

Motivation

- For insertion sort (and other problems) as n doubles in size, the quadratic quadruples!
- Can we decrease n ?
- What if we Divide the sort into smaller pieces?
- We can then solve those (Conquer them).
- We need to be able to combine the pieces in a manner simpler than quadratic.

Divide and Conquer

- Divide (into two equal parts)
- Conquer (solve for each part separately)
- Combine separate solutions

Merge Sort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}
// Merge() takes two sorted subarrays of A and // merges them into a single sorted subarray of A
- Sort each part using merge-sort (recursion!!!)
- Merge two sorted subsequences

\section*{Merge Sort: Example}
- Show MergeSort() running on the array
\(A=\{10,5,7,6,1,4,8,3,2,9\} ;\)

\section*{Analysis of Merge Sort}

\section*{Statement}

MergeSort(A, left, right) \{
if (left < right) \{
mid \(=\) floor ((left + right) / 2);

- So \(T(n)=\Theta(1)\) when \(n=1\), and
\[
2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \text { when } \mathrm{n}>1
\]
- So what (more succinctly) is \(T(n)\) ?

\section*{Recurrences}


Recursion Tree

- n comparisons per level
- \(\log \mathrm{n}\) levels
- total runtime \(=\mathrm{n} \log \mathrm{n}\)

Recurrence Examples
\(T(n)=\left\{\begin{array}{cc}0 & n=0 \\ c+T(n-1) & n>0\end{array}\right.\)

Recurrence Examples
\(T(n)=\left\{\begin{array}{cc}0 & n=0 \\ n+T(n-1) & n>0\end{array}\right.\)

Recurrence Examples
\(T(n)=\left\{\begin{array}{cc}c & n=1 \\ 2 T\left(\frac{n}{2}\right)+c & n>1\end{array}\right.\)

Recurrence Examples
\[
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
\]

\section*{Solving Recurrences}
- Chapter 4 will look at several methods to solve these recursions:
- Substitution method
- Recursion-tree method
- Master method```

