

Motivation

- Arrays provide an indirect way to access a set.
- Many times we need an association between two sets, or a set of keys and associated data.
- Ideally we would like to access this data directly with the keys.
- We would like a data structure that supports fast search, insertion, and deletion.
- Do not usually care about sorting.
- The abstract data type is usually called a Dictionary or Partial Map
- float googleStockPrice = stocks["Goog"].CurrentPrice;

- What is the best way to implement this?
- Linked Lists?
- Double Linked Lists?
- Queues?
- Stacks?
- Multiple indexed arrays (e.g., data[key[i]])?
- To answer this, ask what the complexity of the operations are:
- Insertion
- Deletion
- Search

Direct Addressing

- Let's look at an easy case, suppose:
- The range of keys is $0 . . m-1$
- Keys are distinct
- Possible solution
- Set up an array T[0..m-1] in which
- $T[1]=x \quad$ if $x \in T$ and $\operatorname{key}[x]=i$
- $T[1]=$ NULL otherwise
- This is called a direct-address table
- Operations take $O(1)$ time!
- So what's the problem?

Direct Addressing

- Direct addressing works well when the range m of keys is relatively small
- But what if the keys are 32-bit integers?
- Problem 1: direct-address table will have 2^{32} entries, more than 4 billion
- Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- Solution: map keys to smaller range 0..p-1
- Desire $p=\boldsymbol{O}(m)$.

Hash Table

- Hash Tables provide $\boldsymbol{O}(1)$ support for all of these operations!
- The key is rather than index an array directly, index it through some function, $\boldsymbol{h}(x)$, called a hash function.
- myArray[h (index)]
- Key questions:
-What is the set that the x comes from?
- What is $h()$ and what is its range?

Hash Table

- Consider this problem:
- If I know a prior the m keys from some finite set \mathbf{U}, is it possible to develop a function $h(x)$ that will uniquely map the m keys onto the set of numbers $0 . . m-1$?

Hash Functions

- In general a difficult problem. Try something simpler.

Hash Functions

- A collision occurs when $h(x)$ maps two keys to the same location.

Hash Functions

- A hash function, \boldsymbol{h}, maps keys of a given type to integers in a fixed interval [$0, N-1$]
- Example:
$h(x)=x \bmod N$
is a hash function for integer keys
- The integer $\boldsymbol{h}(\boldsymbol{x})$ is called the hash value of \boldsymbol{x}.
- A hash table for a given key type consists of
- Hash function h
- Array (called table) of size N
- The goal is to store item $(\boldsymbol{k}, \boldsymbol{o})$ at index $\boldsymbol{i}=\boldsymbol{h}(\boldsymbol{k})$

Example

 storing employees records using their social security number, SSN as the key.- SSN is a nine-digit positive integer
- Our hash table uses an array of size $N=10,000$ and the hash function $\boldsymbol{h}(\boldsymbol{x})=$ last four digits of \boldsymbol{x}

- Our hash table uses an array of size $\mathbf{N}=100$.

- We have $\boldsymbol{n}=49$ employees.
- Need a method to handle collisions.
- As long as the chance for collision is low, we can achieve this goal.
- Setting N = 1000 and looking at the last four digits will reduce the chance of collision.

Collisions

- Can collisions be avoided?
- In general, no. See perfect hashing for the case were the set of keys is static (not covered).
- Two primary techniques for resolving collisions:
- Chaining - keep a collection at each key slot.
- Open addressing - if the current slot is full use the next open one.

- How do we insert an element?

Chaining

- Chaining puts elements that hash to the same slot in a linked list:

Chaining

- How do we search for a element with a

Open Addressing

- Basic idea:
- To insert: if slot is full, try another slot, ..., until an open slot is found (probing)
- To search, follow same sequence of probes as would be used when inserting the element
- If reach element with correct key, return it
- If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
- Example: spell checking

Open Addressing

- The colliding item is placed in a different cell of the table.
- No dynamic memory.
- Fixed Table size.
- Load factor: n / N, where n is the number of items to store and N the size of the hash table.
- Cleary, $n \leq \mathrm{N}$, or $n \mathbb{N} \leq 1$.
- To get a reasonable performance, $n / \mathrm{N}<0.5$.

Probing

- They key question is what should the next cell to try be?
- Random would be great, but we need to be able to repeat it.
- Three common techniques:
- Linear Probing (useful for discussion only)
- Quadratic Probing
- Double Hashing
- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell.
- Each table cell inspected is referred to as a probe.
- Colliding items lump together, causing future collisions to cause a longer sequence of probes.

- Consider a hash table \boldsymbol{A} that uses linear probing
- $\operatorname{get}(k)$
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive locations until one of the following occurs
- An item with key \boldsymbol{k} is found or
- An empty cell is found, or
- N cells have been unsuccessfully probed
- To ensure the efficiency, if k is not in the table, we want to find an empty cell as soon as possible. The load factor can NOT be close to 1 .

Algorithm
$i \leftarrow h(k)$
$p \leftarrow 0$
repeat
$c \leftarrow A[i]$
if $c=\varnothing$
return null else if $\boldsymbol{c} . \mathrm{key}()=\boldsymbol{k}$
return c.element() else
$\mathbf{i} \leftarrow(\boldsymbol{i}+1) \bmod N$

$$
\boldsymbol{p} \leftarrow \boldsymbol{p}+1
$$

until $p=N$
return null

Linear Probing

- Search for key=20.
- $\mathrm{h}(20)=20 \bmod 13=7$.
- Go through rank $8,9, \ldots, 12$, 0.
- Search for key=15
- $\mathrm{h}(15)=15 \bmod 13=2$
- Go through rank 2, 3 and return null.

Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements
- remove(k)
- We search for an entry with key k
- If such an entry $(\boldsymbol{k}, \boldsymbol{o})$ is found, we replace it with the special item AVAILABLE and we return element \boldsymbol{o}
- Have to modify other methods to skip available cells.
- put($\boldsymbol{k}, \boldsymbol{o})$
- We throw an exception if the table is full
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive cells until one of the following occurs
- A cell i is found that is either empty or stores AVAILABLE, or
- N cells have been unsuccessfully probed
- We store entry $(\boldsymbol{k}, \boldsymbol{o})$ in cell \boldsymbol{i}

Quadratic Probing

- Primary clustering occurs with linear probing because the same linear pattern:
- if a bin is inside a cluster, then the next bin must either:
- also be in that cluster, or
- expand the cluster
- Instead of searching forward in a linear fashion, consider searching forward using a quadratic function

Quadratic Probing

- Suppose that an element should appear in bin h :
- if bin h is occupied, then check the following sequence of bins:
$h+1^{2}, h+2^{2}, h+3^{2}, h+4^{2}, h+5^{2}, \ldots$
$h+1, h+4, h+9, h+16, h+25, \ldots$
- For example, with $\mathrm{M}=17$:

Quadratic Probing

- For example, suppose an element was If one of $h+i^{2}$ falls into a cluster
does not imply the next one will to be inserted in bin 23 in a hash table with 31 bins
- The sequence in which the bins would be checked is:

$$
23,24,27,1,8,17,28,10,25,11,30,20,12,6,2,0
$$

Quadratic Probing

- Even if two bins are initially close, the sequence in which subsequent bins are checked varies greatly
- Again, with $\mathrm{M}=31$ bins, compare the first 16 bins which are checked starting with 22 and 23 :

$22,23,26,0,7,16,27,9,24,10,29,19,11,5,1,30$

$23,24,27,1,8,17,28,10,25,11,30,20,12,6,2,0$

Quadratic Probing

- Thus, quadratic probing solves the problem of primary clustering
- Unfortunately, there is a second problem which must be dealt with
- Suppose we have $\mathrm{M}=8$ bins:

$$
1^{2} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 1
$$

- In this case, we are checking bin $h+1$ twice having checked only one other bin

Quadratic Probing

- Unfortunately, there is no guarantee that $h+i^{2} \bmod \mathrm{M}$
will cycle through $0,1, \ldots, \mathrm{M}-1$
- Solution:
- require that M be prime
- in this case, $h+i^{2} \bmod \mathrm{M}$ for $i=0, \ldots$, (M
1)/2 will cycle through exactly $(M+1) / 2$
values before repeating

Quadratic Probing

- Example with $\mathrm{M}=11$:
$0,1,4,9,16 \equiv 5,25 \equiv 3,36 \equiv 3$
- With M = 13:
$0,1,4,9,16 \equiv 3,25 \equiv 12,36 \equiv 10,49 \equiv 10$
- With $\mathrm{M}=17$:
$0,1,4,9,16,25 \equiv 8,36 \equiv 2,49 \equiv 15,64 \equiv 13,81 \equiv$ 13

Quadratic Probing

- Thus, quadratic probing avoids primary clustering
- Unfortunately, we are not guaranteed that we will use all the bins
- In reality, if the hash function is reasonable, this is not a significant problem until λ approaches 1

Secondary Clustering

- The phenomenon of primary clustering will not occur with quadratic probing
- However, if multiple items all hash to the same initial bin, the same sequence of numbers will be followed
- This is termed secondary clustering
- The effect is less significant than that of primary clustering

Double Hashing

- Use two hash functions
- If \mathbf{M} is prime, eventually will examine every position in the table
- double_hash_insert(K)
if(table is full) error
probe $=\mathrm{h} 1(\mathrm{~K})$
offset $=$ h2(K)
while (table[probe] occupied)
probe $=($ probe + offset $) \bmod M$ table[probe] = K

Double Hashing

- Many of same (dis)advantages as linear probing
- Distributes keys more uniformly than linear probing does
- Notes:
- h2(x) should never return zero.
- M should be prime.

Double Hashing Example

- $\mathrm{h} 1(\mathrm{~K})=\mathrm{K} \bmod 13$
- $\mathrm{h} 2(\mathrm{~K})=8-\mathrm{K} \bmod 8$
- we want h2 to be an offset to add
- 1841224459323173

Open Addressing Summary

- In general, the hash function contains two arguments now:
- Key value
- Probe number
$h(k, p), \quad p=0,1, \ldots, m-1$
- Probe sequences

$$
<h(k, 0), h(k, 1), \ldots, h(k, m-1)>
$$

- Should be a permutation of $\langle 0,1, \ldots, \mathrm{~m}-1\rangle$
- There are m ! possible permutations
- Good hash functions should be able to produce all m ! probe sequences

Open Addressing Summary

- None of the methods discussed can generate more than m^{2} different probing sequences.
- Linear Probing:
- Clearly, only m probe sequences.
- Quadratic Probing:
- The initial key determines a fixed probe sequence, so only m distinct probe sequences.
- Double Hashing
- Each possible pair $\left(\mathrm{h}_{1}(\mathrm{k}), \mathrm{h}_{2}(\mathrm{k})\right.$) yields a distinct probe, so m^{2} permutations.

Choosing A Hash Function

- Clearly choosing the hash function well is crucial.
- What will a worst-case hash function do?
- What will be the time to search in this case?
- What are desirable features of the hash function?
- Should distribute keys uniformly into slots
- Should not depend on patterns in the data

From Keys to Indices

- A hash function is usually the composition of two maps:
- hash code map: key \rightarrow integer
- compression map: integer $\rightarrow[0, \mathrm{~N}-1]$
- An essential requirement of the hash function is to map equal keys to equal indices
- A "good" hash function minimizes the probability of collisions

Java Hash

- Java provides a hashCode() method for the Object class, which typically returns the 32-bit memory address of the object.
- This default hash code would work poorly for Integer and String objects
- The hashCode() method should be suitably redefined by classes.

Popular Hash-Code Maps

- Integer cast: for numeric types with 32 bits or less, we can reinterpret the bits of the number as an int
- Component sum: for numeric types with more than 32 bits (e.g., long and double), we can add the 32-bit components.

Popular Hash-Code Maps

- Polynomial accumulation: for strings of a natural language, combine the character values (ASCII or Unicode) a_{0} $a_{1} \ldots a_{n-1}$ by viewing them as the coefficients of a polynomial: $a_{0}+a_{1} x+$ $\ldots+x_{n-1} a_{n-1}$

Popular Hash-Code Maps

- The polynomial is computed with Horner's rule, ignoring overflows, at a fixed value x : $a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-2}+x a_{n-1}\right) \ldots\right)\right)$
- The choice $x=33,37,39$, or 41 gives at most 6 collisions on a vocabulary of 50,000 English words
- Why is the component-sum hash code bad for strings?

Random Hashing

- Random hashing

- Uses a simple random number generation technique
- Scatters the items "randomly" throughout the hash table

Popular Compression Maps

- Division: $\mathrm{h}(\mathrm{k})=|\mathrm{k}| \bmod N$
- the choice $N=2 k$ is bad because not all the bits are taken into account
- the table size N is usually chosen as a prime number
- certain patterns in the hash codes are propagated
- Multiply, Add, and Divide (MAD):
- $\mathrm{h}(\mathrm{k})=|\mathrm{a} k+\mathrm{b}| \bmod N$
- eliminates patterns provided $a \bmod N \neq 0$
- same formula used in linear congruential (pseudo) random number generators

The Division Method

- $h(k)=k \bmod m$
- In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- What happens to elements with adjacent values of k ?
- What happens if m is a power of 2 (say 2^{P})?
- What if m is a power of $10 ?$
- Upshot: pick table size $m=$ prime number not too close to a power of 2 (or 10)

The Multiplication Method

- For a constant $A, 0<A<1$:
- $\mathrm{h}(\mathrm{k})=\lfloor m \underbrace{(k A-\lfloor k A\rfloor})\rfloor$

What does this term represent?

The Multiplication Method

- For a constant $A, 0<A<1$:
- $\mathrm{h}(\mathrm{k})=\lfloor m \underbrace{(k A-\lfloor k A\rfloor})\rfloor$

Fractional part of kA

- Choose $m=2^{P}$
- Choose A not too close to 0 or 1
- Knuth: Good choice for $A=(\sqrt{5}-1) / 2$

Analysis of Chaining

- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot.
- Given n keys and m slots in the table: the load factor $\alpha=n / m=$ average \# keys per slot.

Analysis of Chaining

- What will be the average cost of an unsuccessful search for a key?
- $\mathrm{O}(1+\alpha)$

Analysis of Chaining

- What will be the average cost of an unsuccessful search for a key?
- $\mathrm{O}(1+\alpha)$

Analysis of Chaining

- What will be the average cost of a successful search?
- $\mathrm{O}(1+\alpha / 2)=\mathrm{O}(1+\alpha)$

Analysis of Chaining

- So the cost of searching $=\mathrm{O}(1+\alpha)$
- If the number of keys n is proportional to the number of slots in the table, what is α ?
- A: $\alpha=\mathrm{O}(1)$
- In other words, we can make the expected cost of searching constant if we make α constant

Analysis of Open Addressing

- Consider the load factor, α, and assume each key is uniformly hashed.
- Probability that we hit an occupied cell is then α.
- Probability that we the next probe hits an occupied cell is also α.
- Will terminate if an unoccupied cell is hit: $\alpha(1-\alpha)$.
- From Theorem 11.6, the expected number of probes in an unsuccessful search is at most 1/(1- α).
- Theorem 11.8: Expected number of probes in a successful search is at most:

$$
\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right)
$$

