
Introduction to AlgorithmsIntroduction to Algorithms
Shortest PathsShortest Paths

CSE 680
Prof. Roger Crawfis

Shortest Path

Given a weighted directed graph oneGiven a weighted directed graph, one
common problem is finding the shortest
path between two given verticespath between two given vertices
Recall that in a weighted graph, the
length of a path is the sum of the weightslength of a path is the sum of the weights
of each of the edges in that path

Applicationspp

One application is circuit design: theOne application is circuit design: the
time it takes for a change in input to
affect an output depends on the shortestaffect an output depends on the shortest
path

http://www.hp.com/

Shortest Path

Given the graph below suppose we wishGiven the graph below, suppose we wish
to find the shortest path from vertex 1 to
vertex 13vertex 13

Shortest Path

After some consideration we mayAfter some consideration, we may
determine that the shortest path is as
follows with length 14follows, with length 14

Other paths exists but they are longerOther paths exists, but they are longer

Negative Cyclesg y

Clearly, if we have negative vertices, it may y, g , y
be possible to end up in a cycle whereby
each pass through the cycle decreases the
total lengthtotal length
Thus, a shortest length would be undefined
for such a graphg p
Consider the shortest path
from vertex 1 to 4...
W ill l idWe will only consider non-
negative weights.

Shortest Path Examplep

Given:
Weighted Directed graph G = (V, E).
Source s, destination t.

Fi d h t t di t d th f t tFind shortest directed path from s to t.

32 23
9

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 48.

s

6
4

18
214

30
11

6

19

t7

515 5

20

44

16

11

6

44

Discussion Items

How many possible paths are there from s to t?
Can we safely ignore cycles? If so, how?
Any suggestions on how to reduce the set of possibilities?
Can we determine a lower bound on the complexity like we did forCan we determine a lower bound on the complexity like we did for
comparison sorting?

32 23
9

s

6
4

18
214

30
11

6

19

t7

515 5

20

44

16

11

6

44

Key Observationy

A key observation is that if the shortest path
i h d hcontains the node v, then:

It will only contain v once, as any cycles will only add to
the length.
Th th f t t b th h t t th t fThe path from s to v must be the shortest path to v from
s.
The path from v to t must be the shortest path to t from
vv.

Thus, if we can determine the shortest path to all
other vertices that are incident to the target vertex
we can easily compute the shortest pathwe can easily compute the shortest path.

Implies a set of sub-problems on the graph with the
target vertex removed.

Dijkstra’s AlgorithmDijkstra s Algorithm

• Works when all of the weights are positiveWorks when all of the weights are positive.
• Provides the shortest paths from a source

to all other vertices in the graphto all other vertices in the graph.
– Can be terminated early once the shortest

path to t is found if desiredpath to t is found if desired.

Shortest PathShortest Path

• Consider the following graph with positiveConsider the following graph with positive
weights and cycles.

Dijkstra’s AlgorithmDijkstra s Algorithm
• A first attempt at solving this problem might require an p g p g q

array of Boolean values, all initially false, that indicate
whether we have found a path from the source.

1 F1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F8 F
9 F

Dijkstra’s AlgorithmDijkstra s Algorithm

• Graphically we will denote this with checkGraphically, we will denote this with check
boxes next to each of the vertices (initially
unchecked)unchecked)

Dijkstra’s AlgorithmDijkstra s Algorithm

• We will work bottom upWe will work bottom up.
– Note that if the starting vertex has any adjacent

edges, then there will be one vertex that is the g ,
shortest distance from the starting vertex. This is
the shortest reachable vertex of the graph.

• We will then try to extend any existing paths
to new vertices.

• Initially, we will start with the path of length 0
– this is the trivial path from vertex 1 to itself

Dijkstra’s AlgorithmDijkstra s Algorithm

• If we now extend this path we shouldIf we now extend this path, we should
consider the paths

(1 2) length 4– (1, 2) length 4
– (1, 4) length 1

(1 5) length 8– (1, 5) length 8

Th h t t th f i (1 4) hi h i fThe shortest path so far is (1, 4) which is of
length 1.

