Graphs

Partially from io.uwinnipeg.ca/~ychen2

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
» Symmetric if G is undirected.
» Not necessarily so if G is directed.
- If G is connected:
» There is a path between every pair of vertices.
» $|E| \geq|V|-1$.
» Furthermore, if $|E|=|V|-1$, then G is a tree.
- Other definitions in Appendix B (B. 4 and B.5) as needed.

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V, \operatorname{Adj}[u]$ consists of all vertices adjacent to u.

If weighted, store weights also in adjacency lists.

graphs-1-5

Storage Requirement

- For directed graphs:
" Sum of lengths of all adj. lists is

$$
\sum_{v \in V} \text { out-degree }(v)=|E|
$$

» Total storage: $\Theta(|V|+|E|)$

- For undirected graphs:
" Sum of lengths of all adj. lists is

$$
\sum_{v \in V} \operatorname{degree}(v)=2|E|
$$

No. of edges incident on v. Edge (u, v) is incident on vertices u and v.
» Total storage: $\Theta(|V|+|E|)$

Pros and Cons: adj list

- Pros
» Space-efficient, when a graph is sparse.
» Can be modified to support many graph variants.
- Cons
» Determining if an edge $(u, v) \in \mathrm{G}$ is not efficient.
- Have to search in u 's adjacency list. $\Theta($ degree $(u))$ time.
- $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times|V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by:

$$
A[i, j]=a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

$A=A^{\mathrm{T}}$ for undirected graphs.

Space and Time

- Space: $\Theta\left(V^{2}\right)$.
» Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

traversing a graph

Some graph operations

adjacency matrix		adjacency lists
insertEdge	$\mathrm{O}(1)$	$\underline{O}(\mathrm{e})$
isEdge	$\mathrm{O}(1)$	$\underline{O}(\mathrm{e})$
\#successors?	$\underline{O}(\mathrm{~V})$	$\mathrm{O}(\mathrm{e})$
\#predecessors?	$\mathrm{O}(\mathrm{V})$	$\underline{O}(\mathrm{E})$

Graph Definitions

- Path
» Sequence of nodes $n_{1}, n_{2}, \ldots n_{k}$
» Edge exists between each pair of nodes $\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}+1}$
» Example
- A, B, C is a path

Graph Definitions

- Path
" Sequence of nodes $n_{1}, n_{2}, \ldots n_{k}$
» Edge exists between each pair of nodes n_{i}, n_{i+1}
» Example
- A, B, C is a path
- A, E, D is not a path

Graph Definitions

- Cycle
» Path that ends back at starting node
» Example
- A, E, A
- A, B, C, D, E, A
- Simple path
» No cycles in path
- Acyclic graph

» No cycles in graph

Graph Definitions

- Cycle
» Path that ends back at starting node
» Example
- A, E, A

Graph Definitions

- Reachable
» Path exists between nodes
- Connected graph
» Every node is reachable from some node in graph

(G)

Unconnected graphs

Graph-searching Algorithms

- Searching a graph:
» Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
" Breadth-first Search (BFS).
» Depth-first Search (DFS).

Breadth-first Search

- Input: Graph $G=(V, E)$, either directed or undirected, and source vertex $s \in V$.
- Output:
» $d[v]=$ distance (smallest \# of edges, or shortest path) from s to v, for all $v \in V . d[v]=\infty$ if v is not reachable from s.
» $\pi[v]=u$ such that (u, v) is last edge on shortest path $s \sim \sim v$. - u is v 's predecessor.
» Builds breadth-first tree with root s that contains all reachable vertices.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
» A vertex is "discovered" the first time it is encountered during the search.
» A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
» White - Undiscovered.
» Gray - Discovered but not finished.
» Black - Finished.

BFS for Shortest Paths

- Finished
- Discovered
o Undiscovered


```
BFS(G,S)
1. for each vertex u in V[G] - {s}
    do color[u] \leftarrow white
        l}\begin{array}{l}{d[u]\leftarrow\propto}\\{\pi[u]\leftarrow\mathrm{ nil }}\end{array}}\mathrm{ initialization
    color[s] }\leftarrow\mathrm{ gray 
    d[s]\leftarrow0
    \pi[s]}\leftarrow\mathrm{ nil
    Q\leftarrow\Phi
    enqueue(Q,s)
    while Q # = Ф
        do u }\leftarrow\mathrm{ dequeue(Q)
        for each v in Adj[u]
            do if color[v] = white
                        then color[v]}\leftarrow\mathrm{ gray 
                            d[v]}\leftarrowd[u]+
                                \pi[v]}\leftarrow
                                enqueue(Q,v)
        color[u]}\leftarrow\mathrm{ black
            access source s
```

white: undiscovered
gray: discovered
black: finished
Q : a queue of discovered
vertices
color[v]: color of v
$\mathrm{d}[\mathrm{v}]$: distance from s to v
$\pi[u]$: predecessor of y

Example (BFS)

Example (BFS)

Q: $\begin{array}{lll}\mathrm{r} & \mathrm{t} & \mathrm{x} \\ 1 & 2 & 2\end{array}$
122

Example (BFS)

Example (BFS)

Example (BFS)

Example (BFS)

Example (BFS)

graphs-1 - 30

Analysis of BFS

- Initialization takes $O(|V|)$.
- Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(|V|)$.
» The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(|E|)$.
- Summing up over all vertices => total running time of BFS is $O(|V|+|E|)$, linear in the size of the adjacency list representation of graph.

Breadth-first Tree

- For a graph $G=(V, E)$ with source s, the predecessor subgraph of G is $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where
" $V_{\pi}=\{v \in V: \pi[v] \neq n i l\} \cup\{s\}$
" $E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
" V_{π} consists of the vertices reachable from s and
" for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges.
$\left|E_{\pi}\right|=\left|V_{\pi}\right|-1$.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Imput: $G=(V, E)$, directed or undirected. No source vertex given!
- Output:
» 2 timestamps on each vertex. Integers between 1 and $2|\mathrm{~V}|$.
- $d[v]=$ discovery time (v turns from white to gray)
- $f[v]=$ finishing time (v turns from gray to black)
» $\pi[v]$: predecessor of $v=u$, such that v was discovered during the scan of u 's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
" "discovered" the first time it is encountered during the search.
" A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

```
DFS(G)
. for each vertex }u\inV[G
        do color [u]}\leftarrow\mathrm{ white
            \pi[u]}\leftarrow\mathrm{ NIL
4. time \leftarrow0
5. for each vertex }u\inV[G
6. do if color[u] = white
then DFS-Visit(u)
```

```
Uses a global timestamp time.
```

```
DFS-Visit(u)
1. color [u]}\leftarrow\mathrm{ GRAY // White vertex }
                has been discovered
    time \leftarrow time + 1
    d[u]}\leftarrowt\mathrm{ time
    for each v\in\operatorname{Adj[u]}
            do if color[v] = WHITE
            then }\pi[v]\leftarrow
                                    DFS-Visit(v)
    color[u]}\leftarrow\mathrm{ BLACK // Blacken u;
                                it is finished.
    f[u]}\leftarrow\mathrm{ time }\leftarrow\mathrm{ time + 1
```


Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Example (DFS)

Analysis of DFS

- Loops on lines 1-2 \& 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFSVisit is executed $|\operatorname{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V}|\operatorname{Adj}[v]|=\Theta(E)$
- Total running time of DFS is $\Theta(|V|+|E|)$.

Recursive DFS Algorithm

Traverse()

for all nodes X
set X.tag = False
Visit ($1^{\text {st }}$ node)
Visit (X)
set X.tag = True
for each successor Y of X
if (Y.tag = False)
Visit (Y)

Example (Parenthesis Theorem)

$$
(\mathrm{s}(\mathrm{z}(\mathrm{y}(\mathrm{x} \mathrm{x}) \mathrm{y})(\mathrm{w} \mathrm{w}) \mathrm{z}) \mathrm{s})(\mathrm{t}(\mathrm{v} \mathrm{v})(\mathrm{u} u) \mathrm{t})
$$

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi}=\left(V, E_{\pi}\right)$ where $E_{\pi}=\{(\pi[v], v): v \in V$ and $\pi[v] \neq n i l\}$.
» How does it differ from that of BFS?
" The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

White-path Theorem

Theorem 22.9

v is a descendant of u in $D F$-tree if and only if at time $d[u]$, there is a path $u \sim \vee v$ consisting of only white vertices. (Except for u, which was just colored gray.)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Classifying edges of a digraph

- (u, v) is:
» Tree edge - if v is white
» Back edge - if v is gray
» Forward or cross - if v is black
- (u, v) is:
» Forward edge - if v is black and $\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]$ (v was discovered after u)
» Cross edge - if v is black and $\mathrm{d}[\mathrm{u}]>\mathrm{d}[\mathrm{v}]$ (u discovered after v)

More applications

- Does directed G contain a directed cycle? Do DFS if back edges yes. Time $\mathrm{O}(\mathrm{V}+\mathrm{E})$.
- Does undirected G contain a cycle? Same as directed but be careful not to consider (u, v) and (v, u) a cycle.
Time $\mathrm{O}(\mathrm{V})$ since encounter at most $|\mathrm{V}|$ edges (if (u, v) and (v, u) are counted as one edge), before cycle is found.
- Is undirected G a tree? Do dfsVisit(v). If all vertices are reached and no back edges G is a tree. $\mathrm{O}(\mathrm{V})$

```
using System;
using System.Collections.Generic;
using System.Security.Permission
[assembly: CLSCompliant(true)]
namespace OhioState.Collections.Graph {
    III IEdge provides a standard interface to speciy
    // data associated with an edge within a graph.
    I// < summary>
        <typeparam name="N">The type of the nodes in the
        aph.<lypeparam>
    ublic interface IEdge<N.E>
        /|/ <summary>
        II| Get the Node labet that this edge emanates from.
        N From{get}
        N From { get;
        /// Get the Node label that this edge terminates at.
    I/I </summary>
    NTo{get, }
    /|/ <summary
    /// Get the edge label for this edge
    E Value { get;
    E Value {get;}
    }
```

sing System.Security.Permission
namespace OhioState.Collections.Graph
// IEdge provides a standard interface to spe
dila associated with an edge wilhin a graph.
<typeparam name="N">The type of the nodes in the
III ctypeparam name="E"The typ
I/I <summary>
ode label that this edge emanates fron
N From \{ get
/// Get the Node label that this edge terminates at.
NTo \{ get, \}
/// Get the edge label for this edge.
E Value \{get; \}

C\# Interfaces

III <summary>

I/I The Graph interfa
I/ </summary>
node or node labelk|"
II stypeparam name="E"गThe type associated at each edge. Also called
the edge label. Ctypeparam>
public interface IGraph<N,E>
III < summary>
<lsummary> nodes in the graoh.
Enumerable<N>Nodes \{get; $\}$
III <summary>
I// Iterator for the children or neighbors of the specified node.
III < ssummary>
/ <param name="node">The node.//param>
//returns>An enumerator of nodes.//returns>
IEnumerable<N> Neighbors(N node);
II/ <summary>
IIII Iterator over the parents or immediate ancestors of a node.
III </summary>
I/I <remarks>May not be supported by all graphs.</remarks>
I/ <param name="node">The node.</param>>
(IEnumerable<N>Parents(N node);

C\# Interfaces

```
<summary>
Iterator ver the emanating edges from a node
I|l/summary>
<param name="noce">Thenter,
/ <returns>An enumerator of nodes./\/\return
```



```
I/I/ <summary>
/Iterator over the in-coming edges of a node
//<<emarks>May not be supported by all graphs.</remarks>
// <param name="node">The node.<\param
<returns SAn enumerator of edges.<lreturns)
*)
I/ Iteratof for the edges in the graph, yielding IEdge's
Enumerable<EIEdge<N, E>> Edges { get;
</\Tests whether an edge exists between two nodes
M
l/<param name="fromNode">The node that the edge emanates
trom.<param
<param name="toNode">The node that the edge terminates
<returns>True if the edge exists in the graph Fals
sin
l/\\mathrm{ Summary>}
\/|<<paramaname""fromNode">The node that the edge emanates
l/<param name="toNode">The node that the edge terminates
```

II <returns> The edge. /returns>
E GetEdgeLabel(N fromNode, N toNode)
III <summary>
III Exception safe routine to get the label on an edge.
III \ll sparammany> name"fromNode">The node that the edge emanates
Ifrom.4p/param>
III <param name="toNode">The node that the edge terminates
III <param name="toNode">The node that the edge terminates
at alparam>
I/I <param name="edge"> The resulting edge if the method was
ali\llparam name="edge"
successful. A d defautit
III value for the type if the edge could not be found./<param>

h/ rel Turns True if the edge was found. False otherwise

C\# Interfaces

using System;
namespace OhioState. Collections.Graph \{
III <summary>
I// Graph interface for graphs with finite size.
III </summary>
III <typeparam name="N">The type associated at each node. Called a node or node label</typeparam>
<typeparam name="E"> The type associated at each edge. Also called the edge label.<ttypeparam>
III <seealso cref="IGraph\{N, E\}"/>
public interface IFiniteGraph<N, E> : IGraph<N, E> \{
III <summary>
I/I Get the number of edges in the graph.
I/I </summary>
int NumberOfEdges \{ get; \}
III <summary>
/// Get the number of nodes in the graph.
I/I </summary>
int NumberOfNodes $\{$ get; $\}$
\}

