Introduction to Algorithms Recursion & Merge Sort

> CSE 680 Prof. Roger Crawfis

Motivation

- For insertion sort (and other problems) as *n* doubles in size, the quadratic quadruples!
- Can we decrease n?
- What if we *Divide* the sort into smaller pieces?
- We can then solve those (*Conquer* them).
- We need to be able to combine the pieces in a manner simpler than quadratic.

Divide and Conquer

- Divide (into two equal parts)
- Conquer (solve for each part separately)
- Combine separate solutions
- Merge sort
 - Divide into two equal parts
 - Sort each part using merge-sort (recursion!!!)
 - Merge two sorted subsequences

MergeSort(A, left, right) { if (left < right) { mid = floor((left + right) / 2); MergeSort(A, left, mid); MergeSort(A, mid+1, right); Merge(A, left, mid, right); } } // Merge() takes two sorted subarrays of A and // merges them into a single sorted subarray of A // (how long should this take?)</pre>

Merge Sort: Example

• Show MergeSort() running on the array

```
A = \{10, 5, 7, 6, 1, 4, 8, 3, 2, 9\};
```

Analysis of Merge Sort

<u>Statement</u>	Effort
<pre>MergeSort(A, left, right) { if (left < right) { mid = floor((left + right) / 2); MergeSort(A, left, mid); MergeSort(A, mid+1, right); Merge(A, left, mid, right); } }</pre>	T(n) $\Theta(1)$ $\Theta(1)$ T(n/2) T(n/2) $\Theta(n)$
 So T(n) = Θ(1) when n = 1, and 2T(n/2) + Θ(n) when n > 1 So what (more succinctly) is T(n)? 	

Recurrences

• The expression:

$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

is a *recurrence*.

Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence Examples

Recurrence Examples

$$T(n) = \begin{cases} 0 & n = 0 \\ n + T(n-1) & n > 0 \end{cases}$$

Recurrence Examples

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

Solving Recurrences

- Chapter 4 will look at several methods to solve these recursions:
 - Substitution method
 - Recursion-tree method
 - Master method