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This paper presents Fast Instrumentation Bias (FIB), a sound and complete dynamic data race detection
algorithm that improves performance by reducing or eliminating the costs of analysis atomicity. In addition
to checking for errors in target programs, dynamic data race detectors must introduce synchronization to
guard against metadata races that may corrupt analysis state and compromise soundness or completeness.
Pessimistic analysis synchronization can account for nontrivial performance overhead in a data race detector.

The core contribution of FIB is a novel cooperative ownership-based synchronization protocol whose
states and transitions are derived purely from preexisting analysis metadata and logic in a standard data race
detection algorithm. By exploiting work already done by the analysis, FIB ensures atomicity of dynamic analysis
actions with zero additional time or space cost in the common case. Analysis of temporally thread-local or
read-shared accesses completes safely with no synchronization. Uncommon write-sharing transitions require
synchronous cross-thread coordination to ensure common cases may proceed synchronization-free.

We implemented FIB in the Jikes RVM Java virtual machine. Experimental evaluation shows that FIB

eliminates nearly all analysis atomicity costs on programs where data often experience windows of thread-
local access. Adaptive extensions to the ownership policy e�ectively eliminate high coordination costs of the
core ownership protocol on programs with high rates of serialized sharing. FIB outperforms a naïve pessimistic
synchronization scheme by 50� on average. Compared to a tuned optimistic metadata synchronization scheme
based on conventional �ne-grained atomic compare-and-swap operations, FIB is competitive overall, and up to
17� faster on some programs. Overall, FIB e�ectively exploits latent analysis and program invariants to bring
strong integrity guarantees to an otherwise unsynchronized data race detection algorithm at minimal cost.
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1 INTRODUCTION

A data race in a shared-memory multithreaded program execution is a pair of memory accesses to
the same shared-memory location, by di�erent threads, unordered by synchronization, where at
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least one access is a write. Data races execute in any order, yielding unpredictable program state and
confusing errors that are di�cult to reproduce. Data races often factor into more complex shared-
memory errors such as violations of atomicity or determinism. Memory consistency models of
modern mainstream programming languages [Boehm and Adve 2008; Manson et al. 2005] guarantee
that programs free of data races execute with the intuitive semantics of sequential consistency [Adve
and Gharachorloo 1996; Adve and Hill 1990; Lamport 1979], but they make weak or no guarantees
about programs with data races [Adve and Boehm 2010].

1.1 Data Race Detection Is Necessary but Slow.

Accurate data race detection is necessary. Programming on a weak memory model with no visibility
into its behavior is a recipe for error-ridden code. Nonetheless, mainstream memory models fail
to support programmers’ reasoning e�orts exactly when they need help [Adve and Boehm 2010;
Boehm and Adve 2012]. Programmers need accurate tools to reason directly about the presence or
absence of data races and other concurrency bugs in programs. Data race freedom or accurate data
race detection is a prerequisite for many analyses of higher-level multithreading safety properties,
such as atomicity [Flanagan et al. 2008; Shpeisman et al. 2007] and determinism [Bergan et al. 2010;
Devietti et al. 2009; Olszewski et al. 2009].

Several researchers have further proposed data race exceptions, to enforce data race freedom at
run time and simplify multithreaded memory semantics with strong guarantees in all cases [Adve
2010; Ceze et al. 2009; Elmas et al. 2007; Lucia et al. 2010; Marino et al. 2010; Wood et al. 2014]. On
the second in a pair of accesses that race, such a system raises an exception instead of completing
the access. Exceptions make data races obvious at run time like null pointer dereferences, but they
are useful only if accurate and fast. Accurate means sound (no missed races) and complete (no false
races) over an execution.1 Sound static data race detectors conservatively report false races and are
not suited for run-time data race exceptions [Flanagan and Freund 2000; Naik et al. 2006]. Data

race detection means dynamic data race detection in this paper unless noted.

Accurate data race detection is slow. Several software [Choi et al. 2002; Christaens and Bosschere
2001; E�nger-Dean et al. 2012; Savage et al. 1997; Serebryany and Iskhodzhanov 2009; Yu et al. 2005]
and hardware [Min and Choi 1991; Muzahid et al. 2009; Prvulovic 2006; Prvulovic and Torrellas
2003; Zhou et al. 2007] best-e�ort data race detectors attain reasonable performance by algorithms
or optimizations that sacri�ce accuracy. Other tools accurately detect data races that can violate
sequential consistency or related consistency properties with relatively low overhead [Biswas
et al. 2015; Lucia et al. 2010; Marino et al. 2010; Singh et al. 2011], but they do not detect all
data races. Sound and complete data race detection systems require unimplemented hardware
support [Devietti et al. 2012; Peng et al. 2017; Wood et al. 2014] or high run-time overheads [Elmas
et al. 2007; Flanagan and Freund 2009, 2013]. For example, the state-of-the-art accurate software
data race detector, FastTrack, slows program execution by several times [Flanagan and Freund
2009, 2017; Rhodes et al. 2017].

1.2 So�ware Data Race Detectors Require Defensive Synchronization.

In general, analysis barriers inserted immediately before each memory access in the target program
must atomically check and update analysis metadata stored in shared memory. To preserve sound-
ness and completeness, a dynamic data race detector must insert additional synchronization to

1This paper follows terminology conventions of data race detection research that can support data race exceptions [Devietti
et al. 2012; Elmas et al. 2007; Flanagan and Freund 2009; Peng et al. 2017; Wood et al. 2014] with respect to soundness
and completeness. Data race detectors are accepters of data-race-free executions. Sound means accepts only data-race-free
executions; complete means accepts all data-race-free executions.
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defend the analysis metadata used by these barriers against metadata races. The literature tends to
treat the presence or absence of metadata synchronization as an artifact of implementation, despite
the potential impacts on soundness, completeness, and performance.

Pessimistic synchronization of metadata can be expensive, accounting for 20-90� of the run-time
overhead of a FastTrack [Flanagan and Freund 2009] implementation, according to experiments in
prior work [Devietti et al. 2012]. Our own experiments show that an implementation of FastTrack
in the Jikes RVM Java virtual machine [Alpern et al. 1999] using pessimistic spin locks for analysis
atomicity can run over 16 times slower, and about 107� slower on average, than an unsynchronized
implementation. An implementation of FastTrack using optimistic synchronization with atomic
compare-and-swap (CAS) operations for shared metadata updates runs 8� slower than an unsyn-
chronized version on average. Although the average synchronization overhead in our experiments
is rather low: (1) the overhead is high for some programs; (2) prior work has reported higher
synchronization overhead; and (3) prior synchronization schemes have generally been applied
without fully integrating with the analysis to exploit its core invariants.

1.3 Cooperative Analysis Atomicity Mitigates Synchronization Costs.

The main contribution of this paper is Fast Instrumentation Bias (FIB, §5), a novel cooperative
protocol for accurate data race detection that often reduces – and in many cases eliminates – the
cost of analysis atomicity. FIB provides analysis atomicity for no added cost on common-case thread-
local and read-shared accesses by introducing safe synchronous coordination between threads in
uncommon cases. Shifting blanket pessimistic synchronization overhead to rare cooperative events
can reduce overall cost, an insight whose foundations are exploited in diverse ways by cooperative
systems such as cache coherence [Papamarcos and Patel 1984], biased locking [Bacon et al. 1998;
Kawachiya et al. 2002; Nakaike and Michael 2010; Pizlo et al. 2011; Rajwar and Goodman 2001;
Rogers and Iyengar 2011; Russell and Detlefs 2006; Vasudevan et al. 2010], the Octet dependence
tracker [Bond et al. 2013] and other cooperative techniques for object-granularity race detection [von
Praun and Gross 2001], and the RADISH hardware-supported data race detector [Devietti et al. 2012].
Unlike these systems, most status information and checks used by the FIB cooperative protocol
incur no extra cost, since they are derived from existing data race detection metadata and logic.
Further, FIB tracks data races and ownership status at a �ne grain: per �eld rather than per object.

A secondary contribution of this paper is FastTrack-Ownership �FTO), a modi�cation of the
FastTrack data race detection algorithm that is suitable for FIB to extend. FTO and FIB are natural
extensions to the FastTrack’s algorithm [Flanagan and Freund 2009] that derive ownership for
each memory location from FastTrack’s access history metadata. Ownership states grant threads
permission for certain analysis operations. Non-owner threads initiate cooperative ownership
state transitions to gain analysis permission. Owner threads perform synchronization-free analysis
operations with the guarantee that non-owner threads may interfere only at well-de�ned points
where the owner thread explicitly cooperates. Ownership checks on FIB fast paths for temporally
thread-local or read-shared accesses are subsumed by FTO’s preexisting analysis actions. Compared
to an unsynchronized version of the analysis, FIB enforces atomicity of analysis barriers with zero

time overhead in common-case barriers and zero per-location storage overhead in all cases.

The core FIB protocol is suited to programs with high rates of temporally thread-private and
concurrent read-shared data accesses. Under high rates of serialized sharing, the protocol can
trigger expensive coordination for ownership state transitions too frequently. We extend the core
FIB protocol with two adaptive optimizations. Predictive read sharing predicts upcoming read sharing
with a simple heuristic to avoid coordination costs for a reactive ownership state transition by
making the transition preemptively at low cost. Adaptive fail-over to local CAS-based synchronization

handles frequent serialized write sharing without the high cost of repeated coordination.
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We implemented FIB and alternative schemes for analysis atomicity in the Jikes RVM [Alpern
et al. 1999] Java virtual machine (§7). Experimental evaluation on a range of multithreaded Java
programs shows that FIB’s cooperative protocol can achieve analysis atomicity at low cost on many
programs (§8). FIB introduces little or no cost relative to unsynchronized analysis on a majority
of the 10 programs. Adaptive extensions reduce overheads of the core FIB protocol on serialized
sharing by up to 26�. FIB outperforms a naïve pessimistic synchronization scheme by 50� on
average. Compared to a tuned optimistic metadata synchronization scheme based on �ne-grained
atomic compare-and-swap operations, FIB is competitive on average, and up to 17� faster on some
programs. Overall, FIB e�ectively exploits latent analysis and program invariants to bring strong
integrity guarantees to an otherwise unsynchronized data race detection algorithm at minimal cost.

