

Material adapted from Prof. Shafi Goldwasser, MIT

Substitution method

- The most general method:

1. Guess the form of the solution.
2. Verify (or refine) by induction.
3. Solve for constants.

- Example: $T(n)=4 T(n / 2)+100 n$
- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

$T(n)=4 T(n / 2)+100 n$
$\leq 4 c(n / 2)^{3}+100 n$
$=(c / 2) n^{3}+100 n$
$=c n^{3}-\left((c / 2) n^{3}-100 n\right)$
\longleftarrow desired - residual
$\leq c n^{3}$
$_$desired
whenever $(c / 2) n^{3}-100 n \geq 0$, for example, if $c \geq 200$ and $n \geq 1$.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

Assume that $T(k) \leq c k^{2}$ for $k<n$:

```
\(T(n)=4 T(n / 2)+100 n\)
```

$\leq c n^{2}+100 n$
$\leq c n^{2}$
for no choice of $c>0$. Lose!

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

```
T(n) = 4T (n / 2) + 100n
    \leq4(c
    = con n
    = con n
    \leqc}\mp@subsup{c}{1}{}\mp@subsup{n}{}{2}-\mp@subsup{c}{2}{}n if c< > 100.
```

Pick c_{1} big enough to handle the initial conditions.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:
$T(n)$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:
Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$\square n^{2}$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Appendix: geometric series

1) 1 and

1川ctict

$$
\begin{gathered}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots=\frac{1}{1-x} \text { for }|x|<1
\end{gathered}
$$

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Three common cases

Compare $f(n)$ with $n^{\log _{b} a}$:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{l^{l o g} b a}\right)$.

Idea of master theorem
 Duld
 靱教

Recursion tree:

Three common cases

Compare $f(n)$ with $n^{\log _{b} a}$:
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$

- $f(n)$ and $n^{\log _{b a}}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.

Three common cases (cont.)

Compare $f(n)$ with $n^{\text {log}_{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that a $f(n / b) \leq c f(n)$ for some constant $c<1$.

Solution: $T(n)=\Theta(f(n))$.

Examples

Ex. $T(n)=4 T(n / 2)+n$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n . \\
& f(n)=O\left(n^{2-\varepsilon}\right) \text { for } \varepsilon=1 \Rightarrow \text { Case } 1 \\
& \therefore T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Ex. $T(n)=4 T(n / 2)+n^{2}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
$f(n)=\Theta\left(n^{2}\right)=>$ Case 2
$\therefore T(n)=\Theta\left(n^{2} \lg n\right)$.

Ex. $T(n)=4 T(n / 2)+n^{3}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3}$.
$f(n)=\Omega\left(n^{2+\varepsilon}\right)$ for $\varepsilon=1 \quad$ => Case 3
and $4(c n / 2)^{3} \leq c n^{3}$ (reg. cond.) for $c=1 / 2$.
$\therefore T(n)=\Theta\left(n^{3}\right)$,

Ex. $(n)=4 T(n / 2)+n^{2} / l g n$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} / \lg n$.
Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\lg n)$

