

Tree

- We call an undirected graph a tree if the graph is connected and contains no cycles.
- Trees:

- Not Trees:

Number of Vertices

- If a graph is a tree, then the number of edges in the graph is one less than the number of vertices.
- A tree with \boldsymbol{n} vertices has $\boldsymbol{n}-1$ edges.
- Each node has one parent except for the root.
- Note: Any node can be the root here, as we are not dealing with rooted trees.

Connected Graph

- A connected graph is one in which there is at least one path between each pair of vertices.

Spanning Tree

Non-Connected Graphs

- If the graph is not connected, we get a spanning tree for each connected component of the graph.
- That is we get a forest.

Find a spanning tree for the graph below.

We could break the two cycles by removing a single edge from each. One of several possible ways to do this is shown below.

Minimum Spanning Tree

- A spanning tree that has minimum total weight is called a minimum spanning tree for the graph.
- Technically it is a minimum-weight spanning tree.
- If all edges have the same weight, breadth-first search or depth-first search will yield minimum spanning trees.
- For the rest of this discussion, we assume the edges have weights associated with them.

Note, we are strictly dealing with undirected graphs here, for directed graphs we would want to find the optimum branching or aborescence of the directed graph.

Minimum Spanning Tree

- Minimum-cost spanning trees have many applications.
- Building cable networks that join n locations with minimum cost.
- Building a road network that joins n cities with minimum cost.
- Obtaining an independent set of circuit equations for an electrical network.
- In pattern recognition minimal spanning trees can be used to find noisy pixels.

Minimum Spanning Tree

- Consider this graph.

- It has 16 spanning trees. Some are:

- There are two minimumcost spanning trees, each with a cost of 6 :

Brute Force MST

- For a complete graph, it has been shown that there are N^{N-2} possible spanning trees!
- Alternatively, given N items, you can build N^{N-2} distinct trees to connect these items.
- Note, for a lattice (like your grid implementation), the number of spanning trees is $\boldsymbol{O}\left(e^{1.167 N}\right)$.

Minimum Spanning Tree

Kruskal's Algorithm

- There are many approaches to computing a minimum spanning tree. We could try to detect cycles and remove edges, but the two algorithms we will study build them from the bottom-up in a greedy fashion.
- Kruskal's Algorithm - starts with a forest of single node trees and then adds the edge with the minimum weight to connect two components.
- Prim's Algorithm - starts with a single vertex and then adds the minimum edge to extend the spanning tree.
- Greedy algorithm to choose the edges as follows.

Step 1 First edge: choose any edge with the minimum weight.
Step 2 Next edge: choose any edge with minimum weight from those not yet selected. (The subgraph can look disconnected at this stage.)

Step 3 Continue to choose edges of minimum weight from those not yet selected, except do not select any edge that creates a cycle in the subgraph.

Step 4 Repeat step 3 until the subgraph connects all vertices of the original graph.

Kruskal's Algorithm

Solution

First, choose ED (the smallest weight).

Solution

Now choose BF (the smallest remaining weight).

Kruskal's Algorithm

Solution

Now CD and then BD.

Solution

Note EF is the smallest remaining, but that would create a cycle.

Kruskal's Algorithm

Solution

The total weight of the tree is 16.5 .

Kruskal's Algorithm

Kruskal's Algorithm

- Some questions:

1. How do we know we are finished?
2. How do we check for cycles?

Build a priority queue (min-based) with all of the edges of G.
$\mathrm{T}=\phi$;
while(queue is not empty)\{
get minimum edge e from priorityQueue;
if(e does not create a cycle with edges in T) add e to T;
\}
return T;

Kruskal's Algorithm

- Trace of Kruskal's algorithm for the undirected, weighted graph:

The minimum cost is: 24

Kruskal's Algorithm - Time complexity

- Steps

- Initialize forest
$O(|V|)$
- Sort edges
$O(|E| \log |E|)$
- Check edge for cycles $O(|V|) \times$
- Number of edges $\quad O(|V|) \quad O\left(|V|^{2}\right)$
- Total
- Since $|E|=O\left(|V|^{2}\right)$
$O\left(|V|+|E| \log |E|+|V|^{2}\right)$
$O\left(|V|^{2} \log |V|\right)$
- Thus we would class MST as $O\left(n^{2} \log n\right)$ for a graph with n vertices
- This is an upper bound, some improvements on this are known.

Kruskal's Algorithm

Kruskal's Algorithm

- Another implementation is based on sets (see Chapter 21).

Kruskal()
\{
$\mathrm{T}=\varnothing$;
for each $\mathbf{v} \in \mathrm{V}$
MakeSet(v);
sort E by increasing edge weight w
for each $(u, v) \in E$ (in sorted order)
if FindSet(u) \neq FindSet(v)
T = T U \{\{u,v\}\};
Union(FindSet(u), FindSet(v));
\}

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm Onifgrive

Kruskal's Algorithm

Prim's Algorithm

- Prim's algorithm finds a minimum cost spanning tree by selecting edges from the graph one-by-one as follows:
- It starts with a tree, T, consisting of a single starting vertex, x .
- Then, it finds the shortest edge emanating from x that connects T to the rest of the graph (i.e., a vertex not in the tree T).
- It adds this edge and the new vertex to the tree T.
- It then picks the shortest edge emanating from the revised tree T that also connects T to the rest of the graph and repeats the process.