1.4 Outline

This paper is organized as follows:

§2 reviews foundations in data race detection.
§3 introduces FastTrack-Ownership �FTO), an accuracy-preserving revision to FastTrack that

serves as a basis for FIB.
§4 surveys implementations of analysis atomicity and cooperative resource control.
§5 presents the key contribution, Fast Instrumentation Bias �FIB), a cooperative protocol for

accurate data race detection that provides analysis atomicity at zero cost in the common case.
§6 describes two extensions to FIB for adaptive derivation of access history ownership to reduce

high communication costs for programs with extensive serialized sharing.
§7 describes our implementation of FIB and several variations on FastTrack-Ownership in the

Jikes RVM Java virtual machine.
§8 presents experimental performance and pro�ling evaluation of FIB against competing schemes

for analysis atomicity.
§9 discusses related work.

§10 concludes.

2 BACKGROUND: THE FASTTRACK DATA RACE DETECTION ANALYSIS

This section reviews foundations of dynamic data race detection with FastTrack [Flanagan and
Freund 2009].

2.1 Happens-Before and Data Races

The happens-before relation (<T ) is a re�exive partial order over operations in an execution trace
T due to sequencing within threads and synchronization across threads [Lamport 1978]. A data

race is a pair of concurrent, con�icting memory accesses [Netzer and Miller 1992]. Two operations a
and b are concurrent in trace T if and only if they are not ordered by the happens-before relation
(neither a <T b nor b <T a). Concurrent accesses must be by separate threads. Two accesses con�ict

if they access the same location and at least one of the accesses is a write.

2.2 Tracking Logical Time in FastTrack

FastTrack [Flanagan and Freund 2009] tracks the happens-before relation with a system of logical
time recorded by epochs and vector clocks. Figure 1 summarizes the syntax of FastTrack analysis
metadata, explained in this section and §2.3. An epoch, e = c@t , is a logical time, c , local to a single
thread, t . A vector clock [Fidge 1991; Mattern 1989], v , is a mapping from each thread, t , to an
integer logical clock, c , together representing a frontier in happens-before order. We use vector
clocks interchangeably with sets of epochs of unique threads; a vector clock lookup returns an
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Location x

Thread ID t �u

Operation a�b ::= wtx | rtx | . . .
Trace T ::= Operation∗

Clock c : ��

Epoch e� c@t : Clock × Thread ID
VC v : Thread ID→ Epoch

Thread VCs � : Thread ID→ VC
Lock VCs L : Lock→ VC

Last Reads R : Location→ �Epoch ∪ VC)
Last Writes W : Location→ Epoch

Fig. 1. Syntax and structure of analysis traces and metadata.

epoch: v �t ) = c@t . The happens-before relation is captured by ordering over epochs and vector
clocks. Epoch c@t happens before epoch d@u, written c@t � d@u, if and only if t = u and c ≤ d .
Epoch c@t happens before vector clock v , written c@t � v , if and only if c@t � v �t ). Vector clock
v1 happens before vector clock v2, written v1 � v2, if and only if ∀t �v1 �t ) � v2. The vector-clock
merge operation v1 �v2 computes the element-wise maximum of two vector clocks:

v1 �v2 ≡ �d@t | c1@t = v1 �t ) ∧ c2@t = v2 �t ) ∧ d = max �c1� c2)}

To track the happens-before ordering e�ects of synchronization, FastTrack maintains a vector
clock, �t , for each thread t , representing the last logical time (epoch) in each thread that happened
before the current operation of thread t . Thread t ’s entry in its own vector clock,�t �t ), is its current
epoch. Each lock, l , is tracked by a vector clock, Ll , representing the last logical time (epoch) in
each thread that happened before the last release of lock l .

Initially, each thread starts in its own �rst epoch, with no knowledge of other threads’ initial
epochs: �t = �0@u | u � t } ∪ �1@t }. Each lock starts with an empty vector clock: �t = �0@u}.
When thread t acquires lock l , all events that happened before the last release of lock l are also
guaranteed to happen before all future events in thread t . Accordingly, FastTrack updates thread
t ’s vector clock to show this happened-before relationship: �t := �t � Ll . When thread t releases
lock l , all events that happened before this release are also guaranteed to happen before all future
acquires of this lock by any thread. Accordingly, FastTrack updates lock l ’s vector clock to show this
happened-before relationship: Lt := �t . Since this records thread t ’s current logical time, FastTrack
subsequently increments thread t ’s current epoch, �t �t ), to show that any future events in thread
t happen at a new logical time that did not happen before the release of lock l . Other types of
synchronization are tracked similarly.

This work focuses solely on access tracking, using standard techniques for vector-clock synchro-
nization tracking as is. For additional detail and discussion of synchronization tracking, refer to
[Flanagan and Freund 2009].

2.3 Tracking Accesses in FastTrack

In data-race-free traces, T , all writes to a location, x , must be ordered by happens-before with
respect to all other accesses to x . Reads of x in separate threads may be mutually concurrent
in T , so long as they are ordered with all writes to x . FastTrack checks data race freedom of a
program execution incrementally, testing each operation in turn to determine if it races with any
earlier operation. Due to the transitivity of happens-before and the goal of detecting the �rst data
race [Adve et al. 1991; Banerjee et al. 2006; Choi and Min 1991; Flanagan and Freund 2009; Min and
Choi 1991; Netzer and Miller 1991, 1992] for data race exceptions, it su�ces to check each operation
for races against only the last physically earlier write by any thread and the last physically earlier
read in each thread that follows the last write by any thread. When all such reads are ordered, the
check is even simpler [Flanagan and Freund 2009].
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Table 1. FastTrack analysis barrier logic based on the access history (Rx , Wx ) for data location x , as in
[Flanagan and Freund 2009]. The notation 0@t0 denotes the lack of any last read, represented by the origin
epoch in our formulation.

Event Case Check Order Check Update FastTrack Rule

rtx

Rx = �t �t ) FT ���� ���� �����

Rx = c@u
Rx � �t ∧Wx � �t Rx := �t �t ) FT ���� ���������
Wx � �t Rx := �c@u��t �t )} FT ���� �����

Rx = v Wx � �t Rx �t ) := �t �t ) FT ���� ������

wtx

Wx = �t �t ) FT ����� ���� �����
Rx = c@u Rx � �t ∧Wx � �t Wx := �t �t ) FT ����� ���������
Rx = v Rx � �t ∧Wx � �t Rx := 0@t0,Wx := �t �t ) FT ����� ������

2.3.1 FastTrack Access History. FastTrack maintains an access history,H , for each location. x . The
access history summarizes accesses to x in a trace,T , by the epochs of the last accesses to x inT . The
access history for x inT is a collection,H , of epochs. Each epoch in the history satis�es the property
that, for all accesses, a, to location x in trace T , access a occurred in an epoch, e , that happened
before or in some epoch in the access history: ∀ such access epochs e� e ∈ H ∨∃e �� e � ∈ H ∧ e � e

�

Each access history representation has two parts:

• The Last Write,Wx , tracks the epoch of the last write to location x by any thread in trace T .
In the absence of writes to x , the origin epoch, 0@t0, is used.
• The Last Read�s), Rx , tracks, for each thread, t , the epoch of the last read to x by t . When

thread t ’s last read of x happens before some other other access to x , its epoch may be omitted.
The last reads value Rx thus takes one of two forms:
– A read epoch, e , when all past reads happen in or before e and a read of x occurred in e .

The origin epoch, 0@t0, notated ⊥e in [Flanagan and Freund 2009], is used when there is
no last read.

– A read map (or vector clock),v , wherev �t ) is the epoch of t ’s last read of x , when concurrent
reads of x have occurred since the last write of x .

2.3.2 FastTrack Access Analysis Barriers. Table 1 shows the FastTrack analysis barrier logic for
read and write events from [Flanagan and Freund 2009]. Analysis cases are organized by read (rtx )
and write (wtx ) operations and labeled by name on the right. Each analysis case is broken into three
components that check or update the access history (Rx �Wx ) for data location x . The Case Check
uses the access history to identify which case of the analysis to deploy. The Order Check gives a
predicate that must be true on the access history to establish su�cient happens-before ordering
with accesses of other threads to make the current access data-race-free under the given case. If
this predicate is false, FastTrack reports a data race. The Update column shows how FastTrack
updates the access history to record a data-race-free access.

2.3.3 FastTrack Read Barrier. A read to location x by thread t is safe if all writes to x so far
happen before thread t ’s current epoch. FastTrack has the following read cases, shown in Table 1:

• FT ���� ���� �����: If the last read is the current epoch, then this read is DRF, since a read
has already been checked and recorded in this epoch. Any further check or update would be
redundant.
• If the last read happened in a di�erent epoch, then there are two conditions under which the

current read may be DRF:
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– FT ���� ���������: If both the last read and write happened before the current logical
time, then the current read is DRF and supersedes the last read in the access history.

– FT ���� �����: If the last write happened before the current logical time, but the last read
is concurrent, then the current read is DRF. The access history must retain the epochs of
both last and current reads as a read map (vector clock) to check future writes.

• FT ���� ������: If there are multiple concurrent last reads since the last write, then the
current read is DRF if the last write happens before it. The current epoch is recorded among
the set of concurrent last reads to check future writes.

In all other cases, the read is part of a data race.

2.3.4 Write Barrier. A write to location x by thread t is safe if all accesses to x so far happen
before thread t ’s current epoch. FastTrack checks three cases:

• FT ����� ���� �����: As with reads, if the last write was in the current epoch, any further
analysis is redundant.
• FT ����� ���������: If the last read is an epoch, then the current write is DRF if both the last

read and the last write happen before the current logical time. The current epoch is recorded
as the last write for checking future accesses.
• FT ����� ������: If the access history encodes multiple concurrent last reads, then the

current write is DRF if all accesses in the history (write and reads) happened before the
current logical time. The current epoch is recorded as the last write for checking against
future accesses. The last reads are erased, since they all happened before the new last write.
Future accesses that race with one of the last reads also race with the new last write and will
be detected.

In all other cases, the write is part of a data race.

3 REVISING FASTTRACK FOR OWNERSHIP

To support FIB’s ownership protocol and optimize for minimal analysis fast paths, we make a novel
set of small accuracy-preserving specializations to the basic FastTrack (FT) access analysis barriers.
The resulting new analysis, FastTrack-Ownership �FTO), maintains stronger invariants on access
history to make a notion of thread ownership manifest in access history metadata. This secondary
contribution simpli�es analysis common cases and forms a foundation for FIB (§5).

