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Motivation

For insertion sort (and other problems) as nFor insertion sort (and other problems) as n
doubles in size, the quadratic quadruples!
Can we decrease n?Can we decrease n?
What if we Divide the sort into smaller 
pieces?pieces?
We can then solve those (Conquer them).
W d t b bl t bi th iWe need to be able to combine the pieces 
in a manner simpler than quadratic.

Divide and Conquerq

Divide (into two equal parts)Divide (into two equal parts)
Conquer (solve for each part separately)
C bi t l tiCombine separate solutions
Merge sort

Divide into two equal parts
Sort each part using merge-sort p g g
(recursion!!!)
Merge two sorted subsequences

Merge Sortg

MergeSort(A, left, right) {
if (left < right) {

mid = floor((left + right) / 2);
MergeSort(A, left, mid);MergeSort(A, left, mid);
MergeSort(A, mid+1, right);
Merge(A, left, mid, right);

}}
}

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A
// (how long should this take?)// (how long should this take?)



Merge Sort: Exampleg p

Show MergeSort() running on the arrayShow MergeSort() running on the array

A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9};{ , , , , , , , , , }

Analysis of Merge Sorty g

Statement EffortStatement Effort
MergeSort(A, left, right) { T(n)

if (left < right) { Θ(1)
/ Θmid = floor((left + right) / 2); Θ(1)

MergeSort(A, left, mid); T(n/2)
MergeSort(A, mid+1, right); T(n/2)
Merge(A, left, mid, right); Θ(n)

So T(n) = Θ(1) when n = 1 and

g ( , , , g ); ( )
}

}
So T(n)  Θ(1) when n  1, and 

2T(n/2) + Θ(n) when n > 1
So what (more succinctly) is T(n)?So what (more succinctly) is T(n)? 

Recurrences

The expression:The expression:
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is a recurrence.
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Recurrence: an equation that describes a function in 
terms of its value on smaller functions

Recursion Tree

1 2 3 4 5 6 7 8

1  3 5 8 2 4 6 7 log n

1 5 3 8

5 1 8 3

4 7 2 6

7 4 6 2

• n comparisons per level
• log n  levels

t t l ti l• total runtime = n log n 



Recurrence Examplesp
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Solving Recurrencesg

Chapter 4 will look at several methods toChapter 4 will look at several methods to 
solve these recursions:

Substitution methodSubstitution method
Recursion-tree method
Master methodMaster method


