
Rethinking Support for Region Con�ict Exceptions

Swarnendu Biswas

Indian Institute of Technology
Kanpur, India

swarnendu@cse.iitk.ac.in

Rui Zhang

Ohio State University
Columbus, OH, USA

zhang.5944@osu.edu

Michael D. Bond

Ohio State University
Columbus, OH, USA

mikebond@cse.ohio-state.edu

Brandon Lucia

Carnegie Mellon University
Pittsburgh, PA, USA

blucia@cmu.edu

Abstract—Current shared-memory systems provide well-
de�ned execution semantics only for data-race-free execu-
tions. A state-of-the-art technique called Conflict Exceptions
(CE) extends M(O)ESI-based coherence to provide de�ned
semantics to all program executions. However, CE incurs sig-
ni�cant performance costs because of its need to frequently
access metadata in memory.

In this work, we explore designs for practical architecture
support for region con�ict exceptions. First, we propose an
on-chip metadata cache called access information memory
(AIM) to reduce memory accesses in CE. The extended design
is called CE+. In spite of the AIM, CE+ stresses or saturates
the on-chip interconnect and the o�-chip memory network
bandwidth because of its reliance on eager write-invalidation-
based coherence. We explore whether detecting con�icts is
potentially better suited to cache coherence based on release
consistency and self-invalidation, rather than M(O)ESI-based
coherence. We realize this insight in a novel architecture
design called ARC.

Our evaluation shows that CE+ improves the run-time
performance and energy usage over CE for several appli-
cations across di�erent core counts, but can su�er perfor-
mance penalties from network saturation. ARC generally
outperforms CE, and is competitive with CE+ on average
while stressing the on-chip interconnect and o�-chip memory
network much less, showing that coherence based on release
consistency and self-invalidation is well suited to detecting
region con�icts.

Index Terms—Con�ict exceptions; data races; memory con-
sistency models; region serializability

I. Introduction

To maximize performance, shared-memory systems allow

compilers and architectures to perform optimizations assum-

ing that threads communicate only at synchronization opera-

tions. Consequently, a program that is not well synchronized

permits data races and has complex or unde�ned semantics

that lead to incorrect behavior [1].

Providing well-de�ned semantics for all programs, without

restricting optimizations or impeding performance, is a long-

standing challenge [1], [29], [30], [48]. A promising approach

is for a shared-memory system to detect con�icts between

executing synchronization-free regions (SFRs) [6], [31]. An SFR

con�ict generates a consistency exception because the con�ict

corresponds to a data race that may violate optimization

assumptions. By detecting con�icts at regions demarcated

This material is based upon work supported by the National Science

Foundation under Grants XPS-1629126, CCF-1421612, CAREER-1253703, and

CSR-1218695.

only by synchronization operations,
1

the system provides a

memory consistency model called SFRSx, in which program

execution either appears to be a serialization of SFRs or

terminates with a consistency exception, indicating a true
data race [6], [31].

Supporting SFRSx demands precise con�ict detection, re-

quiring per-core tracking of byte-granular memory accesses.

Prior work called Con�ict Exceptions (CE) provides SFRSx with

architecture support [31]. However, CE frequently exchanges

metadata between cores and memory on private cache misses

and evictions, leading to high bandwidth requirements that

can potentially saturate the on-chip interconnect and o�-chip

memory, thereby degrading performance (Sections II and VI).

This work proposes designs for architecture support for

e�cient region con�ict detection. The �rst contribution is

to try to address CE’s high performance overheads resulting

from frequent memory accesses by adding a metadata cache

adjacent to the shared last-level cache (LLC), called the access
information memory (AIM). We call the resulting architecture

CE+. Despite the optimization, CE
+

still incurs signi�cant

costs in order to support precise con�ict detection eagerly at

every memory access. CE and CE
+

detect con�icts eagerly

by relying on an eager write-invalidation-based coherence

protocol like M(O)ESI [49] to exchange access metadata

between concurrently executing cores, which can saturate the

on-chip interconnect and the o�-chip memory network.

The second contribution of this work is a novel architecture

design called ARC that, like CE and CE
+

, provides SFRSx,

but substantially di�ers in how it supports con�ict detection

and cache coherence. The key insight of ARC is that, while

M(O)ESI coherence suits a data-race-free (DRF) assumption,

region con�ict detection is potentially better served by

a “lazier” approach to coherence. ARC provides uni�ed

mechanisms for cache coherence and con�ict detection by

extending release consistency and self-invalidation mechanisms,

which prior work has employed, but for coherence alone

and assuming DRF [11], [19], [26], [27] (Section VII). Like

ARC, Transactional Coherence and Consistency (TCC) uni�es

coherence and con�ict detection, but relies on broadcast

and serialized transaction commit [20], incurring high costs

(Section VI-C).

1
In contrast, DRFx detects con�icts between bounded-length regions,

requiring restrictions on compiler optimizations [34], while other proposals

detect every data race and incur high costs [16], [53].

CE
+

and ARC place di�erent demands on the existing

microarchitecture. Whereas CE
+

extends CE and hence relies
on support for M(O)ESI cache coherence, ARC does not depend

on a M(O)ESI implementation or directory and does not

require a core-to-core interconnect. Like CE, both CE
+

and

ARC add per-byte access information to caches and require

a backing memory store for evicted access information. An

access information cache in CE
+

and ARC avoids memory

lookups at an acceptable area and power overhead, and ARC

adds distributed consistency controller logic (Section V-C). CE
+

and ARC target widely available CMPs with moderate core

counts (≤32). CMPs with large core counts (>32) are out of

scope because access information storage requirements scale

with core count.

We evaluate CE
+

and ARC and compare them with CE. CE
+

consumes less memory bandwidth, improving performance

and energy compared to CE for a number of applications and

core counts, which shows the potential for the AIM. However,

CE
+

can still su�er from performance penalties from network

saturation. ARC also outperforms CE, and has comparable

run-time performance and energy usage on average with

CE
+

. In general, ARC’s lazy approach to coherence means

it has less on-chip and o�-chip bandwidth requirements,

bene�ting applications with large regions and working set

sizes (Section VI-B). We also compare ARC with TCC [20]

adapted to provide SFRSx. ARC avoids communication and

serialization issues faced by CE, CE
+

, and TCC. Furthermore,

we show that ARC achieves well-de�ned semantics at modest

overheads compared to current shared-memory systems that

provide weak memory consistency (Section VI-D). Our results

show that CE
+

and ARC advance the state of the art in

architecture support for well-de�ned memory semantics.

II. Background: SFRSx and Conflict Exceptions

As the prior section motivated, a system can provide well-

de�ned execution semantics by detecting con�icts between

synchronization-free regions (SFRs). An SFR is a sequence of

non-synchronization instructions executed by a single thread,

delimited by synchronization operations (e.g., lock acquire,

lock release, thread fork, and thread join), as shown in Figure 1.

If a system detects con�icts between unbounded SFRs and

generates a consistency exception upon a detected con�ict, it

provides the SFRSx memory consistency model, which ensures

either SFR serializability or a consistency exception indicating

a data race [6], [31]. SFRSx thus ensures strong, well-de�ned

semantics for all programs.

Providing SFRSx is di�erent from detecting all data races.

Figure 1 shows an execution with data races on variables

x and y. Under SFRSx, a system does not need to generate

a consistency exception at the read of x for this observed
execution because the SFRs accessing x do not overlap. In

contrast, the SFRs accessing y overlap; SFRSx throws a

consistency exception if it cannot ensure rd y’s SFR serializes

before or after wr y’s SFR. Note that an execution may or

may not generate an exception at each of Thread 2’s (racy)

Thread 1 Thread 2

rd x

possible exception

lock(n)

unlock(n)

wr x

lock(m)

wr y

rd y

no exception

S
FR

S
FR

S
FR

S
FR

S
FR

rd zti
m

e

Fig. 1. Under SFRSx, an execution generates a consistency exception for a

data race that may violate SFR serializability.

accesses under SFRSx; if the execution does not generate an

exception, it must preserve SFR serializability.