FastTrack-Ownership access history invariants. FTO maintains and exploits the following invari-
ants on access histories relative to a program trace, T , representing the execution so far:

I�������� 1. As in FastTrack, all writes of x inT and all reads of x occurring at an earlier physical

time than the last write to x in T logically happen before the last write epochWx .

The original FastTrack algorithm enforces and exploits Invariant 1 to erase epochs of earlier writes
and some earlier reads in its access history updates for write operations.

I�������� 2. Each read and write of x in T happens before at least one last read epoch in Rx .

FTO introduces this invariant, which strengthens a weaker invariant in the original FastTrack algo-
rithm and exploits FastTrack’s reliance on the last read(s) information for all case checks. FastTrack
maintains a similar invariant when Rx is a read map, but not when it is a single epoch [Flanagan
and Freund 2009]. Speci�cally, FastTrack’s write barriers may leave last reads that are empty or
older than the recorded last write epoch.
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Table 2. FastTrack-Ownership (FTO) analysis barrier logic. Case rows are grouped by the nature of order
checks and updates to be performed. Rules marked “FT” are unchanged from Table 1. Rules marked “∗” are
changed. Rules marked “+” are added.

Event Owner Check Order Check Update FTO Rule

rtx
Rx = �t �t ) FT ���� ���� �����
Rx = v ∧�t �t ) ∈ v + ���� ������ ���� �����

wtx Wx = �t �t ) FT ����� ���� �����

rtx
Rx = c@t Rx := �t �t ) + ���� �����
Rx = v ∧ c@t ∈ v Rx �t ) := �t �t ) + ���� ������ �����

wtx Rx = c@t Rx := �t �t )�Wx := �t �t ) + ����� �����

rtx Rx = v Wx � �t Rx �t ) := �t �t ) FT ���� ������

rtx Rx = c@u ∧ u � t
Rx � �t Rx := �t �t ) ∗ ���� ���������
Wx � �t Rx := �c@u��t �t )} FT ���� �����

wtx Rx = c@u ∧ u � t Rx � �t Rx := �t �t )�Wx := �t �t ) ∗ ����� ���������

wtx Rx = v Rx � �t Rx := �t �t ),Wx := �t �t ) ∗ ����� ������

FastTrack-Ownership access analysis barriers. Table 2 shows the analysis barrier logic for FTO
in the same style as Table 1 does for FastTrack. Rules are marked “FT”, “∗”, or “+” to distinguish
unchanged FastTrack rules, modi�ed rules, and new rules, respectively.

To maintain Invariant 2, all FTO write barriers that update the last write must also update the
last read to be identical. While the “last read” would thus be better named the “last read or write,”
we retain the “last read” term for consistency with FastTrack. Invariant 2 ensures that the last
read(s) component of an access history alone su�ces both to determine the overall last access(es)
to a location and to check DRF for a new access. This invariant simpli�es order checks in many
cases, at the cost of extra update work on write cases.

FTO’s modi�ed ����� ��������� and ���� ��������� cases now require only one order check:
Rx � �t . Invariant 2 and the transitivity of happens-before establish that if the predicate Rx � �t

holds, then the original FastTrack’s second order check,Wx � �t , also holds.
Additionally, Invariant 2 enables the new special cases ����� ����� and ���� �����. If there

is a single last read epoch and it is an epoch of the current thread – even if it is not the current
epoch – it must happen before the current epoch. Transitively, by Invariant 2, the last write and
all other accesses also happened before the current epoch. The new ���� ������ ����� applies
similar logic to the ���� ������ case: if there is a last reads map containing an entry for the
current thread, an earlier access under the ���� ������ case established ordering with the last
write, so there is no need to check it here, again by Invariant 2. Thus these special cases of the
��������� and ���� ������ rules require no order checks.

Finally, FTO introduces two specializations that are possible even in FastTrack. The new ����
������ ���� ����� case applies the same-epoch optimization for read map entries to avoid
redundant updates. This case is also used by [Flanagan and Freund 2017] and the implementation
of FastTrack in [Biswas et al. 2015]. The ����� ������ case elides an order check against the last
write, since it is established transitively through order checks with the last reads, even without
Invariant 2.

4 BACKGROUND � MOTIVATION: IMPLEMENTING ATOMIC ANALYSIS BARRIERS

This section surveys implementations of atomic analysis barriers for dynamic data race detection.
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Data race detection analysis barriers must execute atomically before the accesses they analyze
to ensure soundness. It is easy to see that interleaved checks and updates from the read or write
barriers in Tables 1 and 2 could lead to lost updates and missed data races. An ideal implementation
of atomic barriers satis�es two requirements. Ensuring atomicity should ideally impose little or no
time overhead beyond analysis logic and little or no space overhead beyond the access history.

Pairing each access history with a lock to protect its analysis barriers enforces atomicity, but
introduces pessimistic locking costs on every access and requires access history storage for a lock.
An implementation in Jikes RVM runs on average 107� slower than unsynchronized FastTrack-
Ownership (FTO) on DaCapo benchmarks [Blackburn et al. 2006] and up to over 16 times slower
in some cases.

4.1 Optimistic Synchronization

FastTrack and FTO can also support an optimistic approach to analysis atomicity using compare-
and-swap (CAS). Read and write same-epoch fast paths may execute using a single unsynchronized
memory load and check, assuming proper ordering restrictions in the compiler and hardware. In
practice, achieving this ordering is relatively inexpensive on comparatively strong mainstream
hardware memory consistency models, such as TSO [Adve and Gharachorloo 1996; Sewell et al.
2010], but may carry greater expense on weaker memory models. Other common analysis paths
with access history updates require only a CAS and a few unsynchronized memory operations in
the common, uncontended case. The remaining rare, complicated, or contended cases can fall back
on lightweight spin locks implemented by reserving a special locked value for the last read or last
write �eld of the access history.

Figure 2 shows simpli�ed pseudocode for a �ne-grained optimistic scheme for atomicity. Standard
non-updating fast paths, not shown here, are executed without synchronization. This pair of barriers
represents a middle ground. They employ �ne-grained CAS operations on individual read map
entries to avoid serializing access to an existing read map, but they use simpler limited mutual
exclusion in cases that are not expected to appear concurrently (e.g., writes) or where allowing
concurrency is not productive (e.g., writes or the FT ���� ����� transition, §2.3, §3).

In this pseudocode, CAS success provides full memory ordering. Release fences precede stores
to x.R that act as lock releases and interact with CASes to order operations on x.W as well. The
casHB function shown supports the FT ����� ������ case (§2.3, §3), when x.R refers to a map of
concurrent last reads. FTO checks ordering against map entries, discards the map, and stores an
epoch for x.R. casHB locks map entries permanently, since the entries will not (and should not) be
used again for future analysis: well-ordered future barriers cannot observe this map; racing write
barriers cannot observe this map, due to mutual exclusion on x.R; racing read barriers that observe
this map detect the LOCKED entry (and the race) when CASing to update.

An implementation in Jikes RVM runs on average 6� slower than unsynchronized FTO on
DaCapo benchmarks [Blackburn et al. 2006] and up to 32� slower in some cases. These tuned but
conventional optimistic approaches achieve zero space overhead and lower time overhead than
naïve pessimistic synchronization, but still require preemptive synchronization on many operations
where it is wasted, even if it is only the cost of a single CAS operation.

4.2 Cooperative Synchronization

Systems for cooperative concurrency can help avoid wasted synchronization cost on cases where
it is rarely needed in practice, but existing systems fall short of our criteria or achieve them
only with unavailable hardware support. Guarding access history with biased locks (§9.1) could
improve performance for uncontended thread-local sections, but adds space overhead and at
least some time overhead for locking even in uncontended cases. Wrapping analysis barriers in
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Metadata record types for analysis barriers

Thread t {

VC C ≡ ��

}

AccessHistory x {

Epoch or Map R ≡ Rx

Epoch W ≡Wx

}

Read analysis barrier for rtx

read(Thread t, AccessHistory x) {

// READ SAME EPOCH

if (x.R == t.C[t]) return SAFE

// CAS one fine-grained map entry

// if possible to reduce contention.

Epoch or Map r := x.R

if (isMap(r)) { // READ SHARED

Epoch e := r[t]

if (e �= LOCKED) {

Epoch w := x.W

if (w <= t.C[thread(w)]

&& CAS(&r[t], e, t.C[t])) {

return SAFE

}

}

}

// Slow Path: lock last reads

r := lock(x)

w := x.W

if (w <= t.C[thread(w)]) {

if (isEpoch(r)) {

if (r <= t.C[thread(r)]) {

r := t.C[t] // READ EXCLUSIVE

} else {

r := {r, t.C[t]} // READ SHARE

}

} else { // Map created

r[t] := t.C[t] // concurrently

} // READ SHARED

release fence

x.R := r // unlock

return SAFE

}

return RACE

}

Write analysis barrier for wtx

write(Thread t, AccessHistory x) {

// WRITE SAME EPOCH

if (x.W == t.C[t]) return SAFE

// Lock the last reads word, then

// check its parts.

Epoch or Map r := lock(x)

// WRITE EXCLUSIVE

if (isEpoch(r) && r <= t.C[thread(r)]

// WRITE SHARED

|| isMap(r) && casHB(x, t, r)) {

// Update and release if SAFE

x.W := t.C[t]

release fence

x.R := t.C[t]

return SAFE

}

return RACE

}

casHB(AccessHistory x, Thread t, Map map) {

// Check & lock each entry.

// If CAS fails, there is a race.

for (u in map) {

Epoch e := map[u]

if (e > t.C[u]

|| �CAS(&map[u], e, LOCKED)) {

return false

}

}

return true

}

lock(AccessHistory x) {

do {

Epoch or Map old := x.R

} while (�CAS(&x.R, old, LOCKED))

return old

}

Fig. 2. CAS-based FastTrack-Ownership analysis barriers for rtx and wtx based on high-level definitions
shown in Table 2. The pseudocode here does not optimize ����� cases separately from ��������� cases.
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transactions with commodity hardware transactional memory has shown promising reduction in
overhead for C/C++ programs, but absolute overheads remained high [Matar et al. 2014]. Object
race detection [von Praun and Gross 2001] used a cooperative system to �lter out redundant data
race checks. Octet [Bond et al. 2013; Cao et al. 2016] tracks cross-thread dependences e�ciently
using an optimistic cooperative protocol. However, object granularity does not su�ce for accurate
�ne-grained data race detection. While none of these alternatives is a clear win over the more
pessimistic software solutions described above, cooperative synchronization is a promising model
for implementing atomic barriers.