Dijkstra’s Algorithm

• Thus if we now examine vertex 4 we may

Dijkstra s Algorithm

Thus, if we now examine vertex 4, we may
deduce that there exist the following paths:

(1 4 5) length 12– (1, 4, 5) length 12
– (1, 4, 7) length 10

(1 4 8) length 9– (1, 4, 8) length 9

Dijkstra’s AlgorithmDijkstra s Algorithm

• We need to remember that the length ofWe need to remember that the length of
that path from node 1 to node 4 is 1

• Thus we need to store the length of a• Thus, we need to store the length of a
path that goes through node 4:

5 f l th 12– 5 of length 12
– 7 of length 10

8 f l h 9– 8 of length 9

Dijkstra’s AlgorithmDijkstra s Algorithm

• We have already discovered that there is aWe have already discovered that there is a
path of length 8 to vertex 5 with the path
(1 5)(1, 5).

• Thus, we can safely ignore this longer
pathpath.

Dijkstra’s AlgorithmDijkstra s Algorithm

• We now know that:We now know that:
– There exist paths from vertex 1 to

vertices {2,4,5,7,8}.
Vertex Length

1 0
– We know that the shortest path

from vertex 1 to vertex 4 is of
length 1

1 0
2 4
4 1length 1.

– We know that the shortest path to
the other vertices {2,5,7,8} is at

4 1
5 8
7 10

most the length listed in the table
to the right. 8 9

Dijkstra’s AlgorithmDijkstra s Algorithm
• There cannot exist a shorter path to either of the vertices p

1 or 4, since the distances can only increase at each
iteration.
W id th ti t b

Vertex Length
• We consider these vertices to be

visited 1 0
2 4
4 1
5 8

If you only knew this information and
nothing else about the graph, what is the

possible lengths from vertex 1 to vertex 2?
7 10
8 9

p g
What about to vertex 7?

Relaxation

Maintaining this shortest discoveredMaintaining this shortest discovered
distance d[v] is called relaxation:

Relax(u,v,w) {(, ,) {
if (d[v] > d[u]+w) then

d[v]=d[u]+w;
}}

95 2

R l
65 2

Relaxu v u v

75 2

Relax
65 2

Relaxu v u v

Dijkstra’s AlgorithmDijkstra s Algorithm

• In Dijkstra’s algorithm we always take theIn Dijkstra s algorithm, we always take the
next unvisited vertex which has the current
shortest path from the starting vertex inshortest path from the starting vertex in
the table.

• This is vertex 2• This is vertex 2

Dijkstra’s AlgorithmDijkstra s Algorithm

• We can try to update the shortest paths toWe can try to update the shortest paths to
vertices 3 and 6 (both of length 5)
however:however:
– there already exists a path of length 8 < 10 to

vertex 5 (10 = 4 + 6)vertex 5 (10 4 + 6)
– we already know the shortest path to 4 is 1

Dijkstra’s AlgorithmDijkstra s Algorithm

• To keep track of those vertices to which noTo keep track of those vertices to which no
path has reached, we can assign those
vertices an initial distance of eithervertices an initial distance of either
– infinity (∞),

a number larger than any possible path or– a number larger than any possible path, or
– a negative number

F d t ti ill• For demonstration purposes, we will use ∞

Dijkstra’s AlgorithmDijkstra s Algorithm

• As well as finding the length of theAs well as finding the length of the
shortest path, we’d like to find the
corresponding shortest pathcorresponding shortest path

• Each time we update the shortest distance
to a particular vertex we will keep track ofto a particular vertex, we will keep track of
the predecessor used to reach this vertex
on the shortest pathon the shortest path.

Dijkstra’s AlgorithmDijkstra s Algorithm

• We will store a table of pointers eachWe will store a table of pointers, each
initially 0

• This table will be updated each 1 0• This table will be updated each
time a distance is updated

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 08 0
9 0

Dijkstra’s AlgorithmDijkstra s Algorithm

• Graphically we will display the referenceGraphically, we will display the reference
to the preceding vertex by a red arrow

if the distance to a vertex is ∞ there will be no– if the distance to a vertex is ∞, there will be no
preceding vertex

– otherwise there will be exactly one precedingotherwise, there will be exactly one preceding
vertex

Dijkstra’s AlgorithmDijkstra s Algorithm

• Thus for our initialization:Thus, for our initialization:
– we set the current distance to the initial vertex

as 0as 0
– for all other vertices, we set the current

distance to ∞distance to
– all vertices are initially marked as unvisited
– set the previous pointer for all vertices to nullset the previous pointer for all vertices to null