Prim's Algorithm Abstract

Prim's Algorithm

Consider a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$;

Let T be a tree consisting of only the starting vertex \mathbf{x};
while (T has fewer than IV I vertices)
\{

Prim's Algorithm

Prim's Algorithm

Prim's Algorithm

Prim's and Kruskal's Algorithms

- It is not necessary that Prim's and Kruskal's algorithm generate the same minimum-cost spanning tree.
- For example for the graph shown on the right:
- Kruskal's algorithm results in the following minimum cost spanning tree:
- The same tree is generated by Prim's algorithm if the start vertex is any of: A, B, or D
- However if the start vertex is C the minimum cost spanning tree generated by Prim's algorithm is:

Implementation Details

Implementation Details

- Prim's Algorithm from your book is horrible from a SE stand-point!

MST-Prim(G, w, r)
Q = V[G];
for each $u \in Q$
$\operatorname{key}[u]=\infty$;
key[r] = 0;
$\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;$
while (Q not empty)
u = ExtractMin(Q);
for each $v \in \operatorname{Adj}[u]$ if $(v \in Q$ and $w(u, v)<\operatorname{key}[v])$

$$
\mathrm{p}[\mathrm{v}]=\mathrm{u} \text {; }
$$

- Why queue the vertices, rather than the newly discovered edges? MST-Prim(G, w, r)

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{V}[\mathrm{G}] ; \\
& \text { for } \operatorname{each} u \in \mathrm{Q} \\
& \quad \operatorname{key}[u]=\infty ;
\end{aligned}
$$

```
A Fibonacci Heap
``` allows this to be allows this to be
done in \(\mathrm{O}(1)\) time
DecreaseKey(r, 0); ○
\(\mathrm{p}[\mathrm{r}]=\mathrm{NULL}\);
while (Q not empty)
\[
\mathrm{u}=\operatorname{ExtractMin}(\mathrm{Q})
\]

\section*{for each \(v \in \operatorname{Adj}[u]\)}
if \((v \in Q\) and \(w(u, v)<\operatorname{key}[v])\) \(p[v]=u\);
\[
\operatorname{key}[v]=w(u, v) ;
\] DecreaseKey(v, w(u,v));

Prim's algorithm with an Adjacency Matrix
A cable company want to connect five villages to their network which currently extends to the market town of Avenford. What is the minimum length of cable needed?

\section*{Prim's algorithm with an Adjacency Matrix}

Note, this example has outgoing edges on the columns and incoming on the rows, so it is the transpose of adjacency matrix mentioned in class. Actually, it is an undirected, so \(A^{\top}=A\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline A & - & 3 & - & - & 4 & 7 \\
\hline B & 3 & - & 5 & - & - & 8 \\
\hline C & - & 5 & - & 4 & - & 6 \\
\hline D & - & - & 4 & - & 2 & 8 \\
\hline E & 4 & - & - & 2 & - & 5 \\
\hline F & 7 & 8 & 6 & 8 & 5 & - \\
\hline
\end{tabular}
-Start at vertex A. Label column A "1" .
-Delete row A
-Select the smallest entry in column A (AB, length 3)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F \\
\hline\(A\) & - & 3 & - & - & 4 & 7 \\
\hline\(B\) & 3 & - & 5 & - & - & 8 \\
\hline\(C\) & - & 5 & - & 4 & - & 6 \\
\hline\(D\) & - & - & 4 & - & 2 & 8 \\
\hline\(E\) & 4 & - & - & 2 & - & 5 \\
\hline F & 7 & 8 & 6 & 8 & 5 & - \\
\hline
\end{tabular}

-Label column B "2"
-Delete row B
-Select the smallest uncovered entry in either column A or column B (AE, length 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(A\) & \(B\) & \(C\) & \(D\) & \(E\) & \(F\) \\
\hline\(A\) & & 3 & & - & 4 & 7 \\
\hline\(B\) & 3 & - & 5 & - & - & 0 \\
\hline C & - & 5 & - & 4 & - & 6 \\
\hline\(D\) & - & - & 4 & - & 2 & 8 \\
\hline E & 4 & - & - & 2 & - & 5 \\
\hline F & 7 & 8 & 6 & 8 & 5 & - \\
\hline
\end{tabular}

Avenford
Brinleigh

Avenford

-Label column D "4"
-Delete row D
-Select the smallest uncovered entry in either

-Label column C " 5 "
-Delete row C
- Select the smallest uncovered entry in either column A, B, D, E or C (EF, length 5)

Edan
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{c|}{1} & 2 & 5 & 4 & 3 & \\
\hline\(A\) & \(A\) & \(B\) & \(C\) & \(D\) & \(E\) & \(F\) \\
\hline\(A\) & - & 3 & - & - & 4 & 7 \\
\hline\(B\) & 3 & - & 5 & - & - & 8 \\
\hline\(C\) & - & 5 & - & 4 & - & 6 \\
\hline\(D\) & - & - & 4 & - & 2 & 8 \\
\hline\(E\) & 4 & - & - & 2 & - & 5 \\
\hline\(F\) & 7 & 8 & 6 & 8 & 5 & - \\
\hline
\end{tabular}

Donster

\section*{Practice}

1. Find the breadth-first spanning tree and depth-first spanning tree of the graph GA shown above.
2. For the graph GB shown above, trace the execution of Prim's algorithm as it finds the minimum-cost spanning tree of the graph starting from vertex a.
3. Repeat question 2 above using Kruskal's algorithm.

\section*{Practice}

- Find the minimum spanning tree using Kruskal's Algorithm.

List the edges in increasing order:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\)

Starting from the left, add the edge to the tree if it does not close up a circuit with the edges chosen up to that point:

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\) 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\) 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\) 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\), 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\) 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\), 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\), 120

Add the next edge in the list to the tree if it does not close up a circuit with the edges Done!

The tree contains every vertex, so it is a spanning tree. The total weight is 395 chosen up to that point:
\(20,25,30,32,35,38,40,45,50,52,55,60,70,70,88,90,100,110,115\) 120```

