Bipartiteness

Graph $G=(V, E)$ is bipartite iff it can be partitioned into two sets of nodes A and B such that each edge has one end in A and the other end in B

Alternatively:

- Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite iff all its cycles have even length
- Graph $G=(\mathrm{V}, \mathrm{E})$ is bipartite iff nodes can be coloured using two colours
Question: given a graph G, how to test if the graph is bipartite?
Note: graphs without cycles (trees) are bipartite

Testing bipartiteness

Method: use BFS search tree
Recall: BFS is a rooted spanning tree.
Algorithm:

- Run BFS search and colour all nodes in odd layers red, others blue
- Go through all edges in adjacency list and check if each of them has two different colours at its ends - if so then G is bipartite, otherwise it is not
We use the following alternative definitions in the analysis:
- Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite iff all its cycles have even length, or
- Graph $G=(V, E)$ is bipartite iff it has no odd cycle

Topological Sort

Want to "sort" or linearize a directed acyclic graph (DAG).

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears before v.

Topological-Sort (G)

1. call $\operatorname{DFS}(G)$ to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V+E)$.

Example

Linked List:

Linked List:

Linked List:

Example

Example

Linked List:

Example

Linked List:
$\underbrace{1 / 4}_{D} \rightarrow \underbrace{2 / 3}_{E}$

Linked List:

Precedence Example

- Tasks that have to be done to eat breakfast:
- get glass, pour juice, get bowl, pour cereal, pour milk, get spoon, eat.
- Certain events must happen in a certain order (ex: get bowl before pouring milk)
- For other events, it doesn't matter (ex: get bowl and get spoon)

Precedence Example

Order: glass, juice, bowl, cereal, milk, spoon, eat.

Precedence Example

- Topological Sort

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

Precedence Example

- What if we started with juice?

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

Correctness Proof

- Show if $(u, v) \in E$, then $f[v]<f[u]$.
- When we explore (u, v), what are their colors?
- Note, u is gray - we are exploring it
- Is v gray?
- No, because then v would be an ancestor of u.
- $\Rightarrow(u, v)$ is a back edge.
- \Rightarrow a cycle (dag has no back edges).
- Is v white?
- Then v becomes descendant of u.
- By parenthesis theorem, $d[u]<d[v]<f[v]<f[u]$.
- Is v black?
- Then v is already finished.
- Since we're exploring (u, v), we have not yet finished u.
- Therefore, $f[v]<f[u]$.

Strongly Connected Components

- Consider a directed graph.
- A strongly connected component (SCC) of the graph is a maximal set of nodes with a (directed) path between every pair of nodes.
- If a path from u to v exists in the SCC, then a path from v to u also exists.
- Problem: Find all the SCCs of the graph.

Uses of SCC's

- Packaging software modules
- Construct directed graph of which modules call which other modules
- A SCC is a set of mutually interacting modules
- Pack together those in the same SCC

SCC Example

four SCCs

Main Idea of SCC Algorithm

- DFS tells us which nodes are reachable from the roots of the individual trees
- Also need information in the other direction: is the root reachable from its descendants?
- Run DFS again on the transpose graph (reverse the directions of the edges)

SCC Algorithm

Input: directed graph $G=(V, E)$

1. call DFS(G) to compute finishing times
2. compute $\mathrm{G}^{\top} / /$ transpose graph
3. call $\operatorname{DFS}\left(\mathrm{G}^{\top}\right)$, considering nodes in decreasing order of finishing times
4. each tree from Step 3 is a separate

input graph - run DFS SCC of G

After Step 2

transposed input graph - run DFS with specified order of nodes

After Step 3

Run Time of SCC Algorithm

- Step 1: O(V+E) to run DFS

- Step 2: $\mathrm{O}(\mathrm{V}+\mathrm{E})$ to construct transpose graph, assuming adjacency list rep.
- Adjacency matrix is $\mathrm{O}(1)$ time w/ wrapper.
- Step 3: $\mathrm{O}(\mathrm{V}+\mathrm{E})$ to run DFS again
- Step 4: $\mathrm{O}(\mathrm{V})$ to output result
- Total: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Component Graph

- $G^{S C C}=\left(V^{S C C}, E^{S C C}\right)$.
- V SCC has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.

Component Graph Facts

- Claim: Gscc is a directed acyclic graph.
- Suppose there is a cycle in $\mathrm{G}^{\text {SCC }}$ such that component C_{i} is reachable from component C_{i} and vice versa.
- Then C_{i} and C_{j} would not be separate SCCs.
- Lemma: If there is an edge in $\mathrm{G}^{\mathrm{SCC}}$ from component C^{\prime} to component C , then $f\left(C^{\prime}\right)>f(C)$.
- Consider any component C during Step 1 (running DFS on G)
- Let $\mathrm{d}(\mathrm{C})$ be earliest discovery time of any node in C
- Let $\mathrm{f}(\mathrm{C})$ be latest finishing time of any node in C