5 THE FIB PROTOCOL

This section describes Fast Instrumentation Bias �FIB), an accurate dynamic data race detection
algorithm that implements a cooperative protocol for analysis atomicity based on FastTrack-
Ownership (§3). In practice, most accesses involve data that are temporally thread-local or read
concurrently by multiple threads, with no writes. Threads access data last accessed by a separate
thread relatively rarely. This pattern motivates FIB’s cooperative approach to atomicity, in which
analysis of temporally thread-local and read-shared accesses proceeds synchronization-free, while
analysis of accesses involving rare cross-thread interaction bears the cost of atomicity through
synchronous coordination.

FIB derives an ownership state directly from each access history without additional storage. This
ownership state dictates which threads have permission to use and change the access history
without coordination. Each analysis barrier checks ownership state to determine what (if any)
coordination is required to ensure the barrier is atomic. The �rst step of a data race check subsumes
the ownership check. In the common case, this joint check shows both that the current thread
has exclusive or shared ownership of the location – and can thus proceed without coordination
– and that there is no data race. In the uncommon case, the ownership state grants insu�cient
permission, so the thread must request that the current owner thread(s) perform a state transition
and data race check on its behalf.

Threads respond to incoming requests at well-de�ned yield points. Since ownership state transi-
tion requests are cooperative, not preemptive, owner threads are guaranteed that no other threads
interfere in the access history until the owner thread responds explicitly to a transition request.
This guarantee supports safe, synchronization-free analysis barriers for owner threads.

FIB adds zero time overhead to common-case analysis barriers, unifying synchronization-free
ownership checks and data race checks under compatible ownership states. FIB adds zero space
overhead in access histories, deriving ownership state purely from access history. The remainder
of this section summarizes the FIB ownership protocol (§5.1) and follows with in-depth discussion
of local (§5.2) and con�icting (§5.3, §5.4) transitions.

5.1 Ownership States and Transitions

Each per-location access history inhabits one of two ownership states that grant certain permissions
to check or update the access history:

• Excl�t ) grants thread t exclusive permission to check and update all parts of the access history
without synchronization.
• Shared�S ) grants every thread t ∈ S permission to check all parts of the access history and

update thread t ’s entry in the access history read map without synchronization.

Ownership of the access history (§2.3.1, §3) for a data location, x , is derived purely from by the
value of its last-reads component, Rx :
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Table 3. Summary of FIB ownership state transitions and corresponding FastTrack-Ownership analysis cases.
The set of threads with non-empty entries in a vector clock or read map, v , is denoted vtids ≡ �t | c@t ∈ v}.
Inter-thread communication by thread t with thread u is denoted t ↔ u.

FTO Analysis FIB Transition

Type Op
Owner

Check

Order

Check
Update Start State Coordinate End State

pu
re

lo
ca
l rtx

Rx = �t �t ) Excl�t ) Excl�t )
Rx = v

�t �t ) ∈ v
Shared�vtids ) Shared�vtids )

wtx Rx = �t �t ) Excl�t ) Excl�t )

im
pu

re
lo
ca
l

rtx
Rx = c@t Rx := �t �t ) Excl�t ) Excl�t )
Rx = v

c@t ∈ v
Rx �t ) := �t �t ) Shared�vtids ) Shared�vtids )

wtx Rx = c@t
Rx := �t �t )
Wx := �t �t )

Excl�t ) Excl�t )

fe
n
ce

rtx
Rx = v

c@t � v
Wx � �t Rx �t ) := �t �t ) Shared�vtids ) fence Shared�vtids ∪ �t })

si
n
g
le

co
n
�
ic
t rtx

Rx = c@u

u � t

Rx � �t Rx := �t �t ) Excl�u) t ↔ u
Excl�t )

Wx � �t Rx := �c@u��t �t )} Shared��u� t })

wtx
Rx = c@u

u � t
Rx � �t

Rx := �t �t )
Wx := �t �t )

Excl�u) t ↔ u Excl�t )

m
u
lt
i

co
n
�
ic
t CAS;

wtx Rx = v v � �t
Rx := �t �t )

Wx := �t �t )
Shared�vtids )

fence;
Excl�t )

∀u ∈ vtids�

t ↔ u

• Excl�t ) if Rx = c@t ∧ c > 0: If the last-reads �eld holds a non-zero epoch belonging to thread
t , then thread t has exclusive ownership of the access history.
• Shared�S ) if Rx = v ∧ S = �t | ∃c� c@t ∈ v}: If the last-reads �eld holds a read map v , then

all threads with an entry in v hold shared ownership of the access history.

Table 3 and Figure 3 summarize the FIB state transitions that occur in step with each FastTrack-
Ownership (FTO) analysis. Each row in Table 3 shows a case in FTO (left columns owner check,

order check, update, matching Table 2), paired with the FIB transition (right columns start state,

coordination, end state) that takes e�ect in cooperation with this analysis case. The owner check of
each analysis case also serves to derive the FIB start state currently in e�ect for the access history.
The order check is undertaken in step with the FIB coordination required to e�ect the analysis case
and FIB transition safely. The analysis update also completes the FIB transition, yielding an access
history from which the end state is derived.

Rows in Table 3 are grouped by the type of FIB transition. Local self-transitions correspond to
data race checks against last accesses by the current thread, where data races are never possible.
Analysis barriers by non-owner threads initiate con�icting state transitions to dispatch data race
checks against last accesses by other threads, where data races may occur.2 Transitions require one
of four levels of coordination:

2Con�icting refers to metadata accesses. A single-con�ict transition may step from a state Excl�u ) to another state, both
states potentially due to read barriers. In this case, the two corresponding data read accesses may not con�ict, but updates
in the access history by the read analysis barriers do.
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Fig. 3. FIB state transition overview.

• Local �§5.2): In state Excl�t ) or Shared�S ) s.t. t ∈ S , an analysis barrier by thread t executes
locally, with a self-transition that requires no coordination and never detects data races.
• Fence �§5.2, §5.4): In state Shared�S ), a read barrier by thread t � S requires a store–load

memory fence to coordinate a safe transition to state Shared�S ∪ �t }). The end state of
this transition, unlike con�icting transitions, grants a monotonic increase over permissions
granted by the start state, so coordination with current owners is unnecessary. The fence
coordinates with potential concurrent write barriers, discussed in §5.4.
• Single-con�ict �§5.3): In state Excl�u), a write or read analysis barrier by thread t � u re-

quires synchronous coordination with the single con�icting threadu to e�ect a safe transition
to state Excl�t ) or Shared��t �u}).
• Multiple-con�ict �§5.4): In state Shared�S ), a write analysis barrier by any thread t requires

several synchronization steps to e�ect a safe transition to state Excl�t ). This transition
composes atomic compare-and-swap (CAS), store–load memory fence, and synchronous
coordination with all threads u ∈ S .

Con�icting state transitions demand coordination with current owner threads, to ensure that these
threads acknowledge invalidation of the current ownership state, and to ensure that the transition’s
data race check resolves against up-to-date access history potentially in concurrent use by current
owner threads. Con�icting transitions require expensive synchronous cross-thread communication,
but are rare in practice. In exchange, FIB common-case fast paths run free of overhead.

Figure 4 sketches a more concrete implementation for the logic of the read and write analysis
barriers employed by FIB and described in the following sections. FIB derives its ownership state
purely from the same access history metadata as FastTrack-Ownership (§3). FIB also adds some
per-thread metadata to support cross-thread communication.

5.2 Local Transitions

Local self-transitions match the most common patterns of access in multithreaded programs:
repeated accesses to temporally thread-local data and concurrent read-only access to shared data
by multiple threads.

The read and write analysis barriers both start by loading the last read information, Rx , and
checking if it is an epoch or a read map. This sequence serves identically as a lookup and check of
ownership and a lookup and check for the �rst potential proof that the access is data-race-free.

5.2.1 Exclusive Reads and Writes. If the last read, Rx , is an epoch of this thread, then the access
history is exclusive to this thread and the current access is data-race-free, by Invariant 2. Any
updates in these barriers execute atomically even without synchronization, since other threads
must coordinate with this thread before using the access history.
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5.2.2 Shared Reads. Read barriers may also execute locally when the access history is Shared,
i.e., when there are multiple last reads represented by a read map. If there is no existing entry for a
reading thread t in the read map, thread t has neither read since nor performed data race checks
against the last write and must do so now (readShJoin in Figure 4). A store–load memory fence is
necessary in this case to ensure potentially racing write barriers do not miss this read. Details of
this coordination are discussed in §5.4. After the �rst read by thread t in Shared state, the presence
of an entry for t in the read map indicates that the last write happens before an earlier read in this
thread, so a new read in thread t is likewise ordered. No further check or coordination is needed.

5.3 Single-Conflict Transitions

A single-con�ict transition is required when a thread t accesses a location whose last read, Rx , is an
epoch of a di�erent thread. When a barrier in thread t encounters an access history in state Excl�u),
where u � t , thread t requests that thread u perform a data race check, update, and state transition
on its behalf. We refer to this requested work as the check-and-transfer sequence. To support sending
requests and responses between threads, each thread maintains a queue of incoming requests from
other threads and a �eld to store an incoming response from another thread to a request of its own.
If thread u is running, the request is enqueued with thread u and thread t waits for thread u to
respond. If thread u is blocked, it is not actively using its ownership of x , so thread t can complete
the check and transfer directly rather than sending a request and awaiting a reply.

When a thread reaches a yield point in execution, it processes all the requests in its queue and
responds to each with the data race check result (not shown in Figure 4). Yield points must occur
within a bounded interval to ensure forward progress. They are typically inserted in application
code at calls, returns, loop back-edges, and blocking operations (including cross-thread requests
described in this section). Managed language implementations already provide such yield points
for run-time services such as garbage collection and on-stack replacement [Fink and Qian 2003].

Check and Transfer. Regardless of whether a request is served at a yield point in the current
owner thread in response to a remote request or self-served by the requesting thread while the
owner thread is blocked, the same check-and-transfer logic is applied. The standard data race check
for this type of access su�ces to determine if the transition is safe. The standard check updates the
last read, Rx , as needed, thereby updating the ownership state and completing a transition.