Dijkstra’s AlgorithmDijkstra s Algorithm

• Thus, we iterate:Thus, we iterate:
– find an unvisited vertex which has the shortest

distance to it
– mark it as visited
– for each unvisited vertex which is adjacent to

the current vertex:
• add the distance to the current vertex to the weight

of the connecting edgeof the connecting edge
• if this is less than the current distance to that

vertex, update the distance and set the parent
vertex of the adjacent vertex to be the currentvertex of the adjacent vertex to be the current
vertex

Dijkstra’s AlgorithmDijkstra s Algorithm

• Halting condition:Halting condition:
– we successfully halt when the vertex we are

visiting is the target vertexvisiting is the target vertex
– if at some point, all remaining unvisited

vertices have distance ∞, then no path fromvertices have distance , then no path from
the starting vertex to the end vertex exits

• Note: We do not halt just because weNote: We do not halt just because we
have updated the distance to the end
vertex, we have to visit the target vertex.vertex, we have to visit the target vertex.

ExampleExample

• Consider the graph:Consider the graph:
– the distances are appropriately initialized

all vertices are marked as being unvisited– all vertices are marked as being unvisited

ExampleExample

• Visit vertex 1 and update its neighboursVisit vertex 1 and update its neighbours,
marking it as visited

the shortest paths to 2 4 and 5 are updated– the shortest paths to 2, 4, and 5 are updated

ExampleExample

• The next vertex we visit is vertex 4The next vertex we visit is vertex 4
– vertex 5 1 + 11 ≥ 8 don’t update
– vertex 7 1 + 9 < ∞ updatevertex 7 1 9 update
– vertex 8 1 + 8 < ∞ update

ExampleExample

• Next visit vertex 2Next, visit vertex 2
– vertex 3 4 + 1 < ∞ update
– vertex 4 already visitedvertex 4 already visited
– vertex 5 4 + 6 ≥ 8 don’t update
– vertex 6 4 + 1 < ∞ update

ExampleExample

• Next we have a choice of either 3 or 6Next, we have a choice of either 3 or 6
• We will choose to visit 3

vertex 5 5 + 2 < 8 update– vertex 5 5 + 2 < 8 update
– vertex 6 5 + 5 ≥ 5 don’t update

ExampleExample

• We then visit 6We then visit 6
– vertex 8 5 + 7 ≥ 9 don’t update
– vertex 9 5 + 8 < ∞ updatevertex 9 5 8 update

ExampleExample

• Next we finally visit vertex 5:Next, we finally visit vertex 5:
– vertices 4 and 6 have already been visited
– vertex 7 7 + 1 < 10 updatevertex 7 7 1 10 update
– vertex 8 7 + 1 < 9 update
– vertex 9 7 + 8 ≥ 13 don’t update

ExampleExample

• Given a choice between vertices 7 and 8Given a choice between vertices 7 and 8,
we choose vertex 7
– vertices 5 has already been visitedvertices 5 has already been visited
– vertex 8 8 + 2 ≥ 8 don’t update

ExampleExample

• Next we visit vertex 8:Next, we visit vertex 8:
– vertex 9 8 + 3 < 13 update

ExampleExample

• Finally we visit the end vertexFinally, we visit the end vertex
• Therefore, the shortest path from 1 to 9

has length 11has length 11

ExampleExample

• We can find the shortest path by workingWe can find the shortest path by working
back from the final vertex:

9 8 5 3 2 1– 9, 8, 5, 3, 2, 1
• Thus, the shortest path is (1, 2, 3, 5, 8, 9)

ExampleExample

• In the example we visited all vertices inIn the example, we visited all vertices in
the graph before we finished

• This is not always the case consider the• This is not always the case, consider the
next example

ExampleExample

• Find the shortest path from 1 to 4:Find the shortest path from 1 to 4:
– the shortest path is found after only three vertices are

visited
– we terminated the algorithm as soon as we reached

vertex 4
l h f l i f ti b t 1 3 4– we only have useful information about 1, 3, 4

– we don’t have the shortest path to vertex 2

Dijkstra’s algorithmDijkstra s algorithm
d[s] ← 0
for each v ∈ V – {s}for each v ∈ V {s}

do d[v] ←∞
S ←∅

i i i i i iQ ← V Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)
p[v] ← up[v] ← u

