
Introduction to AlgorithmsIntroduction to Algorithms
Recursion & Merge SortRecursion & Merge Sort

CSE 680
Prof. Roger Crawfis

Motivation

For insertion sort (and other problems) as nFor insertion sort (and other problems) as n
doubles in size, the quadratic quadruples!
Can we decrease n?Can we decrease n?
What if we Divide the sort into smaller
pieces?pieces?
We can then solve those (Conquer them).
W d t b bl t bi th iWe need to be able to combine the pieces
in a manner simpler than quadratic.

Divide and Conquerq

Divide (into two equal parts)Divide (into two equal parts)
Conquer (solve for each part separately)
C bi t l tiCombine separate solutions
Merge sort

Divide into two equal parts
Sort each part using merge-sort p g g
(recursion!!!)
Merge two sorted subsequences

Merge Sortg

MergeSort(A, left, right) {
if (left < right) {

mid = floor((left + right) / 2);
MergeSort(A, left, mid);MergeSort(A, left, mid);
MergeSort(A, mid+1, right);
Merge(A, left, mid, right);

}}
}

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A
// (how long should this take?)// (how long should this take?)

Merge Sort: Exampleg p

Show MergeSort() running on the arrayShow MergeSort() running on the array

A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9};{ , , , , , , , , , }

Analysis of Merge Sorty g

Statement EffortStatement Effort
MergeSort(A, left, right) { T(n)

if (left < right) { Θ(1)
/ Θmid = floor((left + right) / 2); Θ(1)

MergeSort(A, left, mid); T(n/2)
MergeSort(A, mid+1, right); T(n/2)
Merge(A, left, mid, right); Θ(n)

So T(n) = Θ(1) when n = 1 and

g (, , , g); ()
}

}
So T(n) Θ(1) when n 1, and

2T(n/2) + Θ(n) when n > 1
So what (more succinctly) is T(n)?So what (more succinctly) is T(n)?

Recurrences

The expression:The expression:

⎪⎪
⎧ =1nc

⎪
⎪
⎩

⎪⎪
⎨

>+⎟
⎠
⎞

⎜
⎝
⎛

=
1

2
2

)(
ncnnT

nT

is a recurrence.
⎪⎩ ⎠⎝ 2

Recurrence: an equation that describes a function in
terms of its value on smaller functions

Recursion Tree

1 2 3 4 5 6 7 8

1 3 5 8 2 4 6 7 log n

1 5 3 8

5 1 8 3

4 7 2 6

7 4 6 2

• n comparisons per level
• log n levels

t t l ti l• total runtime = n log n

Recurrence Examplesp

⎧ = 00 n

⎩
⎨
⎧

>−+
=

0
0

)1(
0

)(
n
n

nTc
nT

Recurrence Examplesp

⎧ = 00 n

⎩
⎨
⎧

>−+
=

0)1(
00

)(
nnTn
n

nT

Recurrence Examplesp

⎧ =1nc

⎪

⎪⎪
⎨

⎧

⎞⎛
=

1

)(
n

nc

nT

⎪
⎪
⎩

>+⎟
⎠
⎞

⎜
⎝
⎛ 1

2
2 ncnT

Recurrence Examplesp

⎧

⎪
⎪

⎨

⎧
=

=
1

)(
nc

nT

⎪
⎪

⎩

⎨

>+⎟
⎠
⎞

⎜
⎝
⎛

=

1

)(

ncn
b
naT

nT

⎩ ⎠⎝ b

Solving Recurrencesg

Chapter 4 will look at several methods toChapter 4 will look at several methods to
solve these recursions:

Substitution methodSubstitution method
Recursion-tree method
Master methodMaster method