5.4 Multiple-Conflict Transitions

Multiple-con�ict transitions occur in write analysis barriers following concurrent reads in Shared
state. Most read barriers by a thread t in Shared state never check for races with the last write,
assuming the presence of an earlier entry for t in the Shared read map demonstrates that the last
write,Wx , happens before an earlier access by thread t and therefore also happens before a new
read by t , by Invariant 2 (§3). To support these common-case fast paths safely, Shared → Excl
transitions, which update Wx and Rx , and Shared�S ) → Shared�S ∪ �t }) transitions, which add
new entries to read maps, must either preserve Invariant 2 (§3) or detect the �rst data race on x

(after which the invariant is moot).
Writes in Shared�S ) state are exceedingly rare (<0.00002� of barriers in most of the evaluated

programs) so even a write barrier that communicates with all live threads would be feasible. The
FIB protocol requires coordination with only those threads in S (derived from the read map), scaling
costs roughly with the breadth of read sharing preceding the write. The remainder of this section
explains these transitions, as shown in readShJoin and writeSh (Figure 4).

Read and write barriers may race on the read sharing set S . Since a data write is involved, the
existence of such a metadata race implies a data race in the target program. To avoid missing a
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Metadata record types for analysis barriers

Thread t {

VC C ≡ ��

... // communication state

// not shown

}

AccessHistory x {

Epoch or Map R ≡ Rx

Epoch W ≡Wx

}

Read analysis barrier for rtx

read(Thread t, AccessHistory x) {

Epoch or Map r := x.R

if (isEpoch(r)

&& thread(r) == t)) { // Excl(t) &&

x.R := t.C[t] // DRF by Invariant 2

return SAFE

} else if (isMap(r)) {

if (r[t] �= NONE) { // Shared({t,...}) &&

r[t] := t.C[t] // DRF by Invariant 2

return SAFE

} else { // Shared(S), t not in S

return readShJoin(r, t, x)

}

} else { // Excl(u �= t)

return request(r, READ, t, x)

}

}

readShJoin(Map r, Thread t, AccessHistory x) {

r[t] := t.C[t] // Shared(S)->Shared(S+t)

store-load fence // Ensure visible

Epoch w := x.W

if (w > t.C[thread(w)]) { // Check write race

return RACE

} else {

return SAFE

}

}

Write analysis barrier for wtx

write(Thread t, AccessHistory x) {

Epoch or Map r := x.R

if (isEpoch(r)) {

if (thread(r) == t) { // Excl(t) && DRF

x.W := t.C[t]

x.R := t.C[t]

return SAFE

} else { // Excl(u �= t)

return request(r, WRITE, t, x)

}

} else { // Shared

return writeSh(t, x, r)

}

}

writeSh(Thread t, AccessHistory x, Map r) {

if (�CAS(&x.R, r, t.C[t])) { // Shared->Excl(t)

return RACE // CAS fail = race

} else {

Epoch w := x.W

x.W := t.C[t] // Record write

store-load fence // Ensure visible

for (_@u in t.C) { // Coord. readers

if (r[u] �= NONE) {

ack(u, t) // Request/await ack

if (r[u] > t.C[u]) { // Check race with u

return RACE

}

}

}

return SAFE

}

}

Fig. 4. FIB analysis barriers for rtx and wtx implementing the high-level definitions shown in Table 3, using
the same metadata as defined in Figure 2. Pure same-epoch fast paths are omi�ed.

data race, the relevant cases in both barriers follow a pattern in reverse of the usual check–update
order: (1) record the new access in the history, assuming no data race will occur; (2) ensure this
update is visible to other threads with a store–load fence; then (3) perform data race checks and
complete supporting coordination. If read and write analysis barriers race on Shared state, at least
one observes the other’s access history updates and reports the race.
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5.4.1 Shared Write Barrier �writeSh). A write barrier in thread t �nding a Shared�S ) access
history �rst uses a CAS operation to update Rx to its current epoch, making a preemptive tran-
sition to Excl�t ) state, and then updatesWx to match. This is the only barrier case to break the
ownership policy on Rx , so CAS failure implies a concurrent, racing write barrier. However, the
preemptive ownership transition may temporarily break Invariant 2. Concurrent read barriers on x

will eventually observe the new state, but some may miss it, assuming Invariant 2 and updating
read map entries without synchronization. Shared reads are relatively common, so this rare case of
the write barrier should carry the cost of coordination.

Next, a store–load fence ensures access history updates are visible, and the write barrier requests
an ack from every thread in the read map, S . The ack communication guarantees that: (1) the
responding thread will see the new Excl�t ) state in future barriers on x ; and (2) the requesting write
barrier will check against the most recent read map entry from the responding thread. Logic for
ack responses is not shown.

Finally, after receiving a thread’s ack, the write barrier does the conventional happens-before
check for that thread, comparing its entry in the read map to the corresponding entry in the writing
thread’s vector clock. The racing read barrier may detect the same data race.

5.4.2 Read Barrier Fence Transitions �readShJoin). Read barriers may race with the write barrier
to add new entries in the read map in readShJoin and writeSh, respectively. The write barrier
may miss these entries and the racing accesses they represent. To compensate, when a read barrier
adds an entry for a previously absent thread to a read map, it follows this update with a fence. After
ensuring its read map entry is visible, it performs a data race check against the last write,Wx . By
performing update and then check, these cases of the read and write barriers work together to
ensure at least one of the two detects the race if it occurs. The added cost of a fence in readShJoin

case is inconsequential, considering it accounts for less than 0.03� of barriers.

6 ADAPTIVE POLICIES

This section introduces predictive read sharing (§6.2) and adaptive support for serialized write

sharing (§6.3), two novel adaptive extensions to FIB’s ownership derivation policy that improve
FIB’s performance on programs with high rates of serialized sharing. Figure 5 summarizes the full
adaptive FIB ownership protocol. We motivate the adaptive extensions with examples demonstrating
limitations of the core FIB ownership policy under extensive serialized sharing (§6.1).

6.1 Motivation: Tracking Serialized Sharing

FIB’s pure derivation of ownership from access history is a critical strength that allows the protocol
to deliver analysis atomicity on thread-local and read-shared accesses with zero time or space
overhead relative to a non-atomic analysis. Yet the pure derivation is also a limitation. Some
programs with highly contended serialized sharing cause frequent con�icting transitions, accruing
time overhead that outweighs the savings of zero-cost atomicity in others. Strictly pure ownership
derivation binds ownership transitions to analysis updates and precludes some desirable preemptive
ownership transitions that could avoid expensive coordination at low cost, because such transitions
must be e�ected by analysis updates that would invalidate the uni�ed analysis state.

Consider the following example trace, which shows several threads accessing location x , serial-
ized by lock l :

wt1x ; rt1x ; relt1l ; acq
t3
l ; rt3x ; relt3l ; acq

t4
l ; rt4x ; relt4l ; acq

t2
l ; rt2x ; relt2l

Since all accesses to x in this trace are totally ordered by happens-before, FTO and FIB will maintain a
single last-read epoch for x . Location x will thus remain in an Excl state, taking a chain of expensive
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single-con�ict transition at each access following the read by thread t1: Excl�t1) → Excl�t3) →
Excl�t4) → Excl�t2).

There are two reasons why these transitions are unnecessary. First, although the reads are
serialized, it is also reasonable to describe this as a read sharing pattern. Second, as every access to x
in this trace is protected by lock l , analysis barriers will execute atomically by virtue of the program
structure. Predictive read sharing (§6.2) and adaptive support for serialized write sharing (§6.3)
exploit these properties to avoid expensive transitions in this and similar traces.

6.2 Optimization: Predictive Read Sharing

Predictive read sharing adaptively elects to use a read map representation of a location’s last reads (§7)
more frequently than the FastTrack or FastTrack-Ownership (FTO) algorithms, when doing so
could likely eliminate expensive con�icting FIB transitions. For example, in the trace shown in §6.1,
a preemptive transition to Shared��t1}) at thread t1’s �rst read of x has no coordination cost, since
t1 owns the location. This choice preserves soundness or completeness and would eliminate all

con�icting transitions in the trace. Even delaying this transition to t3’s read would incur only one
con�icting transition and save additional con�icting transitions going forward.

Predictive read sharing adaptively elects to represent past reads with a read map when serialized
or concurrent reads (but no writes) are likely to follow in the near future. Mispredicting read sharing
increases the cost of following thread-local writes, so we apply a simple heuristic to initiate read
sharing in only some cases beyond where it is strictly necessary. Read sharing begins speculatively
on a read by thread t when there is a single last read that happens before the current operation
(Rx � �t ) and the last write is by a thread other than the current one (Wx = c@u where t � u).
Otherwise, the standard FTO policy applies. As in the standard protocol, read sharing terminates at
the �rst subsequent write. Alternative termination policies are feasible, but not explored in this
work. This is a rare opportunity in FIB ownership derivation where an adjustment in ownership is
feasible while preserving valid analysis metadata.

In the example trace in §6.1, x would remain in state Excl�t1) at t1’s read of x . At thread t3’s read
of x , a single-con�ict transition would occur, but the predictive read sharing heuristic would make
the transition to Shared��t1� t3}) state. Following reads would augment the Shared state without
con�icting transitions.

6.3 Optimization: Adapting to Serialized Write Sharing

Adaptively switching between the FIB ownership protocol and a conventional synchronization
protocol allows the data race detector to exploit FIB’s low costs on thread-local or read-shared data
and shift to conventional synchronization to handle frequent serialized sharing that would cause
many con�icting FIB transitions.

Consider the following example trace, modi�ed from §6.1 to introduce more writes:

wt1x ; rt1x ; relt1l ; acq
t3
l ; rt3x ; wt3x ; relt3l ; acq

t4
l ; rt4x ; wt4x ; relt4l acq

t2
l ; rt2x ; relt2l ;

Under the pure FIB protocol, each new thread’s access triggers a con�icting transition, as own-
ership is passed from thread to thread. Con�icting transitions occur at a rate approaching 50�.
The predictive read sharing extension does not help with serialized write sharing. In this case it
is reasonable to fall back on conventional synchronization for analysis, using a scheme like that
described in §4.1.

