouncontended WrExRLockT R by T

(reentrant) RdExRLockT R by T
RdShRLock(n)

c R by T if o ∈ T.rdSet

Pessimistic

WrExPessT W by T WrExWLock
T

CAS No

uncontended

WrExPessT R by T WrExRLockT

RdExPessT R by T RdExRLockT

RdExPessT or RdExRLockT or WrExRLockT W by T WrExWLock
T

CAS
No

RdExPessT1 R by T2 RdShRLock(1)
gRdShCount Maybe

RdExRLockT1 or WrExRLockT1 R by T2 RdShRLock(2)
gRdShCount Maybe

RdShPess
c R by T RdShRLock(1)

c * CAS Maybe
RdShRLock(n)

c R by T if o 6∈ T.rdSet RdShRLock(n+1)
c *

WrExPessT1 W by T2 WrExWLock
T2

CAS MaybeWrExPessT1 R by T2 RdExRLockT2

RdExPessT1 W by T2 WrExWLock
T2

RdShPess
c W by T WrExWLock

T

Pessimistic

WrExWLock
T1 W by T2

Handled at owner thread(s)’ Roundtrip Maybecontended

WrExRLockT1 W by T2

responding safe points coordinationWrExWLock
T1 R by T2

RdExRLockT1 W by T2
RdShRLock(n)

c W by T2
Pessimistic WrExWLock

T or WrExRLockT PSRO or WrExPessT OR WrExOpt
T

CAS N/Aunlock RdExRLockT responding RdExPessT OR RdExOpt
T

OR RdShRLock(n)
c if n > 1 safe point RdShRLock(n−1)

c

Pess→ Opt RdShRLock(1)
c RdShPess

c OR RdShOpt
c

Same state
WrExOpt

T R or W by T
Same None NoRdExOpt

T R by T
RdShOpt

c R by T if T.rdShCount ≥ c

Upgrading RdExOpt
T W by T WrExOpt

T CAS No
RdExOpt

T1 R by T2 RdShOpt
gRdShCount Maybe

Fence RdShOpt
c R by T if T.rdShCount < c (T.rdShCount← c) Memory fence Maybe

Conflicting WrExOpt
T1 W by T2 IntT2→WrExOpt

T2 OR WrExWLock
T2

MaybeOR WrExOpt
T1 R by T2 IntT2→ RdExOpt

T2 OR RdExRLockT2 Roundtrip

Opt→ Pess RdExOpt
T1 W by T2 IntT2→WrExOpt

T2 OR WrExWLock
T2 coordination

RdShOpt
c W by T2 IntT2→WrExOpt

T2 OR WrExWLock
T2

Table 3. All possible state transitions for the hybrid state model. Instances of “OR” indicate cases in which a state can potentially transition between
pessimistic and optimistic states. * Pessimistic uncontended transitions from RdSh∗

c to RdShRLock(∗)
c also update T.rdShCount to max(T.rdShCount, c).
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