Introduction to Algorithms Solving Recursions

CSE 680 Prof. Roger Crawfis

Material adapted from Prof. Shafi Goldwasser, MIT

Substitution method

- The most general method:
 - 1. Guess the form of the solution.
 - 2. Verify (or refine) by induction.
 - 3. Solve for constants.
- **Example:** T(n) = 4T(n/2) + 100n
 - [Assume that $T(1) = \Theta(1)$.]
 - Guess $O(n^3)$. (Prove O and Ω separately.)
 - Assume that $T(k) \leq ck^3$ for k < n.
 - Prove $T(n) \leq cn^3$ by induction.

Example of substitution

A tighter upper bound?

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

Pick c_1 big enough to handle the initial conditions.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
T(n)

Example of recursion tree

Example of recursion tree

Example of recursion tree

Example of recursion tree

Example of recursion tree

Appendix: geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of master theorem Recursion tree: $f(n) \qquad f(n)$ f (n/b) _____ a f (n/b) f (n/b) f (n/b) $h = \log_{b} n$ $a^2 f(n/b^2)$ $f(n/b^2)$ f (n/b²) ••• $f(n/b^2)$ ÷ #leaves = a^h ÷ $= a^{\log_b n}$ $n^{\log_b a} T(1)$ 1 *T*(1) $= n^{\log_b a}$

Idea of master theorem

Three common cases

Compare f(n) with $n^{\log_b a}$:

- **2.** If $f(n) = \Theta(n^{\log_b a})$
 - f(n) and $n^{\log_b a}$ grow at similar rates. Solution: $T(n) = \Theta(n^{\log_b a} \lg n)$.

Three common cases (cont.) Compare f(n) with $n^{\log_b a}$: 3. $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$. • f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor), and f(n) satisfies the *regularity condition* that $a f(n/b) \le c f(n)$ for some constant c < 1. Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

Examples

Ex. T(n) = 4T(n/2) + n $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$

> $f(n) = O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1 \implies \text{Case 1}$ $\therefore T(n) = \Theta(n^2).$

Ex. $T(n) = 4T(n/2) + n^2$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$ $f(n) = \Theta(n^2) \Rightarrow Case 2$ $\therefore T(n) = \Theta(n^{2} \lg n).$

Examples		STATE .
	$\begin{array}{l} (n) = 4 T(n/2) + n^3 \\ a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3. \\ f(n) = \Omega(n^{2+\varepsilon}) \text{ for } \varepsilon = 1 => \text{ Case } 3 \\ and 4(cn/2)^3 \leq cn^3 (\text{reg. cond.}) \text{ for } c = 1/2. \\ \therefore T(n) = \Theta(n^3). \end{array}$	
	$ \begin{array}{l} (n) &= 4 T(n/2) + n^2/\lg n \\ a &= 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2/\lg n. \\ \text{Master method does not apply. In particular, for every constant have } n^{e} = \omega(\lg n). \end{array} $	ε > 0, we