Figure 5 shows the augmented FIB protocol extended with predictive read sharing and adaptive
serial support. Under the adaptive policy, each access history is augmented with additional storage
for a con�ict counter and a bit indicating FIB vs. Serial mode. All access histories begin in FIB

ownership mode. When an access history takes a con�icting transition, its con�ict counter is
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Fig. 5. FIB protocol with adaptive synchronization policies for serialized write-sharing.

incremented. When this counter reaches a threshold, the responding thread places the access
history into Serial mode, allowing future transitions to occur locally with conventional optimistic
synchronization.

When concurrent reads must be recorded in the access history, or when upcoming sharing is
predicted, the access history returns to Shared FIB state to take advantage of zero-cost atomicity in
that state. The current adaptive policy does not otherwise revert from Serial mode to FIB mode.

7 IMPLEMENTATION

We implemented several variations of the FastTrack-Ownership algorithm using FIB and other
barrier atomicity protocols in the Jikes RVM Java virtual machine [Alpern et al. 1999] version
3.1.3.3 This section describes key implementation choices and comparison with prior FastTrack
implementations.

7.1 Common Analysis Metadata and Instrumentation

All FastTrack-Ownership con�gurations share the same representations of access history and the
same synchronization tracking support. Con�gurations di�er only in access barriers, yield points,
and extended access history storage for the adaptive policies. Instrumentation is applied to all
classes used by an application, including classes in the standard library.

7.1.1 Analysis Metadata. An access history, x, is encoded as two adjacent words in memory,
the last-read word (x.R or Rx ) and the last-write word (x.W orWx ). Access histories for object and
static �elds are inserted alongside object and static �elds, respectively. A header word in each data
array points to a lazily allocated shadow array of histories for data array elements.

The last-write word of an access history always stores an epoch. The last-read word stores an
epoch or a pointer to a read map, distinguished by the least signi�cant bit. The garbage collector
scans last-read �elds for read-map references and ignores epochs. Jikes RVM supports x86 only
in 32-bit mode, so we represent epochs as 32 bits to simplify atomic loads and stores despite the
limited encoding space. After the epoch tag bit, the next lowest 5 bits represent the thread identi�er.
The remaining 26 bits represent a logical clock. This allocation balances clock over�ow and thread
identi�er exhaustion in the 32-bit space, but it limits this prototype to programs using no more

3http://www.jikesrvm.org
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than 32 threads, counted by 5 bits, which in turn limits the scope of programs we can evaluate.4

This limits our prototype only, not the FastTrack analysis or FIB protocol in general. A 64-bit JVM
would more naturally support 64-bit epochs with space to count many more threads and clocks.

Vector clocks and read maps are �xed-length arrays of epochs, one per thread. Note that �xed-
length arrays are enabled in part by the 32-thread limit. Supporting arbitrary large numbers of
threads would make �exibly-sized read maps more appealing, likely by a “stop and copy” approach.
Fortunately, the FIB protocol already provides the necessary cross-thread communication support
that could be reused to safely coordinate replacement of a read map on the �y.

Each thread stores a vector clock and a separate copy of its current epoch to avoid extra indirection
in same-epoch fast paths. Since every Java object is a monitor (lock), each object header contains
a reference to a lazily allocated vector clock to track the lock’s synchronization ordering. Vector
clocks tracking synchronization on arrays are referenced by the header of the data array’s shadow
array to avoid adding a second header word. Java volatile �elds are also shadowed by vector
clocks. Classes are shadowed by a vector clock representing their logical time of initialization.

7.1.2 Instrumentation. Thread fork and join, lock acquire and release (including via wait), and
volatile �eld load and store operations are treated via the standard vector-clock algorithm to
capture happens-before ordering induced under the Java Memory Model [Flanagan and Freund
2009; Manson et al. 2005]. Most synchronization tracking is skipped until the main thread �rst
forks a new thread, since synchronization order induced during this single-threaded execution
pre�x is redundant with program order in the main (and only) thread.

The Java Memory Model also relates static �eld accesses in a class to the class initialization
by happens-before [Biswas et al. 2015; Manson et al. 2005]. To track this ordering, a vector clock
shadowing the class records the current logical time when class initialization completes. Before each
static access, the vector clock of the relevant class is merged into the current thread’s vector clock,
representing acquire-style synchronization. To avoid redundant expensive merges of immutable
class initialization vector clocks on repeated static accesses, each thread keeps a bit vector of the
classes whose initialization it has already observed and performs the merge only for non-observed
classes. As with thread vector clocks, a new child thread inherits a copy of its parent thread’s class
initialization bit vector when started. The prototype does not currently propagate these large bit
vectors across other more frequent synchronization edges.

Access analysis fast paths, including standard same-epoch fast paths plus much of the barriers in
Figure 4, are inlined before accesses. Inlined fast paths call out-of-line slow paths for coordination
and other rare events as needed. FIB uses existing yield points in Jikes RVM to manage commu-
nication. All implementations report the �rst data race on each location. Since the FIB protocol
implementation is optimized under the assumption that data race freedom is the common case, the
case of a detected race comes with high cost. Since all algorithms are sound only to the �rst data
race on a location and some programs exhibit a non-trivial number of data races, we con�gure all
data race detectors to end tracking on a location after its �rst data race.

7.2 Data Race Detectors

We implemented several variations on FastTrack-Ownership (FTO) with di�erent implementations
of analysis atomicity in Jikes RVM:

• FTO������ uses FTO optimizations assuming analysis atomicity, yet it makes no e�ort to
ensure analysis atomicity, making it inaccurate. It serves as an approximate ground truth for
ideal performance of atomic analysis barriers.

4The choice of 5 thread ID bits forces the 32-thread limit. The correspondence of 32 bits and 32 threads is coincidental.
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• FTO���� provides atomic FTO barriers with naïve use of lightweight spin locks on the
last-read word of metadata.
• FTO��� implements the scheme shown in Figure 2 and discussed in §4.1, using CAS only

when updates are required.
• FTO��� implements the base FIB protocol (§5).
• FTO���+����� extends FTO��� with predictive read sharing (§6.2).
• FTO���+����� extends FTO��� with adaptive synchronization for write sharing (§6.3).
• FTO���+�����(��)+����� combines predictive read sharing with the adaptive write-sharing

optimization for static �elds only, with heuristics tuned to start static �elds in Serial mode.

To evaluate the performance of FTO versus the original FastTrack algorithm, we also implement
FT���, a close reproduction of the original algorithm in [Flanagan and Freund 2009], with the
addition of the ���� ������ ���� ����� case as in [Biswas et al. 2015; Flanagan and Freund 2017].
FT��� reuses all infrastructure described in §7.1. FT��� analysis cases use a CAS or light spin lock
when updating the access history. FT��� inlines only same-epoch cases. FTO��� and other FTO
con�gurations also inline their additional synchronization-free cases.

7.3 FIB Infrastructure

A thread’s incoming request and ack queues are represented as a pair of one-word bit vectors
in the thread’s structure. The queues are unordered since co-resident requests are inherently
concurrent. Each thread receives at most one request at a time from any other thread, so queue size is
bounded by the maximum number of threads (32). Request and response arguments, including target
location, type of access, and result, are stored in the requesting thread’s structure. Ack requests and
responses have no arguments. A thread’s main request queue is the central synchronization point
for operations that must execute atomically with respect to the thread’s owned access histories.

A requesting thread CASes out the responding thread’s bit vector, replacing it with a special
locked value. It then inspects the last-read word of the access history it is requesting and if it is
still owned by the same thread, it writes back a new bit vector with the requesting thread’s bit set.
When a thread blocks after a yield point it CASes its queue to a special blocked value. Each thread’s
communication state is visible through this single word, simplifying atomic transitions.

Responses are stored in the requesting thread’s structure. After sending a request, the requesting
thread awaits a response placed here by the requesting thread. While awaiting responses, requesting
threads block or periodically issue yield points to process their own incoming request queues to
avoid deadlock. Ack responses accumulate a bit vector or counter of responding threads.

Adaptive synchronization support (FTO���+�����, FTO���+�����(��)+�����) steals an addi-
tional bit from epoch clocks to indicate ownership mode (pure FIB or Serial) and adds two words
to each access history to store a con�ict counter. A single word (or less) would su�ce, but our
prototype currently supports only power-of-2-sized access history sizes.

7.4 Comparison with V����FT Implementation

For comparison, we examine the FastTrack implementation from [Biswas et al. 2015], which we
call V����FT. It is the closest prior FastTrack implementation, also based in Jikes RVM. V����FT
uses similar instrumentation strategies for synchronization and some shared compiler support for
inserting access analysis barriers. Overall it is closest to FT���. Nonetheless, the implementation
di�erences discussed below impact performance, evaluated in §8.4.

7.4.1 Access History Representation. The V����FT implementation inlines access histories
in object layouts in the same style as the other con�gurations in this work. While the other
implementations represent each epoch in one 32-bit word, V����FT represents each epoch as a pair
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of 32-bit words. V����FT thus requires twice the loads or stores to e�ect access history operations.
On the other hand, V����FT’s two-word epochs are free from caps on thread counts and clock
sizes that arise from 32-bit epochs. Single-word 64-bit epochs in a 64-bit JVM would be preferable.

Both implementations store read maps as separate objects in the heap. V����FT uses specialized
hash tables that are space e�cient for sparse read maps but involve multiple indirections to access
individual entries. In contrast, our implementations use �xed-size arrays that are space ine�cient
for sparse read maps, but support map entry access via a single memory operation. V����FT’s read
map representation requires modest extra synchronization to protect read map hash table growth.

7.4.2 Analysis Barriers: Inlining, Atomicity, and Reporting. The V����FT implementation uses
analysis logic, inlining, and an atomicity scheme similar to FT���, but requires minor additional
synchronization for access history manipulations due to the access history representation (§7.4.1).
Extra memory operations to load and store larger epochs also increase the length of analysis critical
sections, although contention – indicative of a data race or the initiation of read sharing – should
occur rarely in well-synchronized programs. Our implementations report only the �rst data race
on a location (§7.1.2). V����FT continues best-e�ort detection past the �rst data race on a location.

7.4.3 Class Initialization Tracking. The V����FT implementation does not employ the class
initialization memoization optimization described in §7.1.2, instead performing an expensive vector
clock merge on every static access.