Detecting region con�icts: Prior architectures for both

precise and imprecise con�ict detection of unbounded regions

have the key limitation that they consume a large amount of

on-chip bandwidth or increase tra�c to main memory [20],

[31], [35]. The rest of this section summarizes work that uses

precise con�ict detection, which is required to provide SFRSx.

Con�ict Exceptions (CE) provides SFRSx, adding per-byte

access metadata to each cache line to track reads and

writes [31]. CE adds local and remote access bits for each

byte in a private line to keep track of bytes read or written by

an ongoing region in local or remote cores, respectively. CE

piggybacks on MOESI coherence [49] to exchange metadata

indicated by the per-byte access bits, and detects SFR con�icts

by comparing local and remote access bits. For any con�ict

detected, CE generates a consistency exception to terminate

the execution. A core sends its local access bits in an end-

of-region (endR) message to other cores at each region

boundary. A core receiving an endR message clears the

corresponding remote bits from its private caches and sends

back an acknowledgment. CE also handles evictions from

private caches to the LLC by storing local access bits of

evicted lines in a per-process structure called the global table.
Communication at region boundaries and frequent access

of the in-memory global table often lead to saturating the

on-chip interconnect and o�-chip memory bandwidth (shown

empirically in Section VI-B).

III. Optimizing Conflict Exceptions with the AIM

Our �rst contribution in this paper is an optimized design

of CE, called CE+. CE
+

includes a dedicated cache structure,

called the access information memory (AIM), for storing access

information that are evicted from private caches. CE
+

aims

to reduce expensive accesses to the in-memory global table

in CE by backing metadata for lines evicted from private

caches in the AIM. Conceptually, the AIM sits adjacent to

the LLC, and the global table is accessed only on AIM misses.

An AIM entry corresponds to an LLC line, storing for each

byte one read bit for each of the C cores, and the current

writer core if there is one (a lg C-bit writer core and 1 bit

indicating there is a writer). As shown in Figure 2 (ignore

the portion shaded gray), with B-byte cache lines, an AIM

2

R R Writer
idW R R Writer

idW

Version # Core 1 access information Core C access information

32 bits B bits (lg C+1) bits

C(B+lg C+1) bits + 32 bits

B bits (lg C+1) bits

Fig. 2. An AIM entry for a processor with C cores and B-byte cache lines.

The shaded portion represents version information, which is not required by

CE
+

but is part of ARC (Section V-B).

entry is (C + 1 + lg C) × B bits, e.g., 96 bytes for 8 cores and

64-byte lines.

As a centralized structure, contention by cores accessing

the AIM threatens scalability at high core counts. Address-

banking the AIM reduces contention, and mitigates the threat

to scalability; we assume 8 AIM banks.

An ideal AIM with one entry per LLC line is a perfect cache

of the LLC’s access information. However, an ideal AIM is

impractical. With 8 cores, 64-byte lines, and a 16 MB, 16-way

LLC, the AIM would be around 24 MB—a large (59.2 mm
2
),

slow (9 ns access time), and power-hungry (394 mW leakage

per bank) on-chip structure in 32-nm technology (data from

CACTI 7 [24]). Instead, CE
+

uses a realistic AIM design that,

for 8 cores, has 32K entries and 4-way associativity. This 3 MB

AIM has implementable area (9.2 mm
2
), latency (3.3 ns access

time), and leakage (52.7 mW per bank). In a 6-core Intel Core

i7-3970X at 3.5 GHz,
2

this AIM would add 0.39% overhead

to the 2,362 mm
2

package area, 12-cycle access latency, and

negligible leakage of 0.3% of the thermal design power (TDP).

The AIM’s hardware design scales well across a moderate

range (up to 32) of CMP core counts. At 16 cores, a 32K-entry

AIM is 5.3 MB, has 4.6 ns access time, 13.5 mm
2

area, and

89 mW leakage per bank. At 32 cores, a 64K-entry AIM is

of 19 MB size, with 7.8 ns access time, 53.8 mm
2

area, and

310 mW leakage per bank. We choose these AIM sizes to

balance AIM misses and hardware cost.

Since AIM size, latency, and leakage scale with core count,

the AIM is unlikely to scale to large (> 32) core counts. At

64 cores, a 128K-entry AIM would be 71 MB with 13.8 ns

access time, 162.8 mm
2

area, and 1108 mW leakage per bank.

In the Intel Core i7-3970X, such an AIM would incur around

6% area overhead, 49-cycle access latency, and substantial

leakage of 6.0% of the TDP; such a structure is too costly to

implement. Using fewer (e.g., 64K) entries decreases area and

power costs, but increases the AIM’s miss rate, increasing a

computation’s latency and total energy consumption.

IV. Design Overview of ARC

The second contribution of this work is to present a new

architecture called ARC (Architecture for Region Consis-

tency) that provides the SFRSx memory model. Unlike CE

and CE
+

, which rely on M(O)ESI coherence, ARC exploits

synergy between (1) con�ict detection and (2) coherence

based on release consistency and self-invalidation. In release

2
http://ark.intel.com/products/70845

consistency, a core’s private cache waits to propagate writes

until a synchronization release operation [19], [27]. In self-
invalidation, a core invalidates lines cached privately that

may be out of date at synchronization acquire operations [11],

[26]. In contrast with M(O)ESI coherence, release consistency

and self-invalidation do not eagerly invalidate lines when

they are written by another core. Such “lazy” invalidation

allows an ARC core to execute regions mostly in isolation,

performing coherence and con�ict detection only at region

boundaries (synchronization operations) and on evictions

to the shared cache. ARC’s novel approach for committing

writes and version- and value-validating reads minimizes

communication required for detecting con�icts and avoids

most self-invalidation costs.

ARC requires minimal compiler support to identify syn-

chronization operations, which serve as region boundaries.

ARC does not restrict compiler optimizations within regions.

The rest of this section overviews ARC’s design. Section V

describes an architecture design that implements ARC.

State: ARC supports byte-granular tracking to provide

precise con�ict detection required by SFRSx. Cores’ private

caches and the LLC track access information for each byte in

a cache line that represents whether the byte has been read

and/or written by a core’s ongoing SFR. The LLC needs to

maintain access information for lines evicted from a core’s

private cache
3

to the LLC. To help validate reads and limit

self-invalidation, each LLC line maintains a version, which is

a monotonically increasing integer that represents the latest

write-back to the line in the LLC, and is incremented each

time the line is written back to the LLC.

Actions at reads and writes: When a core reads (writes) a

byte of memory, it updates the read (write) bit for the accessed

byte in its private cache. If the byte was previously written

and is being read, the core does not update the read bit. Aside

from fetching a line from the LLC on a private cache miss, a

read or write does not trigger any communication with the

LLC or other cores.

A. Actions at Region Boundaries
When a core’s region ends, it provides both coherence

and SFR serializability using a region commit protocol. Unlike

other mechanisms (e.g., TCC [20]; Section VI-C), the region

commit protocol for a core can proceed in parallel with other

cores performing the protocol or executing regions, because

the core and the LLC do not communicate with other cores’

caches during the protocol. The protocol ensures atomicity by

setting a core’s write access bits in the LLC for the duration

of the protocol. The protocol consists of the following three

operations in order:

(1) Pre-commit: For each dirty line, the core sends its privately

cached write bits and version to the LLC. The LLC checks for

any con�icting access bit for the same byte in the LLC, which

indicates a con�ict. If the version matches the LLC line’s

3
For simplicity of exposition, this section abstracts a core’s private cache(s)

as a single private cache. In Section V’s architecture design, each core has

L1 and L2 private caches.

3

version, then the core’s cached line is up to date and is not

invalidated during post-commit (described below). Otherwise,

the LLC sends a “must invalidate line” message to the core.