Dijkstra’s algorithmDijkstra s algorithm
d[s] ← 0
for each v ∈ V – {s}for each v ∈ V {s}

do d[v] ←∞
S ←∅

i i i i i iQ ← V Q is a priority queue maintaining V – S
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

l tido if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)
p[v] ← u

relaxation
step

p[v] ← u

Implicit DECREASE-KEY

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2Graph with B D10
8

Graph with
nonnegative
edge weights: A

3

1 4 7 98edge weights:

C E
3

2

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2Initialize: ∞ ∞
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ ∞ ∞

S: {}

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
∞ ∞“A” ← EXTRACT-MIN(Q):
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ ∞ ∞

S: { A }

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
10 ∞Relax all edges leaving A:
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 ∞

S: { A }

3
10 3 ∞ ∞

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
10 ∞“C” ← EXTRACT-MIN(Q):
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 ∞

S: { A, C }

3
10 3 ∞ ∞

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 11Relax all edges leaving C:
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C }

3 5
10 3
7 11 5

∞ ∞

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 11“E” ← EXTRACT-MIN(Q):
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C, E }

3 5
10 3
7 11 5

∞ ∞

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 11Relax all edges leaving E:
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C, E }

3 5
10 3 ∞ ∞
7 11 5
7 11

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 11“B” ← EXTRACT-MIN(Q):
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C, E, B }

3 5
10 3 ∞ ∞
7 11 5
7 11

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 9Relax all edges leaving B:
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C, E, B }

3 5
10 3 ∞ ∞
7 11 5
7 11

9

Example of Dijkstra’s algorithmExample of Dijkstra s algorithm

B D2
7 9“D” ← EXTRACT-MIN(Q):
B D10

8A

3

1 4 7 980

C E
3

2A B C D EQ:
0 ∞ ∞ ∞ ∞ 3 5

S: { A, C, E, B, D }

3 5
10 3 ∞ ∞
7 11 5
7 11

9

SummarySummary

• Given a weighted directed graph we canGiven a weighted directed graph, we can
find the shortest distance between two
vertices by:vertices by:
– starting with a trivial path containing the initial

vertexvertex
– growing this path by always going to the next

vertex which has the shortest current pathvertex which has the shortest current path

Practice

t
f

-
A
Af t

t
-
4

f

A

A
-

f t

t
B

2

5

∞ Ff t 10 9
-

B

Bf t
∞

∞

Ff t 10

8

9

Give the shortest path tree for node
A for this graph using Dijkstra’s
shortest path algorithm Show yourshortest path algorithm. Show your
work with the 3 arrays given and
draw the resultant shortest path tree
with edge weights included.g g

Bellman-Ford Algorithmg

BellmanFord()
i i li d[] hi hfor each v ∈ V

d[v] = ∞;
d[s] = 0;

Initialize d[] which
will converge to
shortest-path value

d[s] 0;
for i=1 to |V|-1

for each edge (u,v) ∈ E
R l (())

Relaxation:
Make |V|-1 passes,
relaxing each edgeRelax(u,v, w(u,v));

for each edge (u,v) ∈ E
if (d[v] > d[u] + w(u,v))

relaxing each edge

Test for solution:
have we converged

return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

yet? Ie, ∃ negative
cycle?

Relax(u,v,w): if (d[v] > d[u]+w) then d[v] d[u]+w

DAG Shortest Paths

Bellman-Ford takes O(VE) time.
For finding shortest paths in a DAG, we can do much better by
using a topological sort.
If we process vertices in topological order, we are guaranteed to p p g , g
never relax a vertex unless the adjacent edge is already finalized.
Thus: just one pass. O(V+E)

DAG-Shortest-Paths(G, w, s)(, ,)
1. topologically sort the vertices of G
2. INITIALIZE-SINGLE-SOURCE(G, s)
3 for each vertex u taken in topologically sorted order3. for each vertex u, taken in topologically sorted order
4. do for each vertex v ∈ Adj[u]
5. do Relax(u, v, w)

DAG Shortest Paths Usage NotesUsage Notes

• These slides are made publicly available on the web for p y
anyone to use

• If you choose to use them, or a part thereof, for a course
t th i tit ti I k l th thiat another institution, I ask only three things:
– that you inform me that you are using the slides,
– that you acknowledge my work, and
– that you alert me of any mistakes which I made or changes

which you make, and allow me the option of incorporating such
changes (with an acknowledgment) in my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca

