

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - » Symmetric if G is undirected.
 - » Not necessarily so if G is directed.
- If G is connected:
 - » There is a path between every pair of vertices.
 - $\gg |E| \ge |V| 1.$
 - » Furthermore, if |E| = |V| 1, then G is a tree.
- Other definitions in Appendix B (B.4 and B.5) as needed.

Representation of Graphs

- Two standard ways.
 - » Adjacency Lists.

» Adjacency Matrix.

	1	2 1 0 1 0	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency Lists

- Consists of an array *Adj* of |*V*| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

If weighted, store weights also in adjacency lists.

graphs-1 - 5

Storage Requirement

graphs-1 - 6

Pros and Cons: adj list

- Pros
 - » Space-efficient, when a graph is sparse.
 - » Can be modified to support many graph variants.
- Cons
 - » Determining if an edge $(u, v) \in G$ is not efficient.
 - Have to search in *u*'s adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner.
- *A* is then given by:

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\stackrel{1}{\overset{\bullet}{\underset{3}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}$$

 $A = A^{\mathrm{T}}$ for undirected graphs.

Space and Time

- **Space:** $\Theta(V^2)$.
 - » Not memory efficient for large graphs.
- **Time:** to list all vertices adjacent to $u: \Theta(V)$.
- **Time:** to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Some graph operations

adjacency matrix		adjacency lists	
<u>insertEdge</u>	<u>O(1)</u>	<u>O(e)</u>	
<u>isEdge</u>	<u>O(1)</u>	<u>O(e)</u>	
<u>#successors?</u>	<u>O(V)</u>	<u>O(e)</u>	
<u>#predecessor</u>	<u>rs?</u> <u>O(V)</u>	<u>O(E)</u>	

graphs-1 - 10

graphs-1 - 9

traversing a graph

Graph Definitions

- Path
 - » Sequence of nodes $n_1, n_2, \ldots n_k$
 - » Edge exists between each pair of nodes n_i , n_{i+1}
 - » Example
 - A, B, C is a path

Graph Definitions

• Path

- » Sequence of nodes $n_1, n_2, \dots n_k$
- » Edge exists between each pair of nodes $n_i\,,n_{i+1}$
- » Example
 - A, B, C is a path
 - A, E, D is not a path

graphs-1 - 13

Graph Definitions

- Cycle
 - » Path that ends back at starting node
 - » Example
 - A, E, A
 - A, B, C, D, E, A
- Simple path » No cycles in path
- Acyclic graph
 » No cycles in graph

Graph Definitions

- Cycle
 - » Path that ends back at starting node
 - » Example
 - A, E, A

graphs-1 - 14

Graph Definitions

- Reachable
 - » Path exists between nodes
- Connected graph
 - » Every node is reachable from some node in graph

Unconnected graphs

Graph-searching Algorithms

- Searching a graph:
 - » Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - » Breadth-first Search (BFS).
 - » Depth-first Search (DFS).

Breadth-first Search

- Input: Graph G = (V, E), either directed or undirected, and *source vertex* $s \in V$.
- Output:
 - » d[v] = distance (smallest # of edges, or shortest path) from *s* to *v*, for all $v \in V$. $d[v] = \infty$ if *v* is not reachable from *s*.
 - π[v] = u such that (u, v) is last edge on shortest path s^v v.
 u is v's predecessor.
 - » Builds breadth-first tree with root *s* that contains all reachable vertices.

graphs-1 - 18

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - » A vertex is "discovered" the first time it is encountered during the search.
 - » A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - » White Undiscovered.
 - » Gray Discovered but not finished.
 - » Black Finished.

graphs-1 - 20

Example (BFS)

0

graphs-1 - 22

Example (BFS)

Example (BFS)

Example (BFS)

BF Tree

Analysis of BFS

- Initialization takes O(|V|).
- Traversal Loop
 - » After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(|V|).
 - » The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(|E|)$.
- Summing up over all vertices -> total running time of BFS is O(|V/ + /E/), linear in the size of the adjacency list representation of graph.