(2) Read validation: The core must validate that the values

it read are consistent with the LLC’s current values. Instead

of sending each line’s data, which would be expensive, ARC

sends the line’s version to the LLC. The LLC compares the

line’s version with its version of the line. A successful version
validation of the line implies the core read valid values during

the region. On a version mismatch, which indicates a potential

con�ict, the LLC responds with its version and data values

for the line. The core value-validates the line precisely by

comparing the LLC’s values with its cached values (looking

only at bytes with read bits set) and generates a consistency

exception if they do not match; otherwise the core updates its

version and values. Even on a version match, if any write bit is

set in the LLC line for a remote core, the LLC responds with its

line’s write bits. The core ensures the absence of a write–read

con�ict by checking that no locally read byte has its write bit

set in the LLC. To ensure validation against a consistent LLC

snapshot, read validation must repeat until it validates every

line without any version mismatches. Starvation is possible if

a core repeatedly retries read validation, but ARC is livelock
and deadlock free: a version mismatch implies that some other

core made progress by writing to the LLC. A misbehaving

thread of a process P can starve other threads of process P
only. P’s misbehaving thread cannot starve another process,

Q (which would be a denial-of-service attack), because P and

Q access distinct lines (assuming no interprocess sharing).

A long-running region should occasionally validate its reads,

to detect a data race that causes a region to get stuck in an

in�nite loop that is infeasible in any SFR-serializable execution

(a so-called “zombie” region [21]).

Read validation ensures SFR serializability, even considering

the ABA problem, because it validates values against a

consistent LLC snapshot: it ensures that a core’s read values

match values in the LLC (and no con�icting write bits are

set) at the point in time when read validation (re)started. If

ABA happens, read validation will detect a version mismatch

but not a value mismatch, update the private line version,

and retry.

A core c can skip validating any line that was not updated

in the LLC by any other core during c’s region. ARC maintains

a per-core write signature at the LLC that encodes which lines

have been updated in the LLC during the core’s current region

by any other core. The core receives the write signature from

the LLC at the start of read validation. It re-fetches the write

signature from the LLC at the end of read validation to ensure

that it has not changed; if it has, read validation restarts.

(3) Post-commit: The core writes back dirty bytes to the LLC

(these write-backs can be deferred; Section V-C1) and clears

its private cache’s access information. The LLC clears all of

its access information for the core. By keeping write bits

set from pre- to post-commit, ARC ensures that commit and

validation appear to happen together atomically.

In a naïve design, the core must then invalidate all lines in

its private cache. However, a core can avoid invalidating most

lines by leveraging ARC’s existing mechanisms. A core can

avoid invalidating most lines accessed by the ending region
because read validation has already ensured that read-only

lines are up-to-date with the LLC, and pre-commit has ensured

that written-to lines are up-to-date with the LLC, except for

lines for which the LLC sends a “must invalidate line” message

to the core. A core can avoid invalidating a line not accessed

by the ending region if ARC can ensure that other cores

have not written to the line in the LLC during the region’s

execution, identi�ed using the same per-core write signature

that read validation uses.

B. Evictions and WAR Upgrades

If a core evicts a line that has access information, the core’s

private cache writes back the access information to the LLC,

along with the line data if the line is dirty. The LLC uses

the access information to detect con�icts with other cores

that have already evicted the same line, or that later validate

reads, commit writes, or evict lines to the LLC. Note that

when a core evicts a private line, the core and LLC do not
communicate with other cores.

When a core writes a byte that it read earlier in its ongoing

region—called a write-after-read (WAR) upgrade—the private

cache cannot simply overwrite the byte because that would

make it impossible to value-validate the prior read. ARC

instead immediately sends a WAR-upgraded line’s read bits

and version to the LLC. The LLC read-validates the line and

detects future read–write con�icts for the line, similar to

how private cache line evictions are handled. As the next

section explains, the ARC architecture avoids communicating

with the LLC for WAR-upgraded L1 lines, by preserving an

unmodi�ed copy of the line in the L2.

V. Architecture Design of ARC

The ARC architecture is a collection of modi�cations to

a baseline multi-core processor. The cores share the last-

level cache (LLC), and each core has a cache hierarchy with

private, write-back L1 and L2 caches. Unlike CE and CE
+

,

ARC need not assume that the LLC is inclusive of a core’s

private L1 and L2 caches. ARC’s baseline processor has no
support for cache coherence: it has no directory, and each cache

line has only a valid bit and a dirty bit. Figure 3 shows the

components (shaded blocks) that ARC adds to the baseline

processor: (1) access information storage and management

and (2) distributed per-core consistency controllers (CCs),

each discussed next.

A. Private Access Information Management

Every L1 and L2 cache line maintains access information

and a 32-bit version (as shown in Figure 4) that ARC uses to

detect con�icts. ARC associates a read bit and a write bit per

byte with each line in the core’s L1 and L2 caches.

4

Core 1

L1

L2

Core 2

L1

L2

Core n

L1

L2

Main memory

access metadata

Access information
overlays

LLC
AIM

. . .CC CC CC

CC
(Core 1)

... CC
(Core n)

Fig. 3. The ARC architecture (not according to scale). Hardware structures

added by ARC are shaded.

byte
offset iversion dirtyV/I ...R W

Fig. 4. Per-line metadata introduced by ARC for private caches. Metadata

added by ARC is shaded.

Updating access information: When a core reads (writes)

a byte, it sets the byte’s read (write) bit if it is not already

set. At reads, the read bit is not set if the write bit is already

set. For a WAR-upgraded L1 line, ARC relies on the original

value’s presence in the L2, and copies its access information

to the L2. If the WAR-upgraded L1 line is later evicted, ARC

validates the L2 line immediately, as Section V-C2 describes.

Evictions: When a core evicts a line from L1 to L2, the

line’s access information is copied to an identical bit array for

the line in the L2. When the L2 evicts a line, the core sends

the line’s access information to the LLC’s access information
memory (AIM), as described later in this section.

B. LLC Access Information Management
Like CE

+
, ARC stores access information for the LLC in the

AIM (Section III). In addition to read and write bits equivalent

to CE
+

’s, an AIM entry in ARC contains a 32-bit version that

is used during read validation (shaded portion in Figure 2).

When a core writes back a line to the LLC, the core’s

AIM-side CC (described next) updates the line’s AIM entry to

re�ect the line’s access information. When a core writes back

a dirty line to the LLC, the core’s AIM-side CC increments the

line’s version in the AIM. A line’s version is only incremented

by the AIM, never by a core.

ARC must preserve the access information for evicted AIM

entries. ARC augments an evicted AIM entry with a list of

epochs, one per core, before sending an entry to memory.

An epoch is a number that identi�es a core’s ongoing SFR,

and the AIM stores each core’s epoch in a dedicated current
epoch register. The AIM increments a core’s epoch when the

core �nishes an SFR. On a �ll, the AIM compares the entry’s

epochs to each core’s epoch. A di�ering epoch indicates access

information from a completed SFR, allowing the AIM to lazily

clear information for that line for that core. The epoch list

avoids the need to explicitly track which lines in memory

have access information.

With C cores, B-byte cache lines, 4-byte versions, and E-bit

epochs, each line evicted from the AIM occupies 4 +
⌈
(C +

1 + lg C) × B + E × C) × 1
8
⌉

bytes of memory. ARC uses page
overlays [45] to consume memory only for lines that have

AIM-evicted access information. Page overlays extend the

TLB and page tables to provide e�cient, compact access to a

page’s per-line metadata.

C. Consistency Controllers (CCs)

Section IV described the steps of ARC’s region commit pro-
tocol. Here we focus on the implementation of the consistency
controllers (CCs), which contain bu�ering and control logic

for exchanging access bits, versions, and values. Each core has

a core-side CC and an AIM-side CC. The CCs themselves are

unlikely to limit scalability because di�erent cores’ CCs share

no state or control logic at the core or AIM side. Contention

at the AIM by di�erent cores’ AIM-side CCs is unlikely to

limit scalability because the AIM is banked and accesses to it

are infrequent relative to region execution.

1) Region Commit Protocol: Figure 5 shows the high-level

states and transitions of a core’s core-side and AIM-side CCs.

During region execution, the core-side and AIM-side CCs

exchange access information to handle WAR upgrades and

evictions. The core-side and AIM-side CCs also coordinate

during the other protocol phases. The �gure omits transitions

for consistency exceptions to avoid clutter; ARC may deliver

consistency exceptions for a con�ict detected during execution,

pre-commit, or read validation.

A core’s core-side CC initiates the commit protocol. A core’s

protocol phases can overlap with other cores performing the

protocol or executing regions; the protocol ensures atomicity

by setting a core’s write bits in the AIM during pre-commit

and not clearing them until post-commit. Di�erent cores’

CCs never communicate directly; instead, a core’s CC checks

consistency using only data in the LLC and metadata in the

core’s cache and in the AIM.

