
HeapsortHeapsort
Based off slides by: David Matuszek
http://www.cis.upenn.edu/~matuszek/cit594-2008/
Based off slides by: David Matuszek

P t d b M tt BPresented by: Matt Boggus

Previous sorting algorithmsg g

Insertion Sort

O(n2) time

Merge Sort

O(n) space

2

Heap data structurep

Binary tree

Balanced

Left-justifiedj

(Max) Heap property: no node has a value greater(Max) Heap property: no node has a value greater
than the value in its parent

3

Balanced binary treesy
Recall:

Th d th f d i it di t f th tThe depth of a node is its distance from the root
The depth of a tree is the depth of the deepest node

A binary tree of depth n is balanced if all the nodes atA binary tree of depth n is balanced if all the nodes at
depths 0 through n-2 have two children

n-2
n 1

Balanced Balanced Not balanced

n-1
n

4

Left-justified binary treesj y

A balanced binary tree of depth n is left-A balanced binary tree of depth n is left
justified if:

it has 2n nodes at depth n (the tree is “full”) orit has 2 nodes at depth n (the tree is full), or
it has 2k nodes at depth k, for all k < n, and all
the leaves at depth n are as far left as possiblet e eaves at dept a e as a e t as poss b e

Left-justified Not left-justified

5

Left justified Not left justified

Building up to heap sortg p p

How to build a heap

How to maintain a heap

How to use a heap to sort datap

6

The heap propertyp p p y

A node has the heap property if the value in the
d i l l h h l i inode is as large as or larger than the values in its

children

12

8 3

12

8 12

12

8 148 3
Blue node has
heap property

8 12
Blue node has
heap property

8 14
Blue node does not
have heap property

All leaf nodes automatically have the heap property
A bi t i h if ll d i it h th

heap property heap property have heap property

7

A binary tree is a heap if all nodes in it have the
heap property

siftUpp

Given a node that does not have the heap property, you can
give it the heap property by exchanging its value with thegive it the heap property by exchanging its value with the
value of the larger child

14

8 12

12

8 14 8 12
Blue node has
heap property

8 14
Blue node does not
have heap property

This is sometimes called sifting up

heap propertyhave heap property

8

Constructing a heap Ig p

A tree consisting of a single node is automatically
a heap
We construct a heap by adding nodes one at a time:

Add the node just to the right of the rightmost node in
the deepest level
If the deepest level is full start a new levelIf the deepest level is full, start a new level

Examples:

Add a new
node here

Add a new
node here

9

Constructing a heap IIg p
Each time we add a node, we may destroy the heap
property of its parent nodeproperty of its parent node
To fix this, we sift up
But each time we sift up the value of the topmost nodeBut each time we sift up, the value of the topmost node
in the sift may increase, and this may destroy the heap
property of its parent node
We repeat the sifting up process, moving up in the tree,
until either

W h d h l d ’t d t b dWe reach nodes whose values don’t need to be swapped
(because the parent is still larger than both children), or
We reach the root

10

Constructing a heap IIIg p

8 8 10 108 8

10

10

8

10

8 5

10 10 12

1 2 3

10

8 5

10

12 5

12

10 5

12 8 8
4

11

Other children are not affected

12 12 1412

10 5

12

14 5

14

12 5

8 14 8 10 8 10

The node containing 8 is not affected because its parent gets larger, not
smaller
The node containing 5 is not affected because its parent gets larger, not
smaller
The node containing 8 is still not affected because, although its parent got
smaller its parent is still greater than it was originally

12

smaller, its parent is still greater than it was originally

A sample heapp p
Here’s a sample binary tree after it has been heapified

25

1722

19 22 14 15

1418 321 119

Notice that heapified does not mean sorted
Heapifying does not change the shape of the binary tree;

13

this binary tree is balanced and left-justified because it
started out that way

Removing the root (animated)g ()
Notice that the largest number is now in the root
Suppose we discard the root:Suppose we discard the root:

1722

11

19 22 14 15

1722

19

1418

22

321

14

119

15

How can we fix the binary tree so it is once again balanced
and left-justified?

14

Solution: remove the rightmost leaf at the deepest level and
use it for the new root

The reHeap method Ip
Our tree is balanced and left-justified, but no longer a heap
However only the root lacks the heap propertyHowever, only the root lacks the heap property

1722

11

19 22 14 15

1722

19

1418

22

321

14

9

15

We can siftUp() the root
After doing this one and only one of its children may have

15

After doing this, one and only one of its children may have
lost the heap property

The reHeap method IIp
Now the left child of the root (still the number 11) lacks
the heap propertythe heap property

1711

22

19 22 14 15

1711

19

1418

22

321

14

9

15

We can siftUp() this node
After doing this one and only one of its children may have

16

After doing this, one and only one of its children may have
lost the heap property

The reHeap method IIIp
Now the right child of the left child of the root (still the
number 11) lacks the heap property:number 11) lacks the heap property:

1722

22

19 11 14 15

1722

19

1418

11

321

14

9

15

We can siftUp() this node
After doing this one and only one of its children may have

17

After doing this, one and only one of its children may have
lost the heap property —but it doesn’t, because it’s a leaf

The reHeap method IVp
Our tree is once again a heap, because every node in it has
the heap propertythe heap property

1722

22

19 21 14 15

1722

19

1418

21

311

14

9

15

Once again, the largest (or a largest) value is in the root
We can repeat this process until the tree becomes empty

18

We can repeat this process until the tree becomes empty
This produces a sequence of values in order largest to smallest

Sortingg
What do heaps have to do with sorting an array?
H ’ hHere’s the neat part:

Because the binary tree is balanced and left justified, it can be
represented as an arrayp y

Danger Will Robinson: This representation works well only with
balanced, left-justified binary trees

All our operations on binary trees can be represented asAll our operations on binary trees can be represented as
operations on arrays
To sort:

heapify the array;heapify the array;
while the array isn’t empty {

remove and replace the root;
h th t d

19

reheap the new root node;
}

Key propertiesy p p

Determining location of root and “last node” take
constant time

Remove n elements, re-heap each time

20

Analysisy

To reheap the root node, we have to follow one path
f h l f d (d i h b ffrom the root to a leaf node (and we might stop before
we reach a leaf)
Th bi t i f tl b l dThe binary tree is perfectly balanced
Therefore, this path is O(log n) long

A d l d O(1) ti t h dAnd we only do O(1) operations at each node
Therefore, reheaping takes O(log n) times

Since we reheap inside a while loop that we do n timesSince we reheap inside a while loop that we do n times,
the total time for the while loop is n*O(log n), or
O(n log n)

21

O(n log n)

Analysisy

Construct the heap O(n log n)

Remove and re-heap O(n log n)

Total time O(n log n) + O(n log n)

22

The End

Continue to priority queues?

23

Priority Queuey Q

Queue – only access element in front

Queue elements sorted by order of importance

Implement as a heap where nodes store priority valuesp p p y

24

Extract Max

Remove root

Swap with last node

Re-heapifyp y

25

Increase Keyy

Change node value

Re-heapify

26

Insert

Add new node, priority is minimum possible value

Increase priority

27

The EndThe End