Breadth-first Tree

- For a graph G = (V, E) with source s, the predecessor subgraph of G is G_π = (V_π, E_π) where
 - » $V_{\pi} = \{v \in V : \pi[v] \neq nil\} \bigcup \{s\}$
 - » $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_π is a breadth-first tree if:
 - » V_{π} consists of the vertices reachable from s and
 - » for all $v \in V_{\pi}$, there is a unique simple path from *s* to *v* in G_{π} that is also a shortest path from *s* to *v* in *G*.
- The edges in E_{π} are called **tree edges**. $|E_{\pi}| = |V_{\pi}| - 1.$

```
graphs-1 - 33
```

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex *v*.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its *predecessor*).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

graphs-1 - 34

Depth-first Search

- **Input:** *G* = (*V*, *E*), directed or undirected. No source vertex given!
- Output:
 - » 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - *d*[*v*] = *discovery time* (*v* turns from white to gray)
 - *f*[*v*] = *finishing time* (*v* turns from gray to black)
 - » $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
 - » "discovered" the first time it is encountered during the search.
 - » A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

4.

5.

6.

7.

8.

DFS(G)

- 1. for each vertex $u \in V[G]$
- 2. **do** *color*[u] \leftarrow white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$
- 5. for each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(*u*)

Uses a global timestamp *time*.

$\begin{array}{|c|c|c|} \hline \textbf{DFS-Visit(u)} \\ \hline 1. \quad color[u] \leftarrow \text{GRAY // White vertex } u \\ & \text{has been discovered} \end{array}$

- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
 - for each $v \in Adj[u]$
 - **do if** *color*[*v*] = WHITE
 - then $\pi[v] \leftarrow u$
 - DFS-Visit(v)
 - $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

B

1/

4/5

х

3/6 y z

2/7

Analysis of DFS

- Loops on lines 1-2 & 5-7 take Θ(V) time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex v∈V when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is ∑_{v∈V}|Adj[v]| = Θ(E)
- Total running time of DFS is $\Theta(|V| + |E|)$.

Recursive DFS Algorithm

Traverse() for all nodes X set X.tag = False Visit (1st node) Visit (X) set X.tag = True for each successor Y of X if (Y.tag = False) Visit (Y)

graphs-1 - 54

Parenthesis Theorem

Theorem 22.7

graphs-1 - 53

For all *u*, *v*, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither *u* nor *v* is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
- So d[u] < d[v] < f[u] < f[v] cannot happen.
- Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

 $\begin{array}{c} () \\ d[v] \\ f[v] \end{array} \begin{array}{c} \downarrow \\ d[v] \end{array}$

f[u]

d[u]

f[v]

Corollary

v is a proper descendant of *u* if and only if d[u] < d[v] < f[v] < f[u].

Example (Parenthesis Theorem)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq nil\}.$
 - » How does it differ from that of BFS?
 - » The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Definition:

Forest: An acyclic graph G that may be disconnected.

graphs-1 - 57

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- **Back edge:** (*u*, *v*), where *u* is a descendant of *v* (in the depth-first tree).
- Forward edge: (*u*, *v*), where *v* is a descendant of *u*, but not a tree edge.
- **Cross edge:** any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

White-path Theorem

<u>Theorem 22.9</u>

V is a descendant of *u* in *DF*-tree if and only if at time d[u], there is a path $u \sim V$ consisting of only white vertices. (Except for *u*, which was *just* colored gray.)

graphs-1 - 58

Classifying edges of a digraph

- (u, v) is:
 - $\$ Tree edge if v is white
 - » Back edge if v is gray
 - » Forward or cross if v is black
- (u, v) is:
 - » Forward edge if v is black and d[u] < d[v] (v was discovered after u)</p>
 - » Cross edge if v is black and d[u] > d[v] (u discovered after v)

More applications

- Does directed G contain a directed cycle? Do DFS if back edges yes. Time O(V+E).
- Does undirected G contain a cycle? Same as directed but be careful not to consider (u,v) and (v, u) a cycle.

Time O(V) since encounter at most |V| edges (if (u, v) and (v, u) are counted as one edge), before cycle is found.

• Is undirected G a tree? Do dfsVisit(v). If all vertices are reached and no back edges G is a tree. O(V)

C# Interfaces

<returns>The edge.</returns>

/// </summarv>

from.</parama

E GetEdgeLabel(N fromNode, N toNode);

/// Exception safe routine to get the label on an edge.

/// <param name="fromNode">The node that the edge emanates

/// <param name="toNode">The node that the edge terminates

/// /// /// content/// // // // <pre

/// <returns>True if the edge was found. False otherwise.</returns>

/// value for the type if the edge could not be found.</param

bool TryGetEdge(N fromNode, N toNode, out E edge);

graphs-1 - 61

/// <summarv>

/// </summary>

/// <summary:

/// </summarv

/// </summarv

/// </summarv>

from.</param>

at.</param>

othonwise

from </param:

at.</param>

/// Iterator over the emanating edges from a node.

/// <param name="node">The node.</param>

/// <returns>An enumerator of nodes </returns>

/// Iterator over the in-coming edges of a node.

/// <param name="node">The node.</param>

/// <returns>An enumerator of edges.</returns>

IEnumerable<IEdge<N, E>> InEdges(N node):

IEnumerable<IEdge<N, E>> Edges { get; }

bool ContainsEdge(N fromNode, N toNode);

/// Gets the label on an edge

/// Iterator for the edges in the graph, yielding IEdge's

/// Tests whether an edge exists between two nodes.

caparam name="fromNode">The node that the edge emanates

/// <param name="toNode">The node that the edge terminates

/// <param name="fromNode">The node that the edge emanates

/// <param name="toNode">The node that the edge terminates

<returns>True if the edge exists in the graph. False

/// <remarks>May not be supported by all graphs.</remarks>

IEnumerable<IEdge<N, E>> OutEdges(N node);

61

C# Interfaces

/// <summarv>

using System using System.Collections.Generic; using System.Security.Permissions; [assembly: CLSCompliant(true)] namespace OhioState.Collections.Graph /// <summary> /// IEdge provides a standard interface to specify an edge and any /// data associated with an edge within a graph. /// </summarv> /// <typeparam name="N">The type of the nodes in the graph.</typeparam> /// <typeparam name="E">The type of the data on an edge.</typeparam> public interface IEdge<N.E> { /// <summary: /// Get the Node label that this edge emanates from. /// </summary> N From { get; } /// <summarv> /// Get the Node label that this edge terminates at. /// </summary> N To { get; } /// <summarv> /// Get the edge label for this edge. /// </summary> E Value { get; }

graphs-1 - 62

/// The Graph interface /// </summarv> /// <typeparam name="N">The type associated at each node. Called a node or node label</typepa /// <typeparam name="E">The type associated at each edge. Also called the edge label.</typepa public interface IGraph<N.E> { /// <summary> /// Iterator for the nodes in the graoh /// </summarv IEnumerable<N> Nodes { get; } /// <summa /// Iterator for the children or neighbors of the specified node. /// </summarv> /// <param name="node">The node.</param> /// <returns>An enumerator of nodes.</returns> IEnumerable<N> Neighbors(N node); /// <summarv> /// Iterator over the parents or immediate ancestors of a node /// </summary /// <remarks>May not be supported by all graphs.</remarks> /// <param name="node">The node.</param /// <returns>An enumerator of nodes.</returns> [Enumerable<N> Parents(N node):

C# Interfaces

using System;

namespace OhioState.Collections.Graph { /// <summary> /// Graph interface for graphs with finite size. /// </summarv> /// <typeparam name="N">The type associated at each node. Called a node or node label</typeparam> /// <typeparam name="E">The type associated at each edge. Also called the edge label.</typeparam> /// <seealso cref="IGraph{N, E}"/> public interface IFiniteGraph<N, E> : IGraph<N, E> { /// <summary> /// Get the number of edges in the graph. /// </summary> int NumberOfEdges { get; } /// <summary> /// Get the number of nodes in the graph. /// </summarv> int NumberOfNodes { get; }

graphs-1 - 63

}