8 EVALUATION

This section evaluates the performance of several data race detection implementations to char-
acterize the performance impact of analysis atomicity via FIB, its adaptive extensions, and other
approaches. The experimental evaluation aims to answer three key questions:

(1) How closely does FIB approach ideal zero-cost analysis atomicity?
(2) How does FIB’s performance compare to approaches using conventional synchronization?
(3) How well does FIB’s model of common local transitions and uncommon con�icting transitions

match real application behavior?

This section describes experimental methodology (§8.1) and reports results of performance experi-
ments to measure the impact of FIB, its adaptive extensions, and other approaches on running time
and space (§8.2). Pro�ling results in (§8.3) help characterize empirical behavior of the FIB protocol
and its performance impact. Additionally, §8.4 characterizes the overall performance of our data
race detection implementations in the context of prior implementations.

8.1 Methodology

8.1.1 Evaluated Programs. We ran performance and pro�ling experiments on multithreaded
Java programs from the DaCapo benchmark suites [Blackburn et al. 2006] versions 2006-10-MR2
(eclipse6 and xalan6) and 9.12 (avrora9, jython9, luindex9, lusearch9 (�xed per [Yang et al. 2011]),
pmd9, sunflow9, and xalan9) using large workloads, plus pjbb2005,5 a �xed-workload version of the
SPECjbb2005 benchmark [Standard Performance Evaluation Corporation 2005]. We omit DaCapo
benchmarks that exceed the thread limit of our prototype (§7.1.1), lack multithreading, or do not
execute on the base Jikes RVM.

8.1.2 Experiments. We ran two groups of performance experiments with available cores capped
at 8 and 30, respectively. We measured execution time and heap size for each. Programs internally
choose a �xed or cores-dependent number of threads. A cap of 30 cores ensures that programs using

5http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
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n worker threads plus a main thread �t the 32-thread limit of our prototype (§7.1.1). Experiments
for sunflow9 used 15 cores to �t the 32-thread cap, since sunflow9 creates 2 worker threads per
core (2 × 15 � 1 = 31). While the prototype’s thread cap limits the scale of threading in evaluation,
our experimental platform provides enough cores to execute all supported threads concurrently.
We ran the FTO implementations described in §7.2, plus B��� (Jikes RVM without data race
detection), FT��� (§7.2) and V����FT (§7.4). All implementations used Jikes RVM’s FastAdaptive
just-in-time compiler and GenImmix garbage collector, which we allow to adjust the heap size
automatically. We ran separate pro�ling experiments on 30 cores, inserting additional counters in
our FTO implementations. Each experimental con�guration executed 10 times. Unless otherwise
noted, discussion in following sections refers to results from 30-core con�gurations.

8.1.3 Platform. All experiments were executed on a machine with 2×18-core Intel Xeon E5-
2695 v4 CPUs with a total of 256GB of RAM across two NUMA nodes. We selected the CPUs’
performance mode and disabled simultaneous multithreading. The machine runs the Ubuntu 16.04
LTS distribution with Linux kernel version 4.4.0.

8.2 Performance Impact of Analysis Atomicity

Figure 6 plots results of our performance experiments, with running times of each data race detector
normalized to the running time of B��� (no data race detection), for 8 and 30 cores. sunflow9
15-core (30 worker threads plus main thread) results are shown with the 30-core results.

8.2.1 Execution Time Overhead of Conventional Synchronization. Using the running time of the
completely unsynchronized FTO������ con�guration as an approximate ground truth for expected
ideal synchronization performance, it is clear that the cost of atomic analysis barriers is high with
trivial implementations, but reasonable in many programs using more sophisticated implementa-
tions. The suboptimal FTO���� implementation runs roughly 107� slower than FTO������ on
average across all programs, ranging from 15� on pjbb2005 to over 16 times slower on sunflow9.
sunflow9’s repeated concurrent read sharing is serialized by FTO����’s pessimistic access history
locking, to the detriment of performance.

FTO��� achieves analysis atomicity with average overheads of just 6� over FTO������. These
lower overheads demonstrate the extent to which even the simple FastTrack pure fast paths avoid
synchronization overhead, including on sunflow9, where FTO��� has performance e�ectively
equivalent to that of FTO������. There is little room for improvement overall beyond FTO���
without changing the analysis algorithm itself. Nonetheless, notable exceptions remain: FTO���
runs 32� slower than FTO������ on xalan6 and 19� slower on eclipse6.

8.2.2 Execution Time Overhead of FIB. Across all programs, FTO���’s overhead relative to
FTO������ is about 14�, which is slower than FTO���. However, FTO��� is competitive with
FTO������ on eclipse6, jython9, luindex9, lusearch9, and pmd9, and adaptive extensions improve
FIB performance. FTO���+����� is less than 4� slower than FTO������ or 1-2� faster than FTO���.

Predictive read sharing indeed helps to avoid overheads incurred by serialized read sharing
that would otherwise trigger expensive single-con�ict transitions in FIB. Predictive read sharing
makes a marked improvement for xalan6, avrora9, xalan9, and pjbb2005, where FTO��� runs 23-36�
slower than FTO���+�����. FTO���+����� signi�cantly reduces the overhead of FTO��� in these
programs, making its performance competitive with FTO������.

Compared to FTO���, FTO���+����� is competitive on average, but notably faster on speci�c
programs. On xalan6, FTO��� runs 20� slower than FTO���+�����, while FTO���+����� is com-
petitive with FTO������. FTO��� never outperforms the faster of FTO��� or FTO���+����� by
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Fig. 6. Execution times of data race detector implementations normalized to B��� Jikes RVM, with 95�
confidence intervals. FT�b+AS abbreviates FTO���+�����(��)+�����.

more than 20�, on sunflow9, where FTO��� also runs 13� faster than FTO������. Variability in ex-
ecution time for FTO���+����� gains an advantage on 8 cores, where it is the fastest atomic analysis
implementation, at about 8� faster than FTO��� on average, and competitive with FTO������.

The adaptive FTO���+����� con�guration (not shown) is slower than FTO���, averaging 27�
slower than FTO������. FTO���+�����(��)+�����, a combination of general predictive read
sharing and adaptive Serial mode for static �elds, achieves average overhead of 4�, similar to
FTO���+����� and FTO���. Further exploration of adaptive heuristics is necessary to determine if
this extension can prove useful in combination with predictive read sharing.

8.2.3 Space Overhead. Figure 7 shows memory usage measurements for several con�gurations,
normalized to the memory usage of B��� Jikes RVM. All con�gurations implemented in this
paper have comparable overheads between 130� and 145�. There is little variation between
con�gurations. The main notable result is that predictive read sharing in FTO���+����� and
FTO���+�����(��)+����� introduces only modest additional overhead of well under 10� relative
to FTO���, despite introducing large read maps where they are not strictly necessary. Only pjbb2005
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Fig. 7. Memory usage of data race detection implementations normalized to B��� Jikes RVM, with 95�
confidence intervals.

Table 4. Frequency of FIB ownership state transitions in FTO���, FTO���+�����, and FTO���+�����.

Pure Updates Access History
Local Local Fence First Serial Single-Con�ict Multi-Con�ict

Excl→ Excl Excl→ Shared

ec
li
p
se
6 FTO��� 82�7� 9�72� 0�000443� 7�6� 0� 0�00475� 0�000143� 0�000096�

FTO���+� 87�1� 5�28� 0�000304� 7�6� 0�011� 0�00489� 0�0000695� 0�0000186�
FTO���+� 82�7� 9�73� 0�00252� 7�6� 0� 0�00262� 0�00164� 0�000272�

xa
la
n
6 FTO��� 48�2� 45�8� 0�000166� 5�26� 0� 0�767� 0�00000771� < 0�000001�

FTO���+� 50�5� 42�2� 0�000161� 5�27� 2�01� 0�000791� 0�00000381� < 0�000001�
FTO���+� 48�1� 46�4� 0�000369� 5�26� 0� 0�175� 0�0000419� 0�0824�

av
ro
ra
9 FTO��� 92�2� 6�82� 0�0109� 0�573� 0� 0�343� 0�0000467� < 0�000001�

FTO���+� 92�2� 6�77� 0�011� 0�573� 0�378� 0�0343� 0�0000129� < 0�000001�
FTO���+� 92�2� 7�04� 0�0814� 0�573� 0� 0�068� 0�0075� 0�0137�

jy
th

o
n
9 FTO��� 88�8� 0�749� 0� 10�5� 0� 0� 0� 0�

FTO���+� 88�8� 0�746� 0� 10�5� 0� 0� 0� 0�
FTO���+� 88�8� 0�748� 0� 10�5� 0� 0� 0� 0�

lu
in
d
ex

9 FTO��� 93�8� 3�42� 0� 2�79� 0� 0�000291� < 0�000001� < 0�000001�
FTO���+� 93�8� 3�42� 0� 2�79� 0� 0�00029� < 0�000001� < 0�000001�
FTO���+� 93�8� 3�42� 0�00000216� 2�79� 0� 0�00029� 0�0000627� 0�00000192�

lu
se
ar
ch

9 FTO��� 84�9� 11�9� 0�00016� 3�14� 0� 0�0338� 0�00000203� 0�
FTO���+� 84�9� 11�9� 0�000163� 3�14� 0�0359� 0�000365� 0�00000216� 0�
FTO���+� 84�9� 11�9� 0�000336� 3�14� 0� 0�000316� 0�0000471� 0�00000999�

p
m
d
9 FTO��� 84�3� 7�02� 0�00516� 8�44� 0� 0�2� 0�000081� < 0�000001�

FTO���+� 84�3� 6�66� 0�00519� 8�45� 0�549� 0�0163� 0�0000726� 0�0000014�
FTO���+� 84�3� 7�18� 0�0213� 8�44� 0� 0�0188� 0�00287� 0�00456�

xa
la
n
9 FTO��� 54�0� 37�9� 0�00128� 7�52� 0� 0�617� 0�0000577� < 0�000001�

FTO���+� 54�0� 37�4� 0�00122� 7�52� 1�13� 0�00125� 0�0000152� < 0�000001�
FTO���+� 54�0� 38�2� 0�00264� 7�51� 0� 0�211� 0�0000784� 0�0906�

p
jb
b
20

05 FTO��� 51�3� 39�9� 0�000385� 8�09� 0� 0�716� 0�0000197� < 0�000001�
FTO���+� 51�3� 39�4� 0�000412� 8�1� 1�19� 0�0628� 0�00000426� < 0�000001�
FTO���+� 51�2� 40�6� 0�0214� 8�12� 0� 0�0457� 0�00481� 0�000631�

incurs signi�cant overhead for predictive read sharing (§8.2.2). Execution time improvements from
this optimization come at modest space cost in all other programs in practice.