Pre-commit: The core sequentially sends write bits from

its dirty cached lines to its AIM-side CC. The core’s AIM-side

CC compares the core’s write bits to all other cores’ access

bits from the AIM to check for a con�ict. Upon a con�ict,

the core’s CC delivers an exception to the core. If there is no

con�ict, the AIM-side CC updates the AIM entry’s access bits

to match the bu�ered ones received from the core-side CC.

Read validation: The core-side CC performs read valida-

tion, sending a sequence of validation request messages to

its AIM-side CC, one for each line the core read during the

ending region (lines 1–7 in Figure 6). Each message contains

the line address and version from the core’s private cache.

For each message it receives, the AIM-side CC compares with

the version from the AIM. If all versions match and no write

bits are set for a remote core for any o�set in the shared line,

read validation completes successfully. If a read line’s versions

match, but a write bit was set by a remote core, the core’s

AIM-side CC logic responds to the core-side CC with write

bits so the core-side CC can check for write–read con�icts.

In case of a con�ict, the core raises a consistency exception.

5

region

execution
start

pre-commit

read

validation

post-commit

Core starts

region boundary

Eviction: send L2 line’s

metadata to AIM-side CC

WAR upgrade: send

L2 line’s read bits and

version to AIM-side CC

Done sending

write bits

Revalidate bit

set

Successful

validation

signal

Done sending dirty

values and invalidating

private cache lines

(a) Core-side CC

region

execution
start

pre-commit

read

validation

post-commit

Pre-commit signal

from core-side CC

Receive evicted line’s

metadata from core-side

CC; check for con�icts

and update AIM

Validate reads for

WAR-upgraded line;

update AIM

Read validation

signal from core-

side CC

Signal successful

validation to core-

side CC

Done clearing

core’s metadata

from AIM

(b) AIM-side CC

Fig. 5. State diagrams for a core’s core- and AIM-side CCs.

1: repeat
2: revalidateBit ← false
3: for all private cache lines L with a read-only byte do
4: Send L’s address and version to AIM-side CC

5: end for
6: Wait until AIM-side CC signals done validating last line

7: until not revalidateBit

. Handler for asynchronous responses:

8: for all responses 〈a, v′,w′, d′〉 from AIM-side CC do
. Response is LLC line’s address, version, write bits, & data values

9: revalidateBit ← true
10: d ← getValues(L) . Get privately cached data values

11: if d′ , d ∨ w′ ∩ readBits(L) , ∅ . Compare read-only bytes only

12: then Consistency exception!

13: setVersion(L, v′)
14: setValues(L, d′)
15: end for

Fig. 6. Details of core-side CC’s read validation state.

If a line’s version mismatches, another core wrote to the

line and there may be a con�ict. On a version mismatch,

the core’s AIM-side CC logic sends the core-side CC the

line’s updated version. Lines 8–15 of Figure 6 show how the

core-side CC handles responses from the AIM-side CC. The

core re-fetches that line from the LLC into a dedicated line
comparison bu�er in the core. The core-side CC compares

the (read-only) line in the private cache to the line in the

comparison bu�er. If the lines di�er for a byte that has its

read bit set, then the validating core read inconsistent data

and raises a consistency exception. If they match, then the

core may have seen consistent data in its region; the core

sets its revalidate bit because the core must revalidate prior

lines. After a core �nishes validating all remaining lines, it

revalidates by starting again from the beginning, streaming

versions for comparison with the AIM by the AIM-side CC.

After the core completes validation (or revalidation) without

version mismatches, it unsets the revalidate bit and continues.

Post-commit: The core-side CC clears L1 and L2 lines’

access bits, and the AIM-side CC clears the core’s access bits

in the AIM and �nally increments the core’s epoch.

Instead of writing back dirty L1 and L2 bytes to the LLC,

ARC optimizes post-commit by deferring write-back of each

dirty line until another core needs it. Deferring write-backs

adds 1 + lg C bits (for a system with C cores) per LLC line

to identify whether its state is deferred and which last-writer
core has the deferred data. Writing back the write bits is

required to allow the CC to detect con�icts and commit

writes atomically. If another core requests a deferred line

from the LLC, the LLC �rst fetches the latest values from the

last-writer core before responding to the request.

The core-side CC invalidates L1 and L2 lines that cannot

be kept valid based on pre-commit, read validation, or the

per-core write signature. As an optimization, private cache

lines have a special cond-invalid (CINV) state in addition to

valid (V) and invalid (I) states; CINV indicates that the line’s

data is valid only if the LLC’s version is unchanged. During

post-commit, a core optimistically changes each untouched

line’s state to CINV, instead of I. When a core accesses a line

in the CINV state for the �rst time in a subsequent region, the

core’s CC sends its copy of the line’s version to the AIM-side

CC, which compares the version with the AIM’s version and

replies to the core indicating whether the versions match. If

the versions match, the core-side CC upgrades the line in the

L2 and L1 caches to V. Otherwise, the access is handled as a

miss.

2) Other CC Responsibilities: Besides performing the region

commit protocol, the core- and AIM-side CCs have the

following responsibilities.

Per-core write signatures: The AIM-side CCs encode the

write signature for each core as a Bloom �lter. Whenever a

core writes back to the LLC, its AIM-side CC updates every
other core’s write signature to include the updated line. When

a core starts read validation, the core’s AIM-side CC sends

the core-side CC its write signature and clears the AIM-side

CC’s copy of the core’s signature. The core-side CC uses its

received copy of the write signature during read validation to

identify lines that do not need to be validated, and during post-

commit to identify lines that do not need to be invalidated.

The AIM-side CC uses a 112-bit Bloom �lter for each core,

which along with control data �ts into one 16-byte network

�it (Section VI-A).

Handling evictions and WAR upgrades: When an L2

evicts a line with access information, the core’s AIM-side CC

performs pre-commit and read validation on the line. Likewise,

if an L2 sends access information for a WAR-upgraded L2

line (Section V-A), the AIM-side CC performs read validation

on the line. The AIM-side CC checks for con�icts using the

6

access information in the AIM, and checks that the L2 line’s

contents match the version or, if the versions do not match,

the values in the LLC. Finally, the AIM-side CC logic updates

the line’s access information in the AIM.

When a core’s L2 fetches an LLC line with access bits in

the AIM for that core, the LLC sends the core the line’s data

values and the access bits for the core, which the core uses

to populate its L1 and L2 access information.

Delivering consistency exceptions: When a core’s CC

detects a con�ict, it generates a consistency exception, by

raising a non-maskable interrupt signal for the core that

detected the con�ict. The core receives the interrupt and then

runs operating system code to terminate the execution.

D. Other Issues

Implementing synchronization: CE and CE
+

support lock-

based synchronization using M(O)ESI. By forgoing M(O)ESI

coherence, ARC needs a special mechanism to implement

lock acquire and release. ARC uses a mechanism similar

to distributed queue locks used by DeNovoND [52]; alterna-

tively, callbacks could e�ciently implement locks with self-

invalidation [39]. We assume compiler support to identify

synchronization as region boundaries (e.g., endR instruction

in CE [31]). ARC can handle legacy code by intercepting

pthread calls to identify them as synchronization, but a

library approach alone does not support other synchronization

strategies (e.g., atomics and assembly).

Handling context switches and translation shootdowns: To

avoid false con�icts, thread migration in ARC is allowed only

at synchronization points. Furthermore, the region commit

protocol needs to complete before a thread is migrated, to

avoid missing con�icts.

A core can context-switch from one process’s thread to

another process’s thread at any time (assuming no interprocess

memory sharing), which preserves the operating system’s

process scheduling behavior. A core can only switch from

one thread to another thread from the same process at a

synchronization point to avoid missing con�icts between the

threads. If a swapped-in thread evicts a privately cached line

accessed by a swapped-out thread, the eviction may lead

to a consistency exception. The operating system can use

the page table to identify the process that originally set the

metadata bits, and deliver the exception to that process. Page

re-mapping (e.g., changing page permissions) can �ush access

bits with the TLB shootdown to avoid future false con�icts

on the re-mapped page, or re-mapping could end the current

region.

VI. Evaluation

This section evaluates run-time performance and energy

usage of CE
+

and ARC, compared primarily with CE [31].

We also compare ARC with TCC’s mechanisms [20] and with

a contemporary shared-memory system that provides weak

execution guarantees in the presence of data races.

Processor 4-, 8-, 16-, or 32-core chip at 1.6 GHz.

Each non-memory-access instruction takes 1 cycle.

L1 cache 8-way 32 KB per-core private cache,

64 B line size, 1-cycle hit latency

L2 cache 8-way 256 KB per-core private cache,

64 B line size, 10-cycle hit latency

Remote core
15-cycle one-way cost (for CE and CE

+
)cache access

LLC 64 B line size

4 cores: 8-way 8 MB shared cache, 25-cycle hit latency

8 cores: 16-way 16 MB shared cache, 35-cycle hit latency

16 cores: 16-way 32 MB shared cache, 40-cycle hit latency

32 cores: 32-way 64 MB shared cache, 50-cycle hit latency

AIM cache 4-way metadata cache with 8 banks

CE+
4 cores: 56 B line size (∼1.8 MB), 32K lines, 4-cycle hit latency

8 cores: 96 B line size (∼3 MB), 32K lines, 6-cycle hit latency

16 cores: 168 B line size (∼5.3 MB), 32K lines, 10-cycle hit latency

32 cores: 304 B line size (∼19 MB), 64K lines, 15-cycle hit latency

ARC

4 cores: 60 B line size (∼1.9 MB), 32K lines, 4-cycle hit latency

8 cores: 100 B line size (∼3.2 MB), 32K lines, 6-cycle hit latency

16 cores: 172 B line size (∼5.4 MB), 32K lines, 10-cycle hit latency

32 cores: 308 B line size (∼19.3 MB), 64K lines, 15-cycle hit

latency

Memory 120-cycle latency

Bandwidth NoC: 100 GB/s, 16-byte �its; Memory: 48 GB/s

TABLE I

Architectural parameters used for simulation.

A. Simulation Methodology

We implemented CE, CE
+

, and ARC in simulation. The

simulators are Java applications that implement each archi-

tecture; they use Pin [32] to generate a serialized event trace

that the simulators consume. For each program execution

and core count, all simulators run the same serialized

event trace from Pin to eliminate di�erences due to run-

to-run nondeterminism. We send simulation output data to

McPAT [28] to compute energy usage. The CE and CE
+

simulators extend the directory-based MESI cache coherence

protocol implemented in the RADISH simulator, provided by

its authors [14]. We have made our Pin frontend and CE, CE
+

,

and ARC simulator backends publicly available.
4

Table I shows simulation parameters for 4–32 cores. CE

and CE
+

use an LLC that is inclusive, to support MESI with

the directory embedded in the LLC (see Figure 8.6 in [49]).

ARC’s LLC is not inclusive (Section V). The simulators treat

pthreads calls as lock operations. ARC treats atomic accesses

(i.e., those with the x86 LOCK pre�x) as special, handling

them like locks (Section V-D) that do not delineate regions.

Modeling execution costs: We use an idealized core model

with an IPC of one for non-memory instructions. Table I shows

instruction cycle costs. Our simulators report the maximum

cycles for any core; as in prior work [5], [14], the simulators

do not model synchronization wait time. We model wait-free,

write-back caches with idealized write bu�ers. Our simulation

ignores the e�ects of context switching and page remapping.

We compute energy usage using the McPAT modeling tool [28].

4
https://github.com/PLaSSticity/ce-arc-simulator-ipdps19

7

McPAT takes as input architectural speci�cations and dynamic

statistics corresponding to an execution (e.g., cache misses,

coherence events, and simulated execution cycles), and reports

static and dynamic power usage of speci�ed architectures.

Since our simulators do not collect core-level statistics such as

ALU and branch instructions, our methodology uses McPAT

to compute power consumption for the cache and memory

subsystem only, including the on-chip interconnect and LLC-

to-memory communication, and computes corresponding

energy usage.

To model the costs of ARC’s operations at region bound-

aries, when cores send messages without synchronous re-

sponses during pre-commit and read validation, we compute

the cycle cost of messages based on the total message size and

bandwidth between a core and the LLC. The ARC simulator

models the full cost of version mismatches during read

validation, including repeated validation attempts. However,

since the simulators process a serialized event trace, the

number of read validation attempts for a region cannot exceed

two in our evaluation.

We simulate an interconnect with 16-byte �its and with

bandwidth characteristics as shown in Table I. A control

message is 8 bytes (tag plus type); a MESI data message in

the CE simulators is 64 bytes (i.e., a cache line). For ARC

write-backs, we model idealized write-bu�er coalescing that

sends only dirty bytes. When sending versions to the LLC

during read validation, each �it holds four lines of data; we

assume that the core’s AIM-side CC and the LLC are ported

to handle a message’s four validation requests.

Our simulators compute the bandwidth required by the

di�erent techniques by tracking the amount of data that

is transmitted on the on-chip interconnect and the o�-chip

memory network during application execution. To keep the

complexity of the simulators manageable, the simulators do

not model queuing in the on-chip and o�-chip networks.

We approximate the e�ects of queuing by scaling execution

cycles by the proportion with which the assumed on-chip

and o�-chip bandwidths (Table I) are exceeded. This simple

methodology does not model network stalls due to bursts of

tra�c saturating network-internal bu�ers. For example, ARC

may su�er periodic bursts in bandwidth consumption and

network stalls while executing the region commit protocol,

as can CE and CE
+

when broadcasting the endR message at

region boundaries.

Benchmarks: Our experiments execute the PARSEC

benchmarks [5], version 3.0-beta-20150206, with simmedium

inputs. We omit freqmine since it uses OpenMP as the

parallelization model, and facesim since our Pintool fails to

�nish executing it. We measure execution cost for the parallel

“region of interest” (ROI) only; vips lacks an ROI annotation

so we use its entire execution as the ROI. Table II shows

how many threads each benchmark spawns, parameterized

by n, which is PARSEC’s minimum threads parameter. The

simulators set n equal to the number of cores (4, 8, 16, or 32)

in the simulated architecture. The last three columns show

Average accesses per SFR (×103
)

Threads n = 4 n = 8 n = 16 n = 32

blackscholes 1 + n 19,100 9,540 4,770 2,380

bodytrack 2 + n 52.9 47.7 40 30.1

canneal 1 + n 522 261 131 65.2

dedup 3 + 3 n 42.9 43.2 43.1 42.6

ferret 3 + 4 n 914 811 626 465

fluidanimate 1 + n 0.215 0.116 0.086 0.056

raytrace 1 + n 9,710 5,230 2,720 1,390

streamcluster 1 + 2 n 4.65 1.36 0.407 0.122

swaptions 1 + n 165,000 82,500 41,300 20,600

vips 3 + n 122 102 76.2 50.8

x264 1 + 2 f 220 205 198 198

TABLE II

Threads spawned and average region sizes in thousands (rounded to 3

significant figures unless < 0.1) for the PARSEC benchmarks. n is the

minimum threads parameter in PARSEC. f is the input-size-dependent
number of frames processed by x264.

the average number of memory accesses performed per SFR.

The simulators map threads to cores using modulo arithmetic.

Consistency exceptions: When the CE, CE
+

, and ARC

simulators detect conditions for a consistency exception, they

log the exception and continue execution. In our experiments,

CE/CE
+

and ARC detect con�icts in canneal and streamcluster,

and CE/CE
+

also detects con�icts in vips. These di�erences

arise because CE/CE
+

detects all con�icts eagerly, while ARC

detects some con�icts lazily. The simulators can report both

locations involved in a con�ict, by maintaining the last-access

source location corresponding to each read and write bit of

access information. Using Google’s ThreadSanitizer [44] and

by implementing “collision analysis” [18], we have con�rmed

that each detected con�ict corresponds to a true data race.

B. Performance and Energy Comparison

Figure 7 shows our main results. The con�gurations (CE-
4, CE+-4, ARC-4, etc.) show the run-time performance and

energy usage for CE, CE
+

, and ARC on 4, 8, 16, and 32 cores,

respectively, normalized to CE-4.

