

Sorting Review

- Insertion Sort
- $T(n)=\Theta\left(n^{2}\right)$
- In-place
- Merge Sort
- $T(n)=\Theta(n \lg (n))$
- Not in-place
- Selection Sort (from homework)
- $T(n)=\Theta\left(n^{2}\right)$
- In-place
- Heap Sort
- $T(n)=\Theta(n \lg (n))$
- In-place

Comparison Sorting

- Given a set of n values, there can be n !

1. No knowledge of the keys or numbers we are sorting on.
2. Each key supports a comparison interface or operator.
3. Sorting entire records, as opposed to permutations of these values.

- So if we look at the behavior of the sorting algorithm over all possible n ! inputs we can determine the worst-case numbers, is an implementation detail.

4. Each key is unique (just for convenience).

Comparison Sorting complexity of the algorithm.

Decision Tree

Decision Tree Model

Decision tree model

- Full binary tree
- A full binary tree (sometimes proper binary tree or 2tree) is a tree in which every node other than the leaves has two children
- Internal node represents a comparison.
- Ignore control, movement, and all other operations, just see comparison
- Each leaf represents one possible result (a permutation of the elements in sorted order).
- The height of the tree (i.e., longest path) is the lower bound.

Internal node $i: j$ indicates comparison between a_{i} and a_{j}. suppose three elements < a1, a2, a3> with instance <6,8,5> Leaf node $<\pi(1), \pi(2), \pi(3)>$ indicates ordering $a_{\pi(1)} a_{\pi(2)} a_{\pi(3)}$. Path of bold lines indicates sorting path for $<6,8,5>$. There are total $3!=6$ possible permutations (paths).

Decision Tree Model

- The longest path is the worst case number of comparisons. The length of the longest path is the height of the decision tree.
- Theorem 8.1: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.
- Proof:
- Suppose height of a decision tree is h, and number of paths (i,e,, permutations) is $n!$.
- Since a binary tree of height h has at most 2^{h} leaves, - $n!\leq 2^{h}$, so $h \geq \lg (n!) \geq \Omega(n \lg n)$ (By equation 3.18).
- That is to say: any comparison sort in the worst case needs at least $\boldsymbol{n l g} \boldsymbol{n}$ comparisons.

QuickSort Design

- Follows the divide-and-conquer paradigm.
- Divide: Partition (separate) the array $A[p . . r]$ into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$.
- Each element in $A[p . . q-1]$ < $A[q]$.
- $A[q]$ < each element in $A[q+1 . . r]$.
- Index q is computed as part of the partitioning procedure.
- Conquer: Sort the two subarrays by recursive calls to quicksort.
- Combine: The subarrays are sorted in place - no work is needed to combine them.
- How do the divide and combine steps of quicksort compare with those of merge sort?

Pseudocode

Example

```
```

Quicksort(A, p,r)

```
```

Quicksort(A, p,r)
if p<r then
if p<r then
q := Partition(A, p, r);
q := Partition(A, p, r);
Quicksort(A, p, q-1);
Quicksort(A, p, q-1);
Quicksort(A, q + 1, r)

```
```

 Quicksort(A, q + 1, r)
    ```
```

 A[p..r]
 5

Partition

Partition(A, p, r)
$x, i:=A[r], p-1$;
for $\mathrm{j}:=\mathrm{p}$ to $\mathrm{r}-1$ do
if $A[] \leq x$ then
$\mathrm{i}:=\mathrm{i}+1$;
$A[i] \leftrightarrow A[j]$
$A[i+1] \leftrightarrow A[r] ;$
return $\mathrm{i}+1$

Partition(A, p, r)
$\mathrm{x}, \mathrm{i}:=\mathrm{A}[\mathrm{r}], \mathrm{p}-1$;
for $\mathrm{j}:=\mathrm{p}$ to $\mathrm{r}-1$ do
if $A[j] \leq x$ then
$A[i] \leftrightarrow A[j]$
$A[i+1] \leftrightarrow A[r] ;$
return $\mathrm{i}+1$

Partition(A, p, r)
 $x, i:=A[r], p-1$;

for $\mathrm{j}:=\mathrm{p}$ to $\mathrm{r}-1$ do
if $A[j] \leq x$ then $\mathrm{i}:=\mathrm{i}+1$;
$A[i] \leftrightarrow A[j]$
$A[i+1] \leftrightarrow A[r] ;$ return $\mathrm{i}+1$

Partitioning

- Select the last element $\mathrm{A}[r]$ in the subarray $A[p . . r]$ as the pivot - the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions. 1. $A[p . i]$ - All entries in this region are < pivot. 2. $A[i+1 . . j-1]$ - All entries in this region are > pivot. 3. $A[r]=$ pivot.

4. $A[j . . r-1]$ - Not known how they compare to pivot.

- The above hold before each iteration of the for loop, and constitute a loop invariant. (4 is not part of the loopi.)

Correctness of Partition

- Use loop invariant.
- Initialization:
- Before first iteration
- $A[p . .1]$ and $A[i+1 . . j-1]$ are empty - Conds. 1 and 2 are satisfied (trivially).
- r is the index of the pivot
- Cond. 3 is satisfied.

Maintenance:

- Case 1: $A[J]>x$
- Increment j only.
- Loop Invariant is maintained.
$\frac{\text { Partition }(A, p, r)}{x, i:=A[r]}$
$x, i:=A[r], p-1 ;$
for $\mathrm{j}:=\mathrm{p}$ to $\mathrm{r}-1$ do
if $A[j] \leq x$ then
$\mathrm{i}:=\mathrm{i}+1$;
$A[i] \leftrightarrow A[j]$
$A[i+1] \leftrightarrow A[r] ;$
return $\mathrm{i}+1$

Correctness of Partition

Case 1:

Correctness of Partition

- Termination:

- When the loop terminates, $j=r$, so all elements in A are partitioned into one of the three cases:
- A $[p . .1] \leq$ pivot
- A[i+1..j - 1] > pivot
- $A[r]=$ pivot
- The last two lines swap $A[i+1]$ and $A[r]$.
- Pivot moves from the end of the array to between the two subarrays.
- Thus, procedure partition correctly performs the divide step.

Complexity of Partition

- PartitionTime(n) is given by the number of iterations in the for loop.
- $\Theta(n): n=r-p+1$.

Partitioning in Quicksort

- A key step in the Quicksort algorithm is partitioning the array
- We choose some (any) number p in the array to use as a pivot
- We partition the array into three parts:

Alternative Partitioning

- Choose an array value (say, the first) to use as the pivot
- Starting from the left end, find the first element that is greater than or equal to the pivot
- Searching backward from the right end, find the first element that is less than the pivot

- Interchange (swap) these two elements
- Repeat, searching from where we left off, until done

Alternative Partitioning

Example of partitioning

WWivis

- To partition a[left...right]:

Set pivot $=a[$ left $], I=l e f t+1, r=r i g h t ;$
while I $<$ r, do
while $\mathrm{I}<$ right \& $\mathrm{a}[\mathrm{I}]<$ pivot , set $\mathrm{I}=\mathrm{I}+1$
while $r>$ left $\& a[r]>=$ pivot, set $r=r-1$
if $I<r$, swap $a[I]$ and $a[r]$
Set $a[$ left $]=a[r], a[r]=$ pivot
Terminate

- choose pivot:
- search:
- swap:
- search:
- swap:
- search:
- swap:
- search:
- swap with pivot:

133122344989656

Partition Implementation (Java)

```
static int Partition(int[] a, int left, int right) {
    int p = a[left], I = left + 1, r = right;
    while (I <r) {
        while (I < right && a[I] < p) I++;
        while (r> left && a[r] >= p) r--;
        if (l <r) {
            int temp =a[I]; a[I] = a[r]; a[r] = temp;
        }
    }
    a[left] = a[r];
    a[r] = p;
    return r;
}
```


Analysis of quicksort—best case

- Suppose each partition operation divides the array almost exactly in half
- Then the depth of the recursion in $\log _{2} n$
- Because that's how many times we can halve n
- We note that
- Each partition is linear over its subarray
- All the partitions at one level cover the array

Partitioning at various levels प||||||||||||||||||| | | | | | | | | | | | | |
| :--- |

\square

Best Case Analysis

- We cut the array size in half each time
- So the depth of the recursion in $\log _{2} n$
- At each level of the recursion, all the partitions at that level do work that is linear in n
- $O\left(\log _{2} n\right) * O(n)=O\left(n \log _{2} n\right)$
- Hence in the best case, quicksort has time complexity $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$
- What about the worst case?

Worst case

- In the worst case, partitioning always divides the size n array into these three parts:
- A length one part, containing the pivot itself
- A length zero part, and
- A length $\mathrm{n}-1$ part, containing everything else
- We don't recur on the zero-length part
- Recurring on the length n-1 part requires (in the worst case) recurring to depth $\mathrm{n}-1$

Worst case partitioning

Worst case for quicksort

- In the worst case, recursion may be n levels deep (for an array of size n)
- But the partitioning work done at each level is still n
- $\mathrm{O}(\mathrm{n}) * \mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- So worst case for Quicksort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- When does this happen?
- There are many arrangements that could make this happen
- Here are two common cases:
- When the array is already sorted
- When the array is inversely sorted (sorted in the opposite order)

Typical case for quicksort

- If the array is sorted to begin with, Quicksort is terrible: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- It is possible to construct other bad cases
- However, Quicksort is usually $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$
- The constants are so good that Quicksort is generally the faster algorithm.
- Most real-world sorting is done by Quicksort

Picking a better pivot

- Before, we picked the first element of the subarray to use as a pivot
- If the array is already sorted, this results in $O\left(n^{2}\right)$ behavior
- It's no better if we pick the last element
- We could do an optimal quicksort (guaranteed O($n \log n$)) if we always picked a pivot value that exactly cuts the array in half
- Such a value is called a median: half of the values in the array are larger, half are smaller
- The easiest way to find the median is to sort the array and pick the value in the middle (!)

Median of three

- Obviously, it doesn't make sense to sort the array in order to find the median to use as a pivot.
- Instead, compare just three elements of our (sub)array-the first, the last, and the middle

Quicksort for Small Arrays

- For very small arrays ($\mathrm{N}<=20$), quicksort does not perform as well as insertion sort
- A good cutoff range is $\mathrm{N}=10$
- Take the median (middle value) of these three as
- Switching to insertion sort for small arrays can save about 15\% in the the pivot running time
- It's possible (but not easy) to construct cases which will make this technique $O\left(\mathrm{n}^{2}\right)$

Mergesort vs Quicksort

- Both run in O($n \lg n)$
- Compared with Quicksort, Mergesort has

In C++, copying objects can be expensive less number of comparisons but larger number of moving elements

Mergesort vs Quicksort

- In Java, an element comparison is while comparing objects often is relatively cheap. Therefore, quicksort is the sorting routine commonly used in expensive but moving elements is cheap. Therefore, Mergesort is used in the standard Java library for generic sorting C++ libraries