8.3 FIB Ownership Transition Characterization

Table 4 shows results from separate pro�ling experiments run on 30 cores (except sunflow9, on 15
cores) to measure the frequency of ownership state transitions on accesses in the FIB protocol and
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Fig. 8. Execution time of V����FT, FT���, and FTO��� normalized to B��� Jikes RVM, on selected programs,
with 95� confidence intervals.

its adaptive extensions. Groups of rows in this table show results for each con�guration on each
program. Columns indicate the type of ownership state transition, as discussed in §5 (local, fence,
single con�ict, multiple con�ict) and §6.3 (serial). The column labeled First indicates initial accesses
to fresh locations, handled in our implementation by a single CAS that is typically uncontended.
Columns are grouped into pure transitions and transitions that make access history updates. Each
cell lists the frequency of its transition in its con�guration as a percentage of all accesses.

Pro�ling results in Table 4 show that in programs where FIB performs well, rates of expensive
con�icting transitions are typically well under 0.1� and often signi�cantly lower, justifying FIB’s
approach of making these rare operations responsible for a large majority of the coordination e�ort
to maintain atomicity. Zero-cost local transitions and lightweight �rst-access transitions account
for an overwhelming majority of all accesses.

These results also show that predictive read sharing often reduces the rate of expensive con�icting
FIB transitions by an order of magnitude or more in FTO���+�����. The optimization is particularly
e�ective in improving performance for xalan6, avrora9, xalan9, and pjbb2005 because it reduces
their high rates of expensive con�icting FIB ownership transitions (around 0.7�) by about three
times or more. While memory allocation and the number of multiple-con�ict transitions grow
modestly as a result of more frequent use of last read maps, the number of these transitions is small
in absolute and relative terms, compared to the overall reduction in con�icting transitions.

8.4 Performance Comparison with Prior Work

This paper focuses on reducing overheads of analysis atomicity relative to the base cost of data
race detection analysis logic. Nonetheless, the overall performance cost of the data race detection
implementations presented here is lower than – though not directly comparable with – costs
reported for some prior implementations, including an implementation in Jikes RVM [Biswas et al.
2015] and implementations based on the bytecode-instrumenting RoadRunner analysis framework
[Flanagan and Freund 2009, 2010; Rhodes et al. 2017]. To ground the performance of FastTrack-
Ownership and FIB relative to prior work, we also evaluate the standard FastTrack algorithm
([Flanagan and Freund 2009], §2) both as implemented using our own infrastructure (FT���, §7.2)
and in a prior independent implementation (V����FT [Biswas et al. 2015], §7.4).
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Fig. 9. Memory usage of V����FT and FTO��� normalized to B��� Jikes RVM, on selected programs, with
95� confidence intervals.

Figure 8 shows results of 30-core experiments (§8.1.3). The plot shows execution times of
V����FT, FT���, and FTO���, normalized to the execution time of B��� Jikes RVM. Figure 9
shows memory usage of multiple con�gurations normalized to memory usage of B��� Jikes RVM.
Figures 8 and 9 omit eclipse6 and jython9 due to issues with 32-bit virtual memory space and
running time of V����FT on our evaluation platform. By pro�ling analysis events in V����FT,
FT���, and FTO���, the three closest implementations, we con�rmed that they analyze the same
accesses and synchronization events in practice, within margins of variability between executions.

On average, across all evaluated programs (including eclipse6 and jython9, not shown in Figure 8),
FTO��� runs 3� faster than the original FT���. By sharing all infrastructure except analysis barriers,
this comparison isolates the costs of FastTrack and FTO, indicating that they are competitive, with
FTO showing a small improvement overall.

V����FT runs 57� slower than FT��� and 64� slower than FTO��� on average, across the pro-
grams shown in Figure 8. Based on pro�ling and study of the V����FT code base, these di�erences
in performance appear to arise from the key implementation di�erences outlined in §7.4.

The use of two-word epochs in V����FT may grow the cost of analysis barriers by doubling
the number of memory operations in many cases. It also grows the memory footprint 32� over
FTO���, as shown in Figure 9. This margin also re�ects space savings in V����FT from its more
�exible read maps. However, V����FT’s hash table read maps make read map operations more
costly in time than direct array indexing in the other implementations. For example, V����FT has
relatively high overhead on sunflow9, which involves extensive read sharing.

V����FT and FT��� dispatch fewer accesses with inlined analysis cases than do FTO con�gura-
tions. However, the small performance di�erence between FT���, which uses lightweight inlining
similar to V����FT, and FTO���, which uses more aggressive inlining, suggests that di�erent levels
of inlining likely do not contribute signi�cantly to V����FT’s larger overheads.

Tracking ordering from class initialization to static �eld access (§7.1.2, §7.4.3) appears to have
nontrivial impact on performance di�erence. V����FT performs a vector clock merge operation on
every static access, a�ecting up to 8� of all accesses of any kind in some evaluated programs. Vector
clock merge operations, which have running time linear in the number of threads, are substantially
more expensive than any common case read or write analysis barrier. In contrast, optimizations
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in FT��� and all FTO implementations require vector clock operations to track class initialization
ordering on at most 0.000001� of all accesses.

9 RELATEDWORK

Relevant prior work on data race detection is reviewed in §1.1 and §2. Cooperative synchronization
based on thread ownership has been employed in a range of settings previously. The most relevant
to FIB are biased locking, cache coherence and associated techniques like RADISH local permissions,
and object-granularity con�ict detection systems.

9.1 Biased Locking

Biased locking [Kawachiya et al. 2002; Pizlo et al. 2011; Russell and Detlefs 2006; Vasudevan et al.
2010] is a well-known implementation technique suited to locks that are acquired by only one
thread, at least within some large consecutive series of acquires. Initially the lock is unowned and
must be acquired in the typical fashion. A thread may bias a lock it acquires with its thread ID.
Once a lock is biased, the bias owner may acquire it and release it without fences, CAS, or other
synchronization. If another thread tries to acquire the lock, it must request unbiasing or a bias
transfer from the bias owner. Threads check for requests at yield points. Inter-thread requests are
more expensive than standard lock operations, but also much rarer.

FIB goes further than biased locking of access histories by deriving bias directly from access
histories and subsuming bias checks in analysis work. Pure FIB has no unbiased mode; the adaptive
Serial mode is analogous to an unbiased mode.

9.2 Coherence and Permissions

Cache coherence protocols such as MESI [Papamarcos and Patel 1984] ensure data duplicated
in private caches on separate cores do not diverge. When a core has a cache line in su�ciently
permissive ownership state, it can access the line without communication. Otherwise it must
communicate to acquire ownership and ensure up-to-date data. The RADISH [Devietti et al. 2012]
software–hardware data race detector uses cache coherence events to optimize its analysis. A
data-race-free check result on location x applies to all subsequent accesses to x up to the next
cache coherence or eviction on the same cache line. FIB uses a similar ownership protocol, without
requiring hardware support, and without duplicating access histories or memoizing checks.

9.3 Object Race Detection and Octet

Per-object thread ownership has been used as an optimization to �lter out data race checks in
object race detection [von Praun and Gross 2001], but object-granularity race detection is imprecise.
FIB neither misses true data races nor reports false data races.

Octet [Bond et al. 2013] associates an ownership state with each object to report con�icting
state transitions to client analyses. As an object-granularity system, Octet is not suited to perform
accurate �ne-grained data race detection. FIB’s ownership system and cooperative communication
protocol is similar to Octet, but operates at the granularity of individual �elds and derives owner-
ship state purely from existing metadata rather than requiring explicit additional storage. Object
granularity can reduce the number of expensive transitions required if many �elds of an object
experience identical ownership transitions, but false sharing may also induce the opposite e�ect.
To support accurate data race detection with object ownership, ownership storage and checks must
be decoupled from analysis metadata and logic, introducing costs FIB does not have.

An extension of Octet adaptively selects between cooperative Octet communication and com-
petitive CAS-based synchronization to address mismatch between costs and rates of common or
uncommon cases in the base Octet protocol [Cao et al. 2016]. Again, FIB’s adaptive ownership
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policies are distinguished from adaptive Octet by granularity and the degree to which they integrate
with existing metadata or synchronization. A sophisticated cost model and adaptive heuristics are
important to manage coordination at a coarser object granularity in Octet. In contrast, FIB must
handle �eld granularity, but currently employs only simple adaptive heuristics.

A key strength of the pure FIB protocol, relative to Octet and other cooperative ownership
systems described above, is the ability to provide atomicity guarantees with zero additional work
in common cases by exploiting work that is already being done by the data race detection logic.

9.4 Eliminating Redundant Analysis Barriers

Researchers have developed several techniques to reduce the cost of data race detection or related
analyses by eliminating analysis checks or barriers that are guaranteed to be redundant with other
analysis barriers due either to repeated accesses to the same location (due to temporal locality) or
related locations (including due to spatial locality) during a single epoch [Bond et al. 2013; Flanagan
and Freund 2013; Peng and Devietti 2015; Rhodes et al. 2017; Wilcox et al. 2015]. While FIB does
not eliminate such redundant barriers directly, it naturally ensures that redundant analysis barriers
on the same access history are inexpensive, dispatched locally by pure synchronization-free cases.
Techniques for redundancy elimination are complementary to FIB.

10 CONCLUSIONS

FIB is a novel cooperative synchronization protocol designed to enforce analysis atomicity for
dynamic data race detection metadata with zero added cost on common-case operations and cross-
thread coordination in uncommon cases. FIB derives ownership state for a location’s access history
purely from the preexisting data race detection access history metadata itself. Checking ownership
state is subsumed by preexisting data race detection analysis logic. Ownership states grant analysis
permissions. State transitions require coordination among threads. Simple adaptive optimizations
eliminate overheads in programs that otherwise induce frequent expensive state transitions. Our
evaluation shows that FIB outperforms simple or pessimistic analysis synchronization schemes and
is competitive with a tuned optimistic scheme. The FIB protocol a�ords new perspectives on the
structure of data race detection and data-race-free program execution.
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