Figure 7(a) shows executed cycles as reported by the

simulators, broken down into di�erent components. CE and

CE
+

are divided into cycles attributed to MESI coherence and

other execution. Coherence cycles are those spent when the

directory forwards requests to remote cores and for core-to-

core communication. For ARC, cycles are divided into cycles

for pre-commit, read validation, and post-commit, and cycles

for region execution. Figure 7(b) compares the energy usage

of CE, CE
+

, and ARC. Each bar shows the breakdown of total

energy consumed into energy due to static and dynamic power

dissipation, as computed by McPAT. The static and dynamic

energy components for CE
+

and ARC include contributions

from using the AIM cache, and the dynamic component for

ARC includes the contribution from Bloom �lter accesses.

Figures 7(a) and 7(b) show that CE
+

improves run-time

performance and energy usage over CE across core counts

for the majority of programs. For 4, 8, and 16 cores, CE
+

improves execution cycles and energy usage over CE by 8.8%

and 7.9%, 8.9% and 7.9%, and 7.1% and 6.2%, respectively. CE

backs up access bits in an in-memory table when a line that

8

CE: coherence CE: other execution ARC: post-commit ARC: read validation ARC: pre-commit ARC: region execution

blackscholes

bodytrack

canneal

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
ze

d

ex
ec

u
ti

o
n

 c
y

cl
es

C
E

-4
C

E
+

-4
A

R
C

-4
C

E
-8

C
E

+
-8

A
R

C
-8

C
E

-1
6

C
E

+
-1

6
A

R
C

-1
6

C
E

-3
2

C
E

+
-3

2
A

R
C

-3
2

(a) Execution time. Time spent in ARC’s region commit protocol is often too small to be visible.

Static energy Dynamic energy

blackscholes

bodytrack

canneal

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0

1

2

3

4

5

N
o

rm
a

li
ze

d

en
er

g
y

 u
sa

g
e

C
E

-4
C

E
+

-4
A

R
C

-4
C

E
-8

C
E

+
-8

A
R

C
-8

C
E

-1
6

C
E

+
-1

6
A

R
C

-1
6

C
E

-3
2

C
E

+
-3

2
A

R
C

-3
2

(b) Energy usage.

Fig. 7. Execution time and energy usage for CE, CE
+

, and ARC for 4–32 cores, normalized to CE with 4 cores (CE-4).

was accessed in an ongoing region is evicted from a private

cache. CE accesses memory even on an LLC hit, for a line

that was previously evicted from a private cache or the LLC

during the ongoing region. The on-chip AIM in CE
+

helps

avoid some of CE’s expensive memory accesses. Overall, these

results show promise in using a metadata cache to reduce o�-

chip memory tra�c, thus improving performance and saving

energy.

On 32 cores, CE
+

fares the same as or better than CE for

all programs except canneal. canneal has large regions and

working sets, which leads CE to saturate o�-chip memory

bandwidth (120 GB/s compared to 48 GB/s assumed in our

simulation; Table I) moving evicted access metadata to and

from memory [31]. Private cache line recalls during LLC

evictions in MESI-based CE
+

cause CE
+

to incur many AIM

evictions, and AIM lines are large, especially at 32 cores. Many

expensive AIM evictions for canneal lead CE
+

to saturate both
the on-chip interconnect (153 GB/s, greater than the assumed

on-chip network bandwidth of 100 GB/s) and the o�-chip

memory network (180 GB/s). As discussed in Section VI-A, we

model network saturation and queuing by scaling execution

cycles. Limited bandwidth increases CE
+

’s execution cycles

by 5.8X, and hence CE
+

performs poorly compared with CE.

As a result, on 32 cores, CE
+

is 0.3% slower and uses 0.8%

more energy on average than CE.

ARC outperforms CE for several programs and performs

similarly for the others. ARC’s performance bene�t over CE

arises from performing fewer memory accesses for metadata.

The results also show that AIM and Bloom �lter dynamic

energy costs are insigni�cant compared to energy costs of

the cache and memory subsystem, justifying their inclusion.

ARC performs nearly identically with CE
+

for 4–32 cores,

and especially outperforms both CE and CE
+

for canneal at

8, 16, and 32 cores. ARC’s approach to coherence and its

use of a non-inclusive LLC stress the network much less for

canneal (90 GB/s for on-chip interconnect and 75 GB/s for

o�-chip memory bandwidth at 32 cores) in moving around

metadata compared to CE and CE
+

that build on MESI’s eager

invalidation-based protocol. In general, ARC uses several times

less network bandwidth than CE and CE
+

for several programs.

ARC uses less energy than CE and CE
+

for canneal because

ARC runs the application faster (i.e., fewer cycles).

For fluidanimate, ARC’s execution time is slightly higher

than CE
+

’s (and sometimes CE’s, depending on the core count).

fluidanimate performs more synchronization operations with

increasing numbers of threads, and has progressively smaller

regions with more threads (Table II). For ARC, more frequent

region boundaries 1) cause more frequent invocations of

pre- and post-commit, read validation, and self-invalidation

operations, which add execution cycles, and 2) incur latency

from cache misses due to frequent self-invalidation.

Sensitivity to AIM size: We evaluated the impact of the

AIM size with an idealized AIM that has one entry for each

LLC line and a smaller-sized AIM (detailed results omitted for

space). For simplicity, we evaluated AIM size sensitivity only

for ARC. On 32 cores, the idealized AIM improves execution

time and energy usage by ∼10% compared to the default 64K-

entry AIM (Table I). At a lower hardware cost, a 32K-entry

AIM increases execution cycles and energy usage by <10%

on average, compared to the 64K-entry AIM. These results

show that the AIM remains e�ective at reasonable sizes.

Hardware costs: CE and CE
+

di�er primarily in the use

of an AIM. We estimate the opportunity cost of the AIM

in CE
+

at 32 cores by translating the space overhead of the

AIM into additional LLC size in CE. This con�guration of CE,

CE-Ext, has a a larger LLC (84 MB) than the default at 32

cores (64 MB, see Table I) to account for the AIM overhead.

The evaluation methodology is the same as for Figure 7. In

9

Write bu�er size
Cores

4 8 16 32

8K entries 2.14 3.03 3.88 5.11

16K entries 1.81 2.29 3.06 4.13

32K entries 1.70 2.14 2.79 3.68

64K entries 1.63 2.00 2.53 3.26

TABLE III

Execution time of ARC-TCC for different core counts and per-core

write buffer sizes, normalized to ARC for the same core count.

our experiments, the improvement in hit rates due to a larger

LLC in CE-Ext is negligible compared to the overall execution,

and hence the larger LLC in CE-Ext has negligible impact

(<1% on the average) on the overall performance and energy

consumption (results omitted for space).

While CE and CE
+

build on MESI, ARC avoids a cache

coherence protocol. Assuming an idealized sparse directory

that distributes state by chaining pointers in cores’ private

lines, in a system with 8 cores, a 16MB, 16-way LLC with 64-

byte lines, a directory would require 1MB of storage for tags

and pointers. An AIM for the same system requires ∼3MB of

storage, adding modest hardware overhead while potentially

limiting the need for frequent memory accesses for most

applications and di�erent core counts. Furthermore, ARC’s

use of release consistency and self-invalidation mechanisms

provides more design �exibility by not requiring an inclusive

LLC and support for core-to-core communication.

Other than the space overhead, detailed results from McPAT

show that static power dissipation from the AIM contributes

to overall power insigni�cantly.

C. Comparison with TCC
Transactional Coherence and Consistency (TCC) is a hard-

ware transactional memory (Section VII) design that, like

ARC, provides coherence and con�ict detection at region

boundaries without a MOESI-like protocol [20]. As in CE,

CE
+

, and ARC, all code in TCC executes in regions (i.e.,

transactions). TCC broadcasts transaction write sets to detect

con�icts at region boundaries. Speculation allows TCC to

e�ciently track accesses for regions of memory larger than

a byte (e.g., cache line), but coarse granularity leads to false

con�icts. To compare TCC with ARC empirically, we evaluate

a modi�ed version of ARC called ARC-TCC that uses TCC’s

mechanisms. For ARC-TCC, we compute execution cycles

excluding read validation and pre- and post-commit, but

including the following: each region broadcasts its write set,

and a region that over�ows its private caches cannot execute

in parallel with other over�owed or committing regions [20].

Table III shows the run-time overhead incurred by

ARC-TCC compared with ARC. The amount of serialization

incurred by ARC-TCC or TCC during an ongoing transaction

depends on how often the per-core write bu�er in the

TCC architecture over�ows. To estimate the impact of the

write bu�er on ARC-TCC’s performance, we evaluated the

performance of ARC-TCC for write bu�er sizes of 8–64K

per core. For each core count and write bu�er size, Table III

reports the ratio of ARC-TCC to ARC’s execution time. The

WMM: coherence WMM: other exec.

ARC: post-commit ARC: read val. ARC: pre-commit ARC: region exec.

canneal

0
1
2
3
4
5
6
7
8
9

N
o

r
m

a
li

z
e
d

e
x

e
c
u

ti
o

n
 c

y
c
le

s

blackscholes

bodytrack

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0

1

W
M

M
-3

2
C

E
-3

2
C

E
+

-3
2

A
R

C
-3

2

(a) Execution time

Static energy Dynamic energy

canneal

0
1
2
3
4
5
6
7
8
9

N
o
r
m

a
li

z
e
d

e
n

e
r
g
y
 u

sa
g
e

blackscholes

bodytrack

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0

1

W
M

M
-3

2
C

E
-3

2
C

E
+

-3
2

A
R

C
-3

2

(b) Energy usage

Fig. 8. Execution time and energy usage for CE, CE
+

, and ARC for 32 cores,

normalized to WMM with 32 cores.

table shows that TCC’s mechanisms continue to incur high

run-time overhead even with large per-core write bu�ers

because many regions over�ow the private caches, leading

to much serialization. This comparison shows that, for the

same context (i.e., precise con�ict checking of SFRs), ARC’s

design provides substantial performance bene�ts over TCC.

Follow-up work optimizes TCC using a directory [10] and

by parallelizing commits [37]. However, TCC is fundamentally

limited by its use of bounded write bu�ers, which over�ow,

leading to serialized commit.

D. Evaluating the Cost of Strong Memory Consistency

Modern shared-memory systems provide unde�ned seman-
tics for programs with data races (Section I). Memory models
for shared-memory programming languages such as C/C++

and Java are mostly unable to provide useful guarantees to

executions with data races [1], [7], [33]. Though hardware

memory models (e.g., [3], [46], [50]) are generally stronger

than language models, they apply only to the compiled code,

thereby failing to provide end-to-end guarantees with respect

to the source program. Here, we estimate the cost of providing

SFRSx over such a weak memory model (WMM). Note that

WMM is not directly comparable to this paper’s approaches,
given the di�erent guarantees provided.

Our WMM con�guration models the same directory-based

MESI protocol (Figure 8.6 in [49]) used by CE (Table I). Figure 8

shows how CE, CE
+

, and ARC compare to WMM for 32 cores,

using the same methodology as for Figure 7, normalized to

WMM-32.

Figure 8(a) shows that on average, CE, CE
+

, and ARC are

slower than WMM by 26.7%, 27.1%, and 12.5%, respectively,

10

for 32 cores. Figures 7(a) and 8(a) show that CE, CE
+

, and

ARC scale well for most programs, except for canneal and

fluidanimate. The energy usage is proportional to the running

time of each con�guration, and is also in�uenced by the

frequency of accesses to the AIM cache and the Bloom

�lter structures for relevant con�gurations other than WMM.

Figure 8(b) shows that on average CE, CE
+

, and ARC use 41.4%,

42.6%, and 27.8% more energy than WMM. CE, CE
+

, and ARC

have particularly high overhead for canneal and fluidanimate.

As discussed in Section VI-B, canneal has large regions and

working sets, which either saturate the on-chip interconnect

and the o�-chip network for CE and CE
+

, or require more

memory accesses for ARC to transmit access information

compared to WMM, signi�cantly slowing execution and

increasing energy usage. fluidanimate has short regions that

fail to amortize the cost incurred by the operations at region

boundaries for con�gurations other than WMM.

E. Summary

CE provides well-de�ned semantics for all executions, but

incurs a substantial cost compared to WMM to maintain

precise byte-granular access information and to check for

region con�icts. CE
+

, the �rst contribution in this work, can

potentially improve performance and reduce energy usage

for a number of applications across core counts, but with

increased complexity.

ARC, the second contribution, is a completely di�erent

design, which performs well compared with CE and CE
+

. Our

work shows that detecting region con�icts using coherence

based on release consistency and self-invalidation can be com-

petitive with techniques that either rely on eager invalidation-

based coherence (e.g., CE) or are impeded by fundamental

limitations on region size (e.g., TCC). Furthermore, we show

that ARC can provide strong consistency guarantees with

performance that is competitive with the performance of

current shared-memory systems (WMM).

VII. Related Work

This section compares CE
+

and ARC with related work not
already covered in Section II.

Valor provides SFRSx in software alone but slows executions

by almost 2X on average [6]. IFRit likewise adds high overhead

to detect con�icts between extended SFRs [15]. Ouyang

et al. enforce SFR serializability using a speculation-based

approach that relies on extra cores to avoid substantial

overhead [36]. SOFRITAS enforces software-based con�ict

serializability through �ne-grained two-phase locking [13].

Hardware transactional memory (HTM) also detects region

con�icts [21], [23]. However, HTM systems can use imprecise
con�ict detection by leveraging speculative execution, while

SFRSx requires precise con�ict detection; and HTM must

keep original copies of speculatively written data, in case

of misspeculation. Like CE and CE
+

, most HTMs piggyback

con�ict detection on the cache coherence protocol [35], [54].

Unbounded HTM designs incur run-time cost and design

complexity because data that leave the cache cannot easily

be tracked by the coherence protocol (e.g., [4]).

BulkSC resembles TCC but broadcasts imprecise write
signatures [8], [9]. To ensure progress, BulkSC dynamically

subdivides regions, precluding its application to SFRSx’s

unbounded regions.

Software transactional memory (STM) can handle un-

bounded regions without hardware modi�cations, but requires

heavyweight instrumentation and synchronization that slows

(single-thread) execution by 2X or more [12], [21], [22],

[41]. Some STM systems use version or value validation of

reads (e.g., [12], [21]). ARC’s adaptation of validation to the

hardware cache hierarchy and its combination of version and

value validation are both novel.

DeNovoSync, SARC, and VIPS use self-invalidation to reduce

complexity compared to M(O)ESI [26], [38], [51]. TSO-CC
and Racer provide TSO using self-invalidation and without

tracking sharers [17], [40]. DeNovo and DeNovoND use self-

invalidation for coherence, assuming DRF [11], [52]. Jimborean

et al. use compiler analysis that assumes DRF to safely extend

SFRs, reducing self-invalidation costs [25]. Distributed shared
memory systems use release consistency to reduce tra�c

and latency [27]. Unlike prior work, ARC does not assume

DRF. Instead, ARC exploits synergy between mechanisms for

coherence and con�ict detection, detecting data races that

manifest as SFR con�icts to provide SFRSx.

Prior work supports memory models based on serializability

of bounded regions that are in general shorter than full

SFRs [2], [34], [43], [47]. Sequential consistency (SC) is

essentially serializability of single-instruction regions [29],

[30], [48]. To provide end-to-end guarantees, all of these

approaches require corresponding restrictions on compiler

optimizations. DRFx detects con�icts among bounded regions

by maintaining region bu�ers and Bloom �lter signatures of

memory accesses [34], [47]. DRFx broadcasts the Bloom �lter

signatures and occasionally the region bu�ers across cores,

which is unscalable for large regions (e.g., SFRs) and with

increasing core counts.

Researchers have introduced custom hardware to accelerate

data race detection, extending cache coherence and adding

on-chip vector clock metadata [14], [42], [53].

VIII. Conclusion

CE
+

and ARC are architecture designs that ensure strong,

well-de�ned semantics for all executions, including executions

with data races. Compared to the state-of-the-art technique

CE [31], we show that an AIM cache in CE
+

seems promising

to reduce the cost of providing SFRSx. The key to ARC’s

e�ciency is its novel design that builds on and leverages

release consistency and self-invalidation mechanisms. ARC

outperforms CE and TCC [20], and performs competitively

with CE
+

in terms of run time and energy usage. These results

suggest that CE
+

and especially ARC advance the state of the

art signi�cantly in parallel architecture support for region

con�ict exceptions.

11

Acknowledgments

We thank Joe Devietti for sharing the RADISH simulator;

Vignesh Balaji and Nathan Beckmann for technical sugges-

tions; and Nathan Beckmann, Alberto Ros, and the anonymous

reviewers for detailed and insightful feedback on the text.

References

[1] S. V. Adve and H.-J. Boehm, “Memory Models: A Case for Rethinking

Parallel Languages and Hardware,” CACM, vol. 53, pp. 90–101, 2010.

[2] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Midki�,

and D. Wong, “BulkCompiler: High-Performance Sequential Consistency

through Cooperative Compiler and Hardware Support,” in MICRO, 2009,

pp. 133–144.

[3] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Z.

Nardelli, “The Semantics of Power and ARM Multiprocessor Machine

Code,” in DAMP, 2008, pp. 13–24.

[4] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,

“Unbounded Transactional Memory,” in HPCA, 2005, pp. 316–327.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark

Suite: Characterization and Architectural Implications,” in PACT, 2008,

pp. 72–81.

[6] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia, “Valor: E�cient, Software-

Only Region Con�ict Exceptions,” in OOPSLA, 2015, pp. 241–259.

[7] H.-J. Boehm and S. V. Adve, “Foundations of the C++ Concurrency

Memory Model,” in PLDI, 2008, pp. 68–78.

[8] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk

Enforcement of Sequential Consistency,” in ISCA, 2007, pp. 278–289.

[9] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk Disambiguation of

Speculative Threads in Multiprocessors,” in ISCA, 2006, pp. 227–238.

[10] H. Cha�, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,

C. Kozyrakis, and K. Olukotun, “A Scalable, Non-blocking Approach to

Transactional Memory,” in HPCA, 2007, pp. 97–108.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.

Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking

the Memory Hierarchy for Disciplined Parallelism,” in PACT, 2011, pp.

155–166.

[12] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: Streamlining STM

by Abolishing Ownership Records,” in PPoPP, 2010, pp. 67–78.

[13] C. DeLozier, A. Eizenberg, B. Lucia, and J. Devietti, “SOFRITAS:

Serializable Ordering-Free Regions for Increasing Thread Atomicity

Scalably,” in ASPLOS, 2018, pp. 286–300.

[14] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and S. Qadeer,

“RADISH: Always-On Sound and Complete Race Detection in Software

and Hardware,” in ISCA, 2012, pp. 201–212.

[15] L. E�nger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm,

“IFRit: Interference-Free Regions for Dynamic Data-Race Detection,” in

OOPSLA, 2012, pp. 467–484.

[16] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A Race and Transaction-

Aware Java Runtime,” in PLDI, 2007, pp. 245–255.

[17] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache

coherence for TSO,” in HPCA, 2014, pp. 165–176.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “E�ective

Data-Race Detection for the Kernel,” in OSDI, 2010, pp. 1–16.

[19] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and

J. Hennessy, “Memory Consistency and Event Ordering in Scalable

Shared-memory Multiprocessors,” in ISCA, 1990, pp. 15–26.

[20] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,

B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,

“Transactional Memory Coherence and Consistency,” in ISCA, 2004, pp.

102–113.

[21] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd ed. Morgan

and Claypool Publishers, 2010.

[22] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi, “Optimizing Memory

Transactions,” in PLDI, 2006, pp. 14–25.

[23] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural

Support for Lock-Free Data Structures,” in ISCA, 1993, pp. 289–300.

[24] HP Labs, “CACTI: An integrated cache and memory access time, cycle

time, area, leakage, and dynamic power model,” https://www.cs.utah.

edu/~rajeev/cacti7/.

[25] A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros, “Automatic

Detection of Extended Data-Race-Free Regions,” in CGO, 2017, pp. 14–26.

[26] S. Kaxiras and G. Keramidas, “SARC Coherence: Scaling Directory Cache

Coherence in Performance and Power,” IEEE Micro, vol. 30, no. 5, pp.

54–65, 2010.

[27] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency

for Software Distributed Shared Memory,” in ISCA, 1992, pp. 13–21.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling

Framework for Multicore and Manycore Architectures,” in MICRO, 2009,

pp. 469–480.

[29] C. Lin, V. Nagarajan, and R. Gupta, “E�cient Sequential Consistency

Using Conditional Fences,” in PACT, 2010, pp. 295–306.

[30] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram, “E�cient Sequential

Consistency via Con�ict Ordering,” in ASPLOS, 2012, pp. 273–286.

[31] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Con�ict

Exceptions: Simplifying Concurrent Language Semantics with Precise

Hardware Exceptions for Data-Races,” in ISCA, 2010, pp. 210–221.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation,” in PLDI, 2005, pp. 190–

200.

[33] J. Manson, W. Pugh, and S. V. Adve, “The Java Memory Model,” in

POPL, 2005, pp. 378–391.

[34] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy,

“DRFx: A Simple and E�cient Memory Model for Concurrent Program-

ming Languages,” in PLDI, 2010, pp. 351–362.

[35] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,

“LogTM: Log-based Transactional Memory,” in HPCA, 2006, pp. 254–265.

[36] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy, “...and region

serializability for all,” in HotPar, 2013.

[37] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Bal-

asubramonian, “Scalable and Reliable Communication for Hardware

Transactional Memory,” in PACT, 2008, pp. 144–154.

[38] A. Ros and S. Kaxiras, “Complexity-E�ective Multicore Coherence,” in

PACT, 2012, pp. 241–252.

[39] ——, “Callback: E�cient Synchronization without Invalidation with a

Directory Just for Spin-Waiting,” in ISCA, 2015, pp. 427–438.

[40] ——, “Racer: TSO Consistency via Race Detection,” in MICRO, 2016, pp.

1–13.

[41] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg,

“McRT-STM: A High Performance Software Transactional Memory

System for a Multi-Core Runtime,” in PPoPP, 2006, pp. 187–197.

[42] C. Segulja and T. S. Abdelrahman, “Clean: A Race Detector with Cleaner

Semantics,” in ISCA, 2015, pp. 401–413.

[43] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni, “Hybrid

Static–Dynamic Analysis for Statically Bounded Region Serializability,”

in ASPLOS, 2015, pp. 561–575.

[44] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov, “Dynamic

Race Detection with LLVM Compiler,” in RV, 2012, pp. 110–114.

[45] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons,

M. A. Kozuch, T. C. Mowry, and T. Chilimbi, “Page Overlays: An

Enhanced Virtual Memory Framework to Enable Fine-grained Memory

Management,” in ISCA, 2015, pp. 79–91.

[46] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-TSO:

A Rigorous and Usable Programmer’s Model for x86 Multiprocessors,”

CACM, vol. 53, no. 7, pp. 89–97, 2010.

[47] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and M. Musuvathi,

“E�cient Processor Support for DRFx, a Memory Model with Exceptions,”

in ASPLOS, 2011, pp. 53–66.

[48] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,

“End-to-End Sequential Consistency,” in ISCA, 2012, pp. 524–535.

[49] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency
and Cache Coherence. Morgan & Claypool Publishers, 2011.

[50] C. SPARC International, Inc., The SPARC Architecture Manual: Version 8,

1992.

[51] H. Sung and S. V. Adve, “DeNovoSync: E�cient Support for Arbitrary

Synchronization Without Writer-Initiated Invalidations,” in ASPLOS,

2015, pp. 545–559.

[52] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: E�cient Hardware

Support for Disciplined Non-Determinism,” in ASPLOS, 2013, pp. 13–26.

[53] B. P. Wood, L. Ceze, and D. Grossman, “Low-Level Detection of

Language-Level Data Races with LARD,” in ASPLOS, 2014, pp. 671–686.

[54] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance Evaluation

of Intel Transactional Synchronization Extensions for High-Performance

Computing,” in SC, 2013, pp. 19:1–19:11.